首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Recent molecular cytogenetic data have shown that the constitution of complex chromosome rearrangements (CCRs) may be more complicated than previously thought. The complicated nature of these rearrangements challenges the accurate delineation of the chromosomal breakpoints and mechanisms involved. Here, we report a molecular cytogenetic analysis of two patients with congenital anomalies and unbalanced de novo CCRs involving chromosome 17p using high-resolution array-based comparative genomic hybridization (array CGH) and fluorescent in situ hybridization (FISH). In the first patient, a 4-month-old boy with developmental delay, hypotonia, growth retardation, coronal synostosis, mild hypertelorism, and bilateral club feet, we found a duplication of the Charcot-Marie–Tooth disease type 1A and Smith-Magenis syndrome (SMS) chromosome regions, inverted insertion of the Miller-Dieker lissencephaly syndrome region into the SMS region, and two microdeletions including a terminal deletion of 17p. The latter, together with a duplication of 21q22.3-qter detected by array CGH, are likely the unbalanced product of a translocation t(17;21)(p13.3;q22.3). In the second patient, an 8-year-old girl with mental retardation, short stature, microcephaly and mild dysmorphic features, we identified four submicroscopic interspersed 17p duplications. All 17 breakpoints were examined in detail by FISH analysis. We found that four of the breakpoints mapped within known low-copy repeats (LCRs), including LCR17pA, middle SMS-REP/LCR17pB block, and LCR17pC. Our findings suggest that the LCR burden in proximal 17p may have stimulated the formation of these CCRs and, thus, that genome architectural features such as LCRs may have been instrumental in the generation of these CCRs.  相似文献   

2.
Partial duplication of 11q is related to several malformations like growth retardation, intellectual disability, hypoplasia of corpus callosum, short nose, palate defects, cardiac, urinary tract abnormalities and neural tube defects. We have studied the clinical and molecular characteristics of a patient with severe intellectual disabilities, dysmorphic features, congenital inguinal hernia and congenital cerebral malformation which is referred to as cytogenetic exploration. We have used FISH and array CGH analysis for a better understanding of the double chromosomic aberration involving a 7p microdeletion along with a partial duplication of 11q due to adjacent segregation of a paternal reciprocal translocation t(7;11)(p22;q21) revealed after banding analysis. The patient's karyotype formula was: 46,XY,der(7)t(7;11)(p22;q21)pat. FISH study confirmed these rearrangement and array CGH technique showed precisely the loss of at least 140 Kb on chromosome7p22.3pter and 33.4 Mb on chromosome11q22.1q25. Dysmorphic features, severe intellectual disability and brain malformations could result from the 11q22.1q25 trisomy. Our study provides an additional case for better understanding and delineating the partial duplication 11q.  相似文献   

3.
An 8-year-old boy presenting with hypotonia, moderate mental retardation, developmental delay, and psychomotor retardation is reported. Magnetic resonance imaging of the brain at age 3 years revealed a Dandy-Walker variant. Cytogenetic analysis of the peripheral blood revealed a derivative chromosome 12 with unknown additional material attached to the distal region of the long arm of chromosome 12. The parental karyotypes were normal. Spectral karyotyping (SKY) using the 24-color SKY probes and fluorescence in situ hybridization (FISH) using the specific 7p, 7q, 12p, and 12q telomeric probes confirmed a duplication of distal 7p and a deletion of terminal 12q. The karyotype of the proband was designated as 46,XY.ish der(12)t(7;12) (p21.2;q24. 33)(SKY+, 7pTEL+, 12qTEL-). The present case provides evidence for the association of partial trisomy 7p (7p21.2-->pter) and partial monosomy 12q (12q24.33-->qter) with a cerebellar malformation and the usefulness of SKY and FISH in the identification of a de novo aberrant chromosome resulting from an unbalanced translocation.  相似文献   

