共查询到20条相似文献,搜索用时 0 毫秒
1.
A multicopy cloning approach was used to search for metagenomic DNA fragments that affect Escherichia coli mutational pathways. Soil metagenomic expression libraries were constructed with DNA samples prepared directly from soil samples collected from the UCLA Botanical Garden. Using frameshift mutator screening, we obtained a total of 26 unique metagenomic fragments that stimulate frameshift rates in an E. coli wild-type host. Mutational enhancer strains such as an ndk-deficient strain and a temperature sensitive mutS strain (mutS60) were used to further verify the mutator phenotype. We found that the presence of multiple copies of certain types of metagenomic DNA sequence repeats cause general genome instability in the wild-type E. coli host and the effect can be suppressed by overproducing a DNA mismatch component MutL. In addition, we identified nine metagenomic mutator genes (designated as smu genes) that encode proteins that have not been linked to mutator phenotypes prior to this study including a putative RNA methyltransferase Smu10A. The strain overproducing Smu10A displays one prominent base substitution hotspot in the rpoB gene, which coincides with the base substitution hotspot we have observed in cells that are partially deficient in the proofreading function carried out by the DNA polymerase III epsilon subunit. Based on the structural conservation of DNA replication/recombination/repair machineries among microorganisms, this approach would allow us to both identify new mutational pathways in E. coli and to find genes involved in DNA replication, recombination or DNA repair from vast unculturable microbes. 相似文献
2.
RecX is a regulator of RecA activity by interacting with RecA protein or RecA filaments. Genes encoding RecX were found in genomes of a wide diversity of bacteria and some plants (e.g., Arabidopsis thaliana and Oryza sativa). Our comparative genome analysis showed that although members of the RecX family are found in many bacterial species, they are not found in archaea and the only gene found in eukaryotes is likely derived from bacteria genomes. It is therefore proposed that RecX is of bacterial origin, and the gene had presented in the common ancestor of bacteria. Moreover, bacterial RecX and plant RecX domain are homologues, and RecX domain in plants may have derived from bacteria via unknown pathways. Plant RecX-like protein was formed by a gene fusion event between a unique N-terminal domain of unknown origin and RecX domain within plant cells. Finally, three possible evolutionary pathways from bacteria to plant were discussed. 相似文献
3.
4.
Somatic mutations in cancer genomes are associated with DNA replication timing (RT) and chromatin accessibility (CA), however these observations are based on normal tissues and cell lines while primary cancer epigenomes remain uncharacterised. Here we use machine learning to model megabase-scale mutation burden in 2,500 whole cancer genomes and 17 cancer types via a compendium of 900 CA and RT profiles covering primary cancers, normal tissues, and cell lines. CA profiles of primary cancers, rather than those of normal tissues, are most predictive of regional mutagenesis in most cancer types. Feature prioritisation shows that the epigenomes of matching cancer types and organ systems are often the strongest predictors of regional mutation burden, highlighting disease-specific associations of mutational processes. The genomic distributions of mutational signatures are also shaped by the epigenomes of matched cancer and tissue types, with SBS5/40, carcinogenic and unknown signatures most accurately predicted by our models. In contrast, fewer associations of RT and regional mutagenesis are found. Lastly, the models highlight genomic regions with overrepresented mutations that dramatically exceed epigenome-derived expectations and show a pan-cancer convergence to genes and pathways involved in development and oncogenesis, indicating the potential of this approach for coding and non-coding driver discovery. The association of regional mutational processes with the epigenomes of primary cancers suggests that the landscape of passenger mutations is predominantly shaped by the epigenomes of cancer cells after oncogenic transformation. 相似文献
5.
6.
