首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lactococcus lactis prolidase preferably hydrolyzes Xaa-Pro dipeptides where Xaa is a hydrophobic amino acid. Anionic Glu-Pro and Asp-Pro dipeptides cannot be hydrolyzed at any observable rates and the hydrolysis of cationic Arg-Pro and Lys-Pro dipeptides is at about one tenth of the rate of Leu-Pro. It was hypothesized that the hydrophobic residues in the S1 site were responsible for this substrate specificity, thus the residues in the S1 site were substituted with hydrophilic residues. The substitution of Leu193 and Val302 revealed that these residues influenced the substrate specificity. The introduction of a cationic residue, L193R, allowed Asp-Pro to be utilized as a substrate at 37.0% of the rate of Leu-Pro, and the anionic mutation, V302D, yielded mutants that could hydrolyze Asp-Pro, Arg-Pro and Lys-Pro at 25.9 to 57.4% rates. Interestingly, these mutants of S1 site residues eliminated the allosteric behaviour of L. lactis prolidase that makes this enzyme unique among known prolidases. Results of pH dependency, thermal dependency, and molecular modelling suggested that these observed changes were due to the alteration of the interactions among catalytic zinc cations, Arg293, His296, and the mutated residues.  相似文献   

2.
The allosteric behaviour of Lactococcus lactis prolidase (Xaa-Pro dipeptidase) of this proline-specific peptidase was investigated where it was hypothesized that intersubunit interactions between a loop structure and three residues near the active site contributed to this behaviour. Seven mutant prolidases were constructed, and it was observed that the loopless mutant and His303 substitution inactivated the enzyme. Ser307 substitution revealed that this residue influenced the substrate binding, as judged from its kinetic constants and substrate specificity; however, this residue did not contribute to allostery of prolidase. R293S mutation resulted in the disappearance of the allosteric behaviour yielding a Hill constant of 0.98 while the wild type had a constant of 1.58. In addition, the R293S mutation suppressed the substrate inhibition that was observed in other mutants and wild type. The Km value of R293S was 2.9-fold larger and Vmax was approximately 50% less as compared to the wild type. The results indicated that Arg293 increased the affinity for substrates while introducing allosteric behaviour and substrate inhibition. Computer modelling suggested that negative charges on the loop structure interacted with Arg293 and Ser307 to maintain these characteristics. It was, therefore, concluded that Arg293, His303, Ser307 and the loop contributed to the enzyme's allosteric characteristics.  相似文献   

3.
Yang SI  Tanaka T 《The FEBS journal》2008,275(2):271-280
The Lactococcus lactis NRRL B-1821 prolidase gene was cloned and overexpressed in Escherichia coli. Under suboptimum growth conditions, recombinant soluble and active prolidase was produced; in contrast, inclusion bodies were formed under conditions preferred for cell growth. Recombinant prolidase retained more than half its full activity between 30 and 60 degrees C, and was completely inactivated after 30 min at 70 degrees C. CD analysis confirmed that prolidase was inactivated at 67 degrees C. The enzyme was active under weak alkali to weak acidic conditions, and showed maximum activity at pH 7.0. Although these characteristics are similar to those for other reported prolidases, this prolidase was distinctive for two kinetic characteristics. Firstly, different substrate specificity was observed for its two preferred metal cations, zinc and manganese: Leu-Pro was preferred with zinc, whereas Arg-Pro was preferred with manganese. Secondly, the enzyme showed an allosteric response to changes in substrate concentrations, with Hill constants of 1.53 for Leu-Pro and 1.57 for Arg-Pro. Molecular modeling of this prolidase suggests that these unique characteristics may be attributed to a loop structure near the active site.  相似文献   

4.
The initiation and elongation stages of translation are directed by codon-anticodon interactions. In contrast, a release factor protein mediates stop codon recognition prior to polypeptide chain release. Previous studies have identified specific regions of eukaryotic release factor one (eRF1) that are important for decoding each stop codon. The cavity model for eukaryotic stop codon recognition suggests that three binding pockets/cavities located on the surface of eRF1's domain one are key elements in stop codon recognition. Thus, the model predicts that amino acid changes in or near these cavities should influence termination in a stop codon-dependent manner. Previous studies have suggested that the TASNIKS and YCF motifs within eRF1 domain one play important roles in stop codon recognition. These motifs are highly conserved in standard code organisms that use UAA, UAG, and UGA as stop codons, but are more divergent in variant code organisms that have reassigned a subset of stop codons to sense codons. In the current study, we separately introduced TASNIKS and YCF motifs from six variant code organisms into eRF1 of Saccharomyces cerevisiae to determine their effect on stop codon recognition in vivo. We also examined the consequences of additional changes at residues located between the TASNIKS and YCF motifs. Overall, our results indicate that changes near cavities two and three frequently mediated significant effects on stop codon selectivity. In particular, changes in the YCF motif, rather than the TASNIKS motif, correlated most consistently with variant code stop codon selectivity.  相似文献   

5.
AIM: To study the effect of casein-derived peptides, accumulated during growth of Lactococcus lactis in milk, on its oligopeptide transport (Opp) function. METHODS AND RESULTS: This effect was estimated by analysing the ability of casein-derived peptides to compete for the transport of a reporter peptide by whole L. lactis cells. The transport of the reported peptide was monitored by determining the intracellular concentrations of the corresponding amino acids by means of reverse-phase high-performance liquid chromatography (HPLC). Uptake of the reporter peptide was competitively inhibited by casein-derived peptides. The competition was only because of charged casein-derived peptides, including anionic peptides. The design of specific pure peptides made it possible to evidence for a positive (or negative) influence exerted by the positively (or negatively) charged side chain of the N-terminal amino acid on the competition. CONCLUSIONS: Charged casein-derived peptides impaired the oligopeptide transport function of L. lactis. SIGNIFICANCE AND IMPACT OF THE STUDY: These results demonstrate an inhibition of Opp when too many peptides are produced by the proteinase. Peptide transport by Opp therefore represents a bottleneck for increasing the growth rate of L. lactis in milk.  相似文献   

6.
Lactococcus lactis was grown in a simple synthetic medium with glucose as substrate, enabling the precise quantification of each nutrient's contribution to growth. As expected, for the growth of lactic acid bacteria, the growth rate decreased progressively during the cultivation after a short period of exponential growth. End-products of fermentation, predominantly lactate and in minor amounts formate, acetate and ethanol, accumulated within the medium. Growth of the bacterium in fresh media supplemented with these end-products showed that the concentrations attained in the fermentor had no significant influence on the growth rate. As regards nutrients, vitamins and magnesium were never limiting during the culture. On the other hand, amino acid concentrations decreased, some of them being totally consumed and exhausted from the medium before growth ceased. However, growth in reconstituted media constructed with the amino acid concentrations remaining at different times of cultivation showed that amino acid depletion could not account for the observed growth decrease. Batch culture supernatant fluid was used as cultivation medium. Growth rates observed in supernatant cultures supplemented with various nutrients, compared to non-supplemented supernatant, showed that no addition improved growth. Finally, it was concluded that in the experimental conditions used in this study, growth inhibition was predominantly due to phenomena other than lactate inhibition and nutritional limitations, and hence associated with unidentified compounds produced in the fermentation.  相似文献   

7.
The peptide transport protein DtpT of Lactococcus lactis was purified and reconstituted into detergent-destabilized liposomes. The kinetics and substrate specificity of the transporter in the proteoliposomal system were determined, using Pro-[(14)C]Ala as a reporter peptide in the presence of various peptides or peptide mimetics. The DtpT protein appears to be specific for di- and tripeptides, with the highest affinities for peptides with at least one hydrophobic residue. The effect of the hydrophobicity, size, or charge of the amino acid was different for the amino- and carboxyl-terminal positions of dipeptides. Free amino acids, omega-amino fatty acid compounds, or peptides with more than three amino acid residues do not interact with DtpT. For high-affinity interaction with DtpT, the peptides need to have free amino and carboxyl termini, amino acids in the L configuration, and trans-peptide bonds. Comparison of the specificity of DtpT with that of the eukaryotic homologues PepT(1) and PepT(2) shows that the bacterial transporter is more restrictive in its substrate recognition.  相似文献   