4.
We report a molecular cytogenetic characterization of 17p13.3 deletion syndrome by array comparative genomic hybridization (aCGH), fluorescence in situ hybridization (FISH) and quantitative polymerase chain reaction (qPCR) in a fetus with lissencephaly, corpus callosum dysgenesis, ventriculomegaly, microcephaly, intrauterine growth restriction (IUGR), polyhydramnios and single umbilical artery. aCGH analysis revealed a 3.17-Mb deletion at 17p13.3, or arr [hg19] 17p13.3 (0–3,165,530)×1. The qPCR assays revealed a maternal origin of the deletion. Metaphase FISH analysis detected the absence of the LIS1 probe signal on the aberrant chromosome 17. The karyotype was 46,XX,del(17)(p13.3). We review the literature of chromosome 17p13.3 deletion syndrome with prenatal findings and diagnosis, and suggest that prenatal ultrasound detection of central nervous system anomalies such as lissencephaly, corpus callosum dysgenesis/agenesis, ventriculomegaly and microcephaly associated with IUGR, polyhydramnios, congenital heart defects, abdominal wall defects and renal abnormalities should include a differential diagnosis of chromosome 17p13.3 deletion syndrome.  相似文献   

5.
Ploidy of a chromosome set and some regular structural aberrations in the new human 4BL cell line by passage 205 have been characterized in the previous cytogenetic studies. The purpose of this study was to investigate, using the array CGH and FISH methods, the nature of regular monosomies in particular homologous pairs. Structural aberrations were detected in all the chromosome pairs distinguished as monosomies according to classical cytogenetic analyses. The most notable alterations have been detected in chromosomes 2, 4, 10, 13, and 17. Massive genetic material losses were a probable cause for the monosomy of chromosomes 4, 10, 13, and 17. The monosomy of the second pair of chromosomes was caused by a substantial transformation in one of the homologs typified as multiple duplications and the formation of a derivative—der(2)t(2;?)(q21;?). The application of array CGH aided us in identifying the regions of structural aberrations in chromosomes 2, 4, 10, 13, and 17, that allowed a more accurate identification with the use of the multicolor FISH method. The obtained results confirm the hypothesis concerning a coordinated emergence of deletions and duplications and their stabilizing effect on transformed chromosomes.  相似文献   

6.
We describe a female patient of 1 year and 5 months-old, referred for genetic evaluation due to neuropsychomotor delay, hearing impairment and dysmorphic features. The patient presents a partial chromosome 21 monosomy (q11.2→q21.3) in combination with a chromosome 3p terminal monosomy (p25.3→pter) due to an unbalanced de novo translocation. The translocation was confirmed by fluorescence in situ hybridization (FISH) and the breakpoints were mapped with high resolution array. After the combined analyses with these techniques the final karyotype was defined as 45,XX,der(3)t(3;21)(p25.3;q21.3)dn,-21.ish der(3)t(3;21)(RP11-329A2-,RP11-439F4-,RP11-95E11-,CTB-63H24 +).arr 3p26.3p25.3(35,333-10,888,738)) × 1,21q11.2q21.3(13,354,643-27,357,765) × 1. Analysis of microsatellite DNA markers pointed to a paternal origin for the chromosome rearrangement. This is the first case described with a partial proximal monosomy 21 combined with a 3p terminal monosomy due to a de novo unbalanced translocation.  相似文献   

7.
We present clinical and cytogenetic data of a one year old boy with partial monosomy for both 21q and 18p, resulting from a de novo unbalanced translocation. The initial diagnosis of a seemingly full monosomy 21 was revised after fluorescence in situ hybridisation (FISH) with whole chromosome painting probes and a locus-specific chromosome 21 probe. The karyotype was reinterpreted as 45,XY,der(18)t(18;21)(p11.2;q22.1),-21. This karyotype, to our knowledge, has not been previously described. The boy presented with a spectrum of clinical features previously described for (partial) monosomy 18p only, for monosomy 21q only, or for both of these aneusomies. The radiological finding of a neuronal migration disorder with localised polymicrogyria (cortical dysplasia) has not been described for either monosomy before.  相似文献   