Catalina Pimiento Juan L. Cantalapiedra Kenshu Shimada Daniel J. Field Jeroen B. Smaers 《Evolution; international journal of organic evolution》2019,73(3):588-599
Through elasmobranch (sharks and rays) evolutionary history, gigantism evolved multiple times in phylogenetically distant species, some of which are now extinct. Interestingly, the world's largest elasmobranchs display two specializations found never to overlap: filter feeding and mesothermy. The contrasting lifestyles of elasmobranch giants provide an ideal case study to elucidate the evolutionary pathways leading to gigantism in the oceans. Here, we applied a phylogenetic approach to a global dataset of 459 taxa to study the evolution of elasmobranch gigantism. We found that filter feeders and mesotherms deviate from general relationships between trophic level and body size, and exhibit significantly larger sizes than ectothermic‐macropredators. We confirm that filter feeding arose multiple times during the Paleogene, and suggest the possibility of a single origin of mesothermy in the Cretaceous. Together, our results elucidate two main evolutionary pathways that enable gigantism: mesothermic and filter feeding. These pathways were followed by ancestrally large clades and facilitated extreme sizes through specializations for enhancing prey intake. Although a negligible percentage of ectothermic‐macropredators reach gigantic sizes, these species lack such specializations and are correspondingly constrained to the lower limits of gigantism. Importantly, the very adaptive strategies that enabled the evolution of the largest sharks can also confer high extinction susceptibility. 相似文献
7.
Evolutionary transitions from outcrossing to selfing occur commonly in heterostylous genera. The morphological polymorphisms that characterize heterostyly provide opportunities for different pathways for selfing to evolve. Here, we investigate the origins and pathways by which selfing has evolved in tristylous Eichhornia paniculata by providing new evidence based on morphology, DNA sequences and genetic analysis. The primary pathway from outcrossing to selfing involves the stochastic loss of the short-styled morph (S-morph) from trimorphic populations, followed by the spread of selfing variants of the mid-styled morph (M-morph). However, the discovery of selfing variants of the long-styled morph (L-morph) in Central America indicates a secondary pathway and distinct origin for selfing. Comparisons of multi-locus nucleotide sequences from 27 populations sampled from throughout the geographical range suggest multiple transitions to selfing. Genetic analysis of selfing variants of the L- and M-morphs demonstrates recessive control of the loss of herkogamy, although the number of factors appears to differ between the forms. Early stages in the establishment of selfing involve developmental instability in the formation of flowers capable of autonomous self-pollination. The relatively simple genetic control of herkogamy reduction and frequent colonizing episodes may often create demographic conditions favouring transitions to selfing in E. paniculata . 相似文献
8.
Susana Posada-Cspedes Gert Van Zyl Hesam Montazeri Jack Kuipers Soo-Yon Rhee Roger Kouyos Huldrych F. Günthard Niko Beerenwinkel 《PLoS computational biology》2021,17(9)
Although combination antiretroviral therapies seem to be effective at controlling HIV-1 infections regardless of the viral subtype, there is increasing evidence for subtype-specific drug resistance mutations. The order and rates at which resistance mutations accumulate in different subtypes also remain poorly understood. Most of this knowledge is derived from studies of subtype B genotypes, despite not being the most abundant subtype worldwide. Here, we present a methodology for the comparison of mutational networks in different HIV-1 subtypes, based on Hidden Conjunctive Bayesian Networks (H-CBN), a probabilistic model for inferring mutational networks from cross-sectional genotype data. We introduce a Monte Carlo sampling scheme for learning H-CBN models for a larger number of resistance mutations and develop a statistical test to assess differences in the inferred mutational networks between two groups. We apply this method to infer the temporal progression of mutations conferring resistance to the protease inhibitor lopinavir in a large cross-sectional cohort of HIV-1 subtype C genotypes from South Africa, as well as to a data set of subtype B genotypes obtained from the Stanford HIV Drug Resistance Database and the Swiss HIV Cohort Study. We find strong support for different initial mutational events in the protease, namely at residue 46 in subtype B and at residue 82 in subtype C. The inferred mutational networks for subtype B versus C are significantly different sharing only five constraints on the order of accumulating mutations with mