首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Pdr5p is one of the major multidrug efflux pumps whose overexpression confers multidrug resistance (MDR) in Saccharomyces cerevisiae. By using our original assay system, a fungal strain producing inhibitors for Pdr5p was obtained and classified as Fusarium sp. Y-53. The purified inhibitors were identified as ionophore antibiotics, enniatin B, B1, and D, respectively. A non-toxic concentration of each enniatin (5 microg/ml, approximately 7.8 microM) strongly inhibited a Pdr5p-mediated efflux of cycloheximide or cerulenin in Pdr5p-overexpressing cells. The enniatins accumulated a fluorescent dye rhodamine 123, a substrate of Pdr5p, into yeast cells. The mode of Pdr5p inhibition of enniatin was competitive against FK506, and its inhibitory activity was more potent with less toxicity than that of FK506. The enniatins showed similar inhibitory profile as FK506 against S1360 mutants (S1360A and S1360F) of Pdr5p. The enniatins did not inhibit the function of Snq2p, a homologue of Pdr5p. Thus, it was found that enniatins are potent and specific inhibitors for Pdr5p, with less toxicities than that of FK506.  相似文献   

2.
3.
4.
5.
Bacterial colonies often exhibit complex spatio-temporal organization. This collective behavior is affected by a multitude of factors ranging from the properties of individual cells (shape, motility, membrane structure) to chemotaxis and other means of cell-cell communication. One of the important but often overlooked mechanisms of spatio-temporal organization is direct mechanical contact among cells in dense colonies such as biofilms. While in natural habitats all these different mechanisms and factors act in concert, one can use laboratory cell cultures to study certain mechanisms in isolation. Recent work demonstrated that growth and ensuing expansion flow of rod-like bacteria Escherichia coli in confined environments leads to orientation of cells along the flow direction and thus to ordering of cells. However, the cell orientational ordering remained imperfect. In this paper we study one mechanism responsible for the persistence of disorder in growing cell populations. We demonstrate experimentally that a growing colony of nematically ordered cells is prone to the buckling instability. Our theoretical analysis and discrete-element simulations suggest that the nature of this instability is related to the anisotropy of the stress tensor in the ordered cell colony.  相似文献   

6.
ATP-binding cassette (ABC) transporters play important roles in drug efflux, but some may also function in cellular detoxification. The Pdr15p ABC protein is the closest homologue of the multidrug efflux transporter Pdr5p, which mediates pleiotropic drug resistance to hundreds of unrelated compounds. In this study, we show that the plasma membrane protein Pdr15p displays limited drug transport capacity, mediating chloramphenicol and detergent tolerance. Interestingly, Pdr15p becomes most abundant when cells exit the exponential growth phase, whereas its closest homologue, Pdr5p, disappears after exponential growth. Furthermore, in contrast to Pdr5p, Pdr15p is strongly induced by various stress conditions including heat shock, low pH, weak acids, or high osmolarity. PDR15 induction bypasses the Pdr1p/Pdr3p regulators but requires the general stress regulator Msn2p, which directly decorates the stress response elements in the PDR15 promoter. Remarkably, however, Pdr15p induction bypasses upstream components of the high osmolarity glycerol (HOG) pathway including the Hog1p and Pbs2p kinases as well as the dedicated HOG cell surface sensors. Our data provide evidence for a novel upstream branch of the general stress response pathway activating Msn2p. In addition, the results demonstrate a cross-talk between stress response and the pleiotropic drug resistance network.  相似文献   

7.
8.
The pleiotropic drug resistance protein, Pdr5p, is an ATP-binding cassette transporter of the plasma membrane of Saccharomyces cerevisiae. Overexpression of Pdr5p results in increased cell resistance to a variety of cytotoxic compounds, a phenotype reminiscent of the multiple drug resistance seen in tumor cells. Pdr5p and two other yeast ATP-binding cassette transporters, Snq2p and Yor1p, were found to be phosphorylated on serine residues in vitro. Mutations in the plasma membrane-bound casein kinase I isoforms, Yck1p and Yck2p, abolished Pdr5p phosphorylation and modified the multiple drug resistance profile. We showed Pdr5p to be ubiquitylated when overexpressed. However, instability of Pdr5p was only seen in Yck1p- and Yck2p-deficient strains, in which it was degraded in the vacuole via a Pep4p-dependent mechanism. Our results suggest that casein kinase I activity is required for membrane trafficking of Pdr5p to the cell surface. In the absence of functional Yck1p and Yck2p, Pdr5p is transported to the vacuole for degradation.  相似文献   