8.
The epithelial Na+channel (ENaC) is a low-conductance channel that is highly selectivefor Na+ andLi+ overK+ and impermeable toanions. The molecular basis underlying these conductionproperties is not well known. Previous studies with the ENaC subunitsdemonstrated that the M2 region of -ENaC is critical to channelfunction. Here we examine the effects of reversing the negative chargesof highly conserved amino acids in -subunit human ENaC (-hENaC)M1 and M2 domains. Whole cell and single-channel currentmeasurements indicated that the M2 mutations E568R, E571R, and D575Rsignificantly decreased channel conductance but did not affectNa+:K+permeability. We observed no functional perturbations from the M1mutation E108R. Whole cell amiloride-sensitive current recorded fromoocytes injected with the M2 -hENaC mutants along with wild-type (wt) - and -hENaC was low (46-93 nA) compared with the wtchannel (1-3 µA). To determine whether this reduced macroscopiccurrent resulted from a decreased number of mutant channels at theplasma membrane, we coexpressed mutant -hENaC subunits with greenfluorescent protein-tagged - and -subunits. Confocal laserscanning microscopy of oocytes demonstrated that plasma membranelocalization of the mutant channels was the same as that of wt. Theseexperiments demonstrate that acidic residues in the secondtransmembrane domain of -hENaC affect ion permeation and are thuscritical components of the conductive pore of ENaC.

  相似文献   

9.
Two essential residues playing critical roles in determining the substrate specificities of cytosolic glutamine synthetase (GS1) have been identified from the alignment of high-affinity (GLN1;1 and GLN1;4) and low-affinity (GLN1;2 and GLN1;3) GS1 isoenzymes in Arabidopsis, and confirmed by site-directed mutagenesis. The results indicated that either K49Q or A174S mutation is sufficient to increase the catalytic efficiencies of GLN1;3 by decreasing its Km values for ammonium. In contrast, replacement of Gln49 and Ser174 by lysine and alanine, respectively, was detrimental to glutamine synthetic activities in GLN1;4. The results suggested that Gln49 and Ser174 in the high-affinity GS1 isoenzymes are interchangeable with Lys49 and Ala174 in the low-affinity variants at the corresponding positions.  相似文献   

10.
Transgenes inserted into the telomeric regions of Drosophila melanogaster chromosomes exhibit position effect variegation (PEV), a mosaic silencing characteristic of euchromatic genes brought into juxtaposition with heterochromatin. Telomeric transgenes on the second and third chromosomes are flanked by telomeric associated sequences (TAS), while fourth chromosome telomeric transgenes are most often associated with repetitious transposable elements. Telomeric PEV on the second and third chromosomes is suppressed by mutations in Su(z)2, but not by mutations in Su(var)2-5 (encoding HP1), while the converse is true for telomeric PEV on the fourth chromosome. This genetic distinction allowed for a spatial and molecular analysis of telomeric PEV. Reciprocal translocations between the fourth chromosome telomeric region containing a transgene and a second chromosome telomeric region result in a change in nuclear location of the transgene. While the variegating phenotype of the white transgene is suppressed, sensitivity to a mutation in HP1 is retained. Corresponding changes in the chromatin structure and inducible activity of an associated hsp26 transgene are observed. The data indicate that both nuclear organization and local chromatin structure play a role in this telomeric PEV.  相似文献   

11.
The proton motive force-driven efflux pump LmrP confers multidrug resistance on Lactococcus lactis cells by extruding a wide variety of lipophilic cationic compounds from the inner leaflet of the cytoplasmic membrane to the exterior of the cell. LmrP contains one cysteine (Cys(270)), which was replaced by alanine. This cysteine-less variant was used in a cysteine scanning accessibility approach. All 19 acidic residues in LmrP were replaced one by one by cysteine and subsequently challenged with the large thiol reagent fluorescein maleimide. The labeling pattern strongly indicates that only three acidic residues (Asp(142), Glu(327), and Glu(388)) are membrane-embedded. The roles of these residues in drug recognition were evaluated based on transport experiments with two cationic substrates, ethidium and Hoechst 33342, after replacing each of these residues with cysteine, alanine, lysine, glutamate, or aspartate. The obtained results suggest that the negative charges at positions 142 and 327 are not critical for the transport function but are important for drug recognition by LmrP. Surprisingly, the residues Cys(142) and Cys(327) become accessible for fluorescein maleimide upon binding of substrates, indicating a movement of these residues from a nonpolar to a polar environment. Substrate binding apparently results in a conformational change in this region of the protein and a reorientation of a lipid-embedded, hydrophobic substrate-binding site to an aqueous substrate translocation pathway.  相似文献   