8.
We report a female infant with partial trisomy 8p (8p11.2-->pter) and deletion of 13q (13q32-->qter). She was born with mild hypotonia, intrauterine growth retardation, microcephaly, micrognathia, large low set ears, pectus excavatum, anteriorly placed anus, and bilateral clinodactyly. Echocardiography showed left ventricular hypertrophy, bicuspid aortic valve, dilatation of the aorta and pulmonary artery, and prolapse of atrio-venticular valve leaflets. Cytogenetic investigation of her sister and her father showed that the altered region resulted from a balanced translocation between the part of the long arm of chromosome 13 and short arm of chromosome 8. In partial trisomy 8p, the clinical picture of the patients comprises hypotonia, structural brain abnormalities, facial anomalies including a large mouth with a thin upper lip, a high arched palate, a broad nasal bridge, an abnormal maxilla or mandible, malformed, low set ears, and orthopedic anomalies. Although patients with proximal deletions of 13q that do not extend into band q32 have mild to moderate mental and growth delays with variable minor anomalies, patients with more distal deletions including at least part of band q32 usually have major malformations such as retinoblastoma, mental-motor growth retardation, malformation of brain and heart, anal atresia, and anomalies of the face and limbs. To our knowledge partial trisomy 8p and partial monosomy of 13q have not been reported previously in the same person.  相似文献   

9.
We report a Sardinian family in which three members showed a mental-retardation-microcephaly-multiple malformations syndrome resulting from an unbalanced translocation (7;13)(q36;q32) which led to subtelomeric trisomy 7q36qter and partial monosomy 13q32qter. The unbalanced translocation was transmitted by alternate segregation from a female and a male carriers of the balanced translocation. The three patients had severe mental retardation, microcephaly and multiple minor facial and fingers anomalies. Neuroimages showed brain atrophy, associated in two patients with partial agenesis of the corpus callosum. FISH with chromosome 13 and 7 specific painting probes and subtelomere specific probes was instrumental for defining and characterizing the chromosomal translocation. Extensive genetic counseling and prenatal diagnosis has been offered to all the members of the family.  相似文献   

10.
Ring chromosome 15 [r(15)] is an uncommon finding with less than 50 patients reported. Precise genotype–phenotype correlations are problematic because of the difficulties in determining the extent of euchromatic loss, the level of mosaicism, and the influence of the timing of ascertainment. We report two discordant examples of r(15) patients. In the first case, prenatal diagnosis of a de novo r(15) was made during the second trimester: mos 46,XX,r(15)(p11.2q26)[32]/45,XX,-15[13]/47,XX,r(15)(p11.2q26)x2[3]/46,XX,dic r(15)(p11.2q26p11.2q26[1]/46,XX[2]. Postnatal follow-up revealed extremely small stature, heart defects, and developmental delay. Patient 2 was a 31-year-old short-statured female who was living independently: 46,XX,r(15)(p11q26). Both cases showed loss of the 15q subtelomeric region by fluorescence in situ hybridization (FISH). To investigate the discordance in phenotypes between the two patients, we undertook array comparative genomic hybridization (array CGH) analyses to more fully characterize the deletions associated with these otherwise structurally indistinguishable r(15) chromosomes from conventional cytogenetic analyses and fluorescence in situ hybridization (FISH) studies. By array CGH, patient 1 showed deletion of multiple contiguous clones predicting an approximately 6 Mb deletion of distal 15q. In contrast, patient 2 showed loss of just the 15q subtelomeric clone and an interstitial clone by array CGH confirming that the severity of the phenotype correlated with the size of the deletion at the molecular level. These cases illustrate the utility of array CGH characterization for determining the size of the associated deletion in ring chromosomes and for facilitating phenotype–genotype correlations.  相似文献   

11.
We present a 72 year old man with multiple myeloma (MM). Cytogenetic and FISH analysis of bone marrow aspirate showed a novel translocation -der(11)t(3;11)(p21;q24). The unbalanced karyotype led to substantial partial trisomy for chromosome 3p and small partial monosomy 11q. Structural rearrangements of chromosome 3 are uncommon in MM and these are reviewed. The patient died 2 years after the diagnosis of MM was made.  相似文献   