9.
10.
11.
The plasma membrane ATP-binding cassette (ABC) transporter, Pdr5p, mediates resistance to many different xenobiotic compounds in yeast. We have isolated several mutated forms that fail to confer resistance to cycloheximide and itraconazole. Here, we examined two variants, the expression of which was abnormally low when cells reach the stationary phase of growth. The Pdr5(1157) variant lacked the C-terminal transmembrane domain due to the presence of a nonsense mutation at codon 1158. The second variant, Pdr5(L183P), contained a Leu183Pro substitution close to the Walker A motif in the N-terminal nucleotide-binding domain. This substitution impaired UTPase activity as well as protein stability. The Pdr5(L183P) variant induced the unfolded protein response and was targeted to the proteasome for degradation. Fluorescence microscopy showed that the highly unstable Pdr5(L183P) was mislocalized to endoplasmic reticulum (ER)-associated compartments, whereas the truncated Pdr5(1157) protein was retained in the ER. When threonine 363 (located in the first nucleotide-binding domain, close to the Walker B motif) in Pdr5(L183P) was replaced with isoleucine, this double mutant conferred partial drug resistance. These results suggest that Pdr5p requires a properly folded nucleotide-binding domain for trafficking to the plasma membrane.  相似文献   

12.
Exposure of Saccharomyces cerevisiae to sorbic acid strongly induces two plasma membrane proteins, one of which is identified in this study as the ATP-binding cassette (ABC) transporter Pdr12. In the absence of weak acid stress, yeast cells grown at pH 7.0 express extremely low Pdr12 levels. However, sorbate treatment causes a dramatic induction of Pdr12 in the plasma membrane. Pdr12 is essential for the adaptation of yeast to growth under weak acid stress, since Deltapdr12 mutants are hypersensitive at low pH to the food preservatives sorbic, benzoic and propionic acids, as well as high acetate levels. Moreover, active benzoate efflux is severely impaired in Deltapdr12 cells. Hence, Pdr12 confers weak acid resistance by mediating energy-dependent extrusion of water-soluble carboxylate anions. The normal physiological function of Pdr12 is perhaps to protect against the potential toxicity of weak organic acids secreted by competitor organisms, acids that will accumulate to inhibitory levels in cells at low pH. This is the first demonstration that regulated expression of a eukaryotic ABC transporter mediates weak organic acid resistance development, the cause of widespread food spoilage by yeasts. The data also have important biotechnological implications, as they suggest that the inhibition of this transporter could be a strategy for preventing food spoilage.  相似文献   

13.
Microbial populations in nature often form organized multicellular structures (biofilms, colonies) occupying different surfaces including host tissues and medical devices. How yeast cells within such populations cooperate and how their dimorphic switch to filamentous growth is regulated are therefore important questions. Studying population development, we discovered that Saccharomyces cerevisiae microcolonies early after their origination from one cell successfully occupy the territory via dimorphic transition, which is induced by ammonia and other volatile amines independently on cell ploidy and nutrients. It results in oriented pseudohyphal cell expansion in the direction of ammonia source, which consequently leads to unification of adjacent microcolonies to one more numerous entity. The further population development is accompanied by another dimorphic switch, which is strictly dependent on Flo11p adhesin and is indispensable for proper formation of biofilm-like aerial 3-D colony architecture. In this, Flo11p is required for both elongation of cells organized to radial clusters (formed earlier within the colony) and their subsequent pseudohyphal expansion. Just before this expansion, Flo11p relocalizes from the bud-neck of radial cell clusters also to the tip of elongated cells.  相似文献   