12.
The lactose-protease plasmid pUCL22 of Lactococcus lactis subsp. lactis strain CNRZ270 contained two inverted copies of IS 1076 flanking a region of 3.7 kb. This internal region was sequenced and found to contain two large open reading frames, ORF1 and ORFP in opposite orientations. ORF1 consists of 2289 bp; the deduced 763-amino-acid sequence is similar to the ATPases of the ClpA family. It contains two well-conserved consensus ATP-binding sites. It was named ClpL. ORFP consists of 930 bp encoding a protein of 310 amino acids. No similarity with any known protein was found in GenBank data for ORFP. Increased ATP-dependent proteolytic activity was detected in extracts from Escherichia coli cells expressing the clpL and ORFP genes.  相似文献   

13.
Identification of a RecA-like protein in Lactococcus lactis   总被引:1,自引:0,他引:1  
We have identified in Lactococcus lactis, an analogue of Escherichia coli RecA protein. Physiological responses such as ultraviolet (UV) and chemical mutagenesis and induction of prophage have been characterized and suggest the existence of RecA-like functions in this commercially important species. The putative RecA protein was detected at the position of an apparent molecular weight of 39 kDa by Western blot analysis by using antiserum against E coli RecA protein. In addition, the protein level is significantly increased after UV irradiation in a wild-type strain compared to the recombination deficient mutant strain.  相似文献   

14.
Lactococcus lactis subsp. lactis ML3 contains high pools of proline or betaine when grown under conditions of high osmotic strength. These pools are created by specific transport systems. A high-affinity uptake system for glycine betaine (betaine) with a Km of 1.5 microM is expressed constitutively. The activity of this system is not stimulated by high osmolarities of the growth or assay medium but varies strongly with the medium pH. A low-affinity proline uptake system (Km, > 5 mM) is expressed at high levels only in chemically defined medium (CDM) with high osmolarity. This transport system is also stimulated by high osmolarity. The expression of this proline uptake system is repressed in rich broth with low or high osmolarity and in CDM with low osmolarity. The accumulated proline can be exchanged for betaine. Proline uptake is also effectively inhibited by betaine (Ki of between 50 and 100 microM). The proline transport system therefore probably also transports betaine. The inhibition of proline transport by betaine results in low proline pools in cells grown in high-osmotic-strength, betaine-containing CDM. The energy and pH dependency and the influence of ionophores on the activity of both transport systems suggest that these systems are not proton motive force driven. At low osmolarities, proline uptake is low but significant. This low proline uptake is also inhibited by betaine, although to a lesser extent than in cells grown in high-osmotic-strength CDM. These data indicate that proline uptake in L. lactis is enzyme mediated and is not dependent on passive diffusion, as was previously believed.  相似文献   

15.
To maximize the productivity of engineered metabolic pathway, in silico model is an established means to provide features of enzyme reaction dynamics. In our previous study, Escherichia coli engineered with acrylate pathway yielded low propionic acid titer. To understand the bottleneck behind this low productivity, a kinetic model was developed that incorporates the enzymatic reactions of the acrylate pathway. The resulting model was capable of simulating the fluxes reported under in vitro studies with good agreement, suggesting repression of propionyl-CoA transferase (Pct) by carboxylate metabolites as the main limiting factor for propionate production. Furthermore, the predicted flux control coefficients of the pathway enzymes under steady state conditions revealed that the control of flux is shared between Pct and lactoyl-CoA dehydratase. Increase in lactate concentration showed gradual decrease in flux control coefficients of Pct that in turn confirmed the control exerted by the carboxylate substrate. To interpret these in silico predictions under in vivo system, an organized study was conducted with a lactic acid bacteria strain engineered with acrylate pathway. Analysis reported a decreased product formation rate on attainment of inhibitory titer by suspected metabolites and supported the model.  相似文献   

16.
Summary The transfer of plasmids was studied in a stirred fermentor in the course of mixed batch cultures combining recombinant strains of Lactococcus lactis subsp. lactis (donor strains) with L. lactis subsp. lactis CNRZ 268M3 (recipient strain). Donor strains contained one or two of the following plasmids (coding for erythromycin or chloramphenicol resistance): pIL205 (self-transmissible), pIL252, pIL253 (non-transmissible but mobilizable by pIL205, respectively small and large copy number) and pE194 (inserted in the chromosome). Only self-transmissible plasmid pIL205 was transferred, with frequencies ranging from 10–7 to 10–8 after 12 h of fermentation. These frequencies were 60–400 times lower than in unstirred M17 broth and 100 000 times lower than on agar medium. In the latter case, non-transmissible plasmids pIL252 and pIL253 were mobilized by pIL205 with a frequency of about 10–5–10–6. Correspondence to: C.-Y. Boquien  相似文献   

17.
The effect of plasmid introduction into Lactococcus lactis subsp. lactis IL2661 on the growth of this strain and on plasmid stability was studied in pure batch cultures. The plasmids used (coding for erythromycin or chloramphenicol resistance) were the following: pIL205 (42 kb), pIL252 (4.6 kb, 6-9 copies), pIL253 (4.8 kb, 45-85 copies) and pE194 (inserted in the chromosome). Growth and acidification of L. lactis subsp. lactis IL2661 were similar to those of the derived recombinant lactococci. The maximal population at the end of the fermentation (9 h) was about 1.1 +/- 0.3 x 10(10) cfu/ml, and maximal growth rate 0.92 +/- 0.07 h-1. Growth yield and lactic acid concentrations were 3.9 +/- 0.8 x 10(11) cfu/g lactose consumed and 25.6 +/- 2.3 g/l, respectively. Different levels of plasmid stability were detected. Plasmid pE194, and plasmids pIL252 and pIL253 in the absence of pIL205, were stable after 10 h of culture. A slight loss (1-2%) of pIL205 was observed in all strains. In the presence of pIL205, plasmids pIL252 and pIL253 were maintained in only 56-95% of the cells. This result suggested an incompatibility between pIL205 and pIL252 or pIL253.  相似文献   

18.
Minute amounts of oxygen were supplied to a continuous cultivation of Lactococcus lactis subsp. cremoris MG1363 grown on a defined glucose-limited medium at a dilution rate of 0.1 h(-1). More than 80% of the carbon supplied with glucose ended up in fermentation products other than lactate. Addition of even minute amounts of oxygen increased the yield of biomass on glucose by more than 10% compared to that obtained under anaerobic conditions and had a dramatic impact on catabolic enzyme activities and hence on the distribution of carbon at the pyruvate branch point. Increasing aeration caused carbon dioxide and acetate to replace formate and ethanol as catabolic end products while hardly affecting the production of either acetoin or lactate. The negative impact of oxygen on the synthesis of pyruvate formate lyase was confirmed. Moreover, oxygen was shown to down regulate the protein level of alcohol dehydrogenase while increasing the enzyme activity levels of the pyruvate dehydrogenase complex, alpha-acetolactate synthase, and the NADH oxidases. Lactate dehydrogenase and glyceraldehyde dehydrogenase enzyme activity levels were unaffected by aeration.  相似文献   

19.
The effect of citrate on the growth of Lactococcus lactis subsp. lactis var. diacetylactis in milk has been investigated. Five strains of Lactococcus lactis subsp. lactis var. diacetylactis were compared to their citrate-negative variants, which lack the plasmid coding for citrate permease. In most cases, acidification kinetics and the final bacterial concentration of pure cultures of parental and variant strains did not differ significantly. Co-cultures of parental and variant strains, however, systematically tended towards the predominance of parental strains. Citrate metabolism is responsible for this change, since the predominance of citrate-positive strains was not observed in the absence of citrate. Continuous culture in milk enabled the difference in growth rates between the parental strain Lactococcus lactis subsp. lactis var. diacetylactis CDI1 and its citrate-negative variant to be quantified by following changes in the populations of the two co-cultured strains. At 26 °C, the growth rate of the parental strain was 7% higher than that of its citrate-negative variant. These results show that citrate metabolism slightly stimulates the growth of lactococci in milk. Received: 18 February 1997 / Received revision: 2 May 1997 / Accepted: 4 May 1997  相似文献   

20.
To explore the ways that proline residues may influence the conformational options of a polypeptide backbone, we have characterized Pro-->Ala mutants of cellular retinoic acid-binding protein I (CRABP I). While all three Xaa-Pro bonds are in the trans conformation in the native protein and the equilibrium stability of each mutant is similar to that of the parent protein, each has distinct effects on folding and unfolding kinetics. The mutation of Pro105 does not alter the kinetics of folding of CRABP I, which indicates that the flexible loop containing this residue is passive in the folding process. By contrast, replacement of Pro85 by Ala abolishes the observable slow phase of folding, revealing that correct configuration of the 84-85 peptide bond is prerequisite to productive folding. Substitution of Pro39 by Ala yields a protein that folds and unfolds more slowly. Removal of the conformational constraint imposed by the proline ring likely raises the transition state barrier by increasing the entropic cost of narrowing the conformational ensemble. Additionally, the Pro-->Ala mutation removes a helix-termination signal that is important for efficient folding to the native state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号