12.
The results of comprehensive clinical examination and molecular cytogenetic analysis of a patient carrying chromosome 3p+ in 69% of the peripheral blood lymphocytes are presented. Using microdissection of the metaphase chromosomes followed by DOP-PCR, a DNA library specific for the abnormal chromosome was obtained. By fluorescence in situ hybridization (FISH) of this DNA library with chromosomes from the patient and a healthy donor, the aberrant chromosome was identified as der(3)t(3;10)(3p25;q24.3). Since this chromosome was present in only a proportion of patient's cells studied and no chromosome aberrations were revealed in cells of his parents, the der(3)t(3;10) is suggested to appear de novo. The cells carrying der(3)t(3;10) are monosomic for a proportion of 3p25 and trisomic for 10q24.3-->qter. The developmental malformations revealed in the patient, such as the specific features of facial skeleton, mental retardation, microcephaly, and others are similar to those described previously in patients with partial 3p monosomy and 10q trisomy.  相似文献   

13.
We report on a 5-year-old Tunisian boy with particular dysmorphic features and mild mental retardation limited in delayed and poor language acquisition. Cytogenetic analysis using RHG banding and FISH using whole chromosome four painting probe showed a partial duplication in the long arm of chromosome four. Locus specific probes and CGH confirmed the presence of a 'pure' partial trisomy 4q due to de novo direct tandem dup(4)(q25q34). Comparative analysis of our case with those published previously, suggests that region 4q31-q33 may be involved in the development of the 4q characteristic dysmorphic features and the distal band 4q35 may be involved in the development of microcephaly and severe mental and growth retardation.  相似文献   

14.
EM Strehle  D Gruszfeld  D Schenk  SG Mehta  I Simonic  T Huang 《Gene》2012,506(2):387-391
Deletions of the long arm of chromosome 4 detectable by cytogenetic analysis (standard karyotyping), fluorescent in situ hybridisation (FISH), multiplex ligation-dependent probe amplification (MLPA) or comparative genomic hybridisation (CGH) cause 4q- syndrome. Here we describe 3 cases of 4q- syndrome which demonstrate the variations in clinical presentation, diagnosis and prognosis observed in this condition. Patient 1 was a female foetus diagnosed with del(4)(q33) following chorionic villus sampling (CVS) at 14weeks, and the pregnancy was terminated at 18weeks. Patient 2 was a 5-month-old boy with del(4)(q31.3) and complex congenital heart disease. He also had a duplication of chromosome 6p and died of cardiac failure. Patient 3 is a 2-year-old girl with mild dysmorphic features and an interstitial deletion del(4)(q22.1q23). She has no major malformations and only slight developmental delay.  相似文献   

15.
Lipoblastoma is a benign uncommon soft-tissue-tumor resembling fetal adipose tissue affecting mainly children under three years of age. In lipoblastoma, the typical cytogenetic changes are clonal rearrangements involving chromosomal region 8q11-->q13. The oncogene PLAG1 (pleomorphic adenoma gene 1) is located within this chromosomal region on band 8q12. Recent reports have demonstrated that in lipoblastoma, the PLAG1 gene is activated by 'promoter-swapping'. Herein, we demonstrate that in lipoblastoma, the PLAG1 gene may also be activated by low-level amplification. We report on a lipoblastoma with the karyotype 48 approximately 50,XX,del(8)(q13q21.2),+del(8)(q13q21.2)x4[cp12]. Subsequent FISH analysis on uncultured tumor cells confirmed this result and demonstrated a low-level amplification of the chromosomal region 8pter-->8q13 and 8q21.2-->8qter. A partial monosomy was seen for the chromosomal region 8q13-->8q21.2. No other gains or losses were observed by CGH analysis. RT-PCR analysis showed that the PLAG1 gene is activated in the tumor sample of the lipoblastoma analyzed, in contrast to normal fatty tissue without PLAG1 expression. In conclusion, our results demonstrate that low-level amplification is a further mechanism of PLAG1 activation in lipoblastomas.  相似文献   