14.
Pdr5p in Saccharomyces cerevisiae is a functional homologue of mammalian P-glycoprotein implicated in multidrug resistance (MDR). In order to obtain useful inhibitors to overcome MDR in clinical tumors, screening of Pdr5p inhibitors has been carried out. We isolated a fungal strain producing Pdr5p inhibitors using our original assay system, and it was classified as Trichoderma sp. P24-3. The purified inhibitor was identified as isonitrile, 3-(3'-isocyano-cyclopent-2'-enylidene)-propionic acid, a compound whose carboxyl residue is essential for the inhibitory activity. A non-toxic concentration of the isonitrile (41.5 microg/ml, 255 microM) inhibited Pdr5p-mediated efflux of cycloheximide or cerulenin in Pdr5p-overexpressing cells. In addition, addition of the isonitrile led to accumulation of rhodamine 6G, a substrate of Pdr5p, in the Pdr5p-overexpressing cells. The inhibitory profiles of the isonitrile against S1360 mutants (S1360A and S1360F) of Pdr5p were different from those of FK506 and enniatin. The isonitrile did not influence PDR5 gene expression and the amount of Pdr5 protein, nor did it inhibit the function of Snq2p, a homologue of Pdr5p. Interestingly, the isonitrile inhibited the function of Cdr1p and Cdr2p, Pdr5p homologues in pathogenic yeast Candida albicans. Thus, it was found that the isonitrile shows a different inhibitory spectrum from that of FK506 and enniatin as a potent inhibitor for Pdr5p, Cdr1p, and Cdr2p.  相似文献   

15.
浮游动物诱发藻类群体的形成   总被引:8,自引:3,他引:5  
杨州  孔繁翔 《生态学报》2005,25(8):2083-2089
从研究蓝藻水华形成机理的需要出发,综述了浮游动物的牧食压力对藻类群体形成的诱发作用。指出诱发藻类群体形成的化合物来自牧食性浮游动物对藻类的有效牧食,是藻类群体形成的重要原因之一,而这些诱发性的化合物并不是有关生物体的组成成分,是种间相互作用的结果。藻类群体的形成方式有源于一个母细胞的分裂和业已存在的单细胞的聚合两种方式,栅藻的诱发性群体可能是来自一个母细胞的分裂,而在其它藻类的诱发性群体形成如铜绿微囊藻则可能是业已存在的单细胞的聚合。由于藻类形成群体后能显著降低浮游动物对其牧食速率,因此,这种诱发性群体形成的现象,可以解释为藻类对变化的牧食压力的一种有效的反牧食防御策略,也是两者协同进化的结果。浮游动物对藻类群体形成的重要作用,在研究模拟蓝藻群体及水华形成值得借鉴应用。作者还提出推测,水华蓝藻的群体形成,可能就是在富营养化条件下藻类快速生长,加上浮游动物的牧食压力共同作用下联合驱动的结果,而这种群体形成很可能在积累到一定程度后,结合特定的气象水文等理化因子,就会聚集于水表“爆发”出肉眼可见的水华。因此,开展浮游动物牧食作用对水华蓝藻早期群体形成诱发效应的研究不仅能加深对水华形成的全面认识,而且对于进一步认识藻类的诱发性反牧食防御适应机制、揭示生态系统中生物之间的复杂关系也具有重要的理论意义。  相似文献   

16.
Pdr16p is considered a factor of clinical azole resistance in fungal pathogens. The most distinct phenotype of yeast cells lacking Pdr16p is their increased susceptibility to azole and morpholine antifungals. Pdr16p (also known as Sfh3p) of Saccharomyces cerevisiae belongs to the Sec14 family of phosphatidylinositol transfer proteins. It facilitates transfer of phosphatidylinositol (PI) between membrane compartments in in vitro systems. We generated Pdr16pE235A, K267A mutant defective in PI binding. This PI binding deficient mutant is not able to fulfill the role of Pdr16p in protection against azole and morpholine antifungals, providing evidence that PI binding is critical for Pdr16 function in modulation of sterol metabolism in response to these two types of antifungal drugs. A novel feature of Pdr16p, and especially of Pdr16pE235A, K267A mutant, to bind sterol molecules, is observed.  相似文献   

17.
18.
19.
Biofilms, or surface-attached communities of cells encapsulated in an extracellular matrix, represent a common lifestyle for many bacteria. Within a biofilm, bacterial cells often exhibit altered physiology, including enhanced resistance to antibiotics and other environmental stresses. Additionally, biofilms can play important roles in host-microbe interactions. Biofilms develop when bacteria transition from individual, planktonic cells to form complex, multi-cellular communities. In the laboratory, biofilms are studied by assessing the development of specific biofilm phenotypes. A common biofilm phenotype involves the formation of wrinkled or rugose bacterial colonies on solid agar media. Wrinkled colony formation provides a particularly simple and useful means to identify and characterize bacterial strains exhibiting altered biofilm phenotypes, and to investigate environmental conditions that impact biofilm formation. Wrinkled colony formation serves as an indicator of biofilm formation in a variety of bacteria, including both Gram-positive bacteria, such as Bacillus subtilis, and Gram-negative bacteria, such as Vibrio cholerae, Vibrio parahaemolyticus, Pseudomonas aeruginosa, and Vibrio fischeri. The marine bacterium V. fischeri has become a model for biofilm formation due to the critical role of biofilms during host colonization: biofilms produced by V. fischeri promote its colonization of the Hawaiian bobtail squid Euprymna scolopes. Importantly, biofilm phenotypes observed in vitro correlate with the ability of V. fischeri cells to effectively colonize host animals: strains impaired for biofilm formation in vitro possess a colonization defect, while strains exhibiting increased biofilm phenotypes are enhanced for colonization. V. fischeri therefore provides a simple model system to assess the mechanisms by which bacteria regulate biofilm formation and how biofilms impact host colonization. In this report, we describe a semi-quantitative method to assess biofilm formation using V. fischeri as a model system. This method involves the careful spotting of bacterial cultures at defined concentrations and volumes onto solid agar media; a spotted culture is synonymous to a single bacterial colony. This 'spotted culture' technique can be utilized to compare gross biofilm phenotypes at single, specified time-points (end-point assays), or to identify and characterize subtle biofilm phenotypes through time-course assays of biofilm development and measurements of the colony diameter, which is influenced by biofilm formation. Thus, this technique provides a semi-quantitative analysis of biofilm formation, permitting evaluation of the timing and patterning of wrinkled colony development and the relative size of the developing structure, characteristics that extend beyond the simple overall morphology.  相似文献   

20.
The gram-negative, oral bacterium Actinobacillus actinomycetemcomitans has been implicated as the causative agent of several forms of periodontal disease in humans. When cultured in broth, fresh clinical isolates of A. actinomycetemcomitans form tenacious biofilms on surfaces such as glass, plastic, and saliva-coated hydroxyapatite, a property that probably plays an important role in the ability of this bacterium to colonize the oral cavity and cause disease. We examined the morphology of A. actinomycetemcomitans biofilm colonies grown on glass slides and in polystyrene petri dishes by using light microscopy and scanning and transmission electron microscopy. We found that A. actinomycetemcomitans developed asymmetric, lobed biofilm colonies that displayed complex architectural features, including a layer of densely packed cells on the outside of the colony and nonaggregated cells and large, transparent cavities on the inside of the colony. Mature biofilm colonies released single cells or small clusters of cells into the medium. These released cells adhered to the surface of the culture vessel and formed new colonies, enabling the biofilm to spread. We isolated three transposon insertion mutants which produced biofilm colonies that lacked internal, nonaggregated cells and were unable to release cells into the medium. All three transposon insertions mapped to genes required for the synthesis of the O polysaccharide (O-PS) component of lipopolysaccharide. Plasmids carrying the complementary wild-type genes restored the ability of mutant strains to synthesize O-PS and release cells into the medium. Our findings suggest that A. actinomycetemcomitans biofilm growth and detachment are discrete processes and that biofilm cell detachment evidently involves the formation of nonaggregated cells inside the biofilm colony that are destined for release from the colony.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号