16.
We report on a family in which a daughter is described with mental retardation, as well as malformations of the heart, and of the brain (Dandy-Walker variant). The patient's phenotype suggests a chromosomal rearrangement. However, her karyotype was unremarkable by conventional cytogenetic analysis. In order to detect chromosome rearrangements overseen by this method, the subtelomere regions of suspicious chromosomes were verified by fluorescence in situ hybridization (FISH). A rearranged derivative chromosome 6 was identified. Further examinations by FISH-microdissection (FISH-MD) revealed a maternal complex balanced translocation. The patient inherited the derivative chromosome 6 from her mother and therefore carries a partial monosomy 6q26-->qter and a partial trisomy 11q23.3-->qter.  相似文献   

17.
Described is an infant with partial trisomy 17q and monosomy 9p [46,XX,-9,+der(9)t(9;17)(p21;q23)] due to adjacent-1 segregation of a maternal balanced reciprocal translocation. Characteristic clinical features of both partial 17q trisomy and monosomy 9p are present, but the former syndrome is less recognisable in this infant than in previously reported cases due to the concomitant 9p monosomy.  相似文献   

18.
A family with six alive patients with partial monosomy 5p and five with partial trisomy 5p due to a t(5;15)(p13.3;p12) translocation is reported. The translocation was present in four generations with eight balanced carriers. This is the first molecular-cytogenetic and clinical study with both syndromes present in the same family. Using fluorescence in situ hybridization (FISH) with bacterial artificial chromosome (BAC) probes, the breakpoint was mapped to 5p13.3, in the interval corresponding to the BAC clone RP11-1079N14, thereof resulting a 5pter-5p13.3 deletion or duplication of ~32 Mb. These chromosome imbalances can be considered pure, since the other imbalance produced involving chromosome 15p has no phenotypic effect. The presence of several individuals with 5p monosomy and 5p trisomy in the same family is valuable for a better delineation of both syndromes.  相似文献   

19.
Constitutional Complex Chromosomal Rearrangements (CCRs) are very rare. While the vast majority of CCRs involve more than one chromosome, only seven cases describe CCRs with four or more breakpoints within a single chromosome. Here, we present a patient with multiple congenital anomalies and mental retardation. Array Comparative Genomic Hybridisation (array CGH), FISH and Multicolour Banding FISH revealed a de novo complex rearrangement with two deletions, a duplication and an inversion of 4q. This CCR involving at least seven breakpoints is one of the most complex rearrangements of a single chromosome reported thus far. Potential mechanisms generating such complex rearrangements are discussed.  相似文献   

20.
We report on a currently six-year-old patient with a de novo complex chromosome rearrangement (CCR) involving chromosomes 2 and 12. A translocation 2;12 that appeared to be reciprocal after standard banding turned out to be a complex event with seven breaks after molecular cytogenetic analyses. Array CGH analysis showed no imbalances at the breakpoints but revealed an additional microdeletion of about 80 kb on chromosome 11. The same deletion was also present in the phenotypically normal father. The patient showed relatively mild mental retardation, defined mainly as impaired speech development (orofacial dyspraxia) and psychomotor retardation. In addition, mild dysmorphic facial features like hypertelorism, a prominent philtrum and down-turned corners of the mouth were observed. We narrowed down all breakpoint regions to about 100 kb, using a panel of mapped bacterial artificial chromosome (BAC) clones for fluorescence in situ hybridization (FISH). BACs spanning or flanking all seven breakpoints were identified and no chromosomal imbalances were found consistent with the array CGH results. Our investigations resulted in the following karyotype: 46,XY,t(2;12)(2pter-->2p25.3::2p23.3-->2p25.2::2p23.3-->2p14::2q14.3-->2p14::2q14.3-->2q14.3::12q 12-->12qter;12pter-->12q12::2p25.3-->2p25.2::2q14.3-->2qter).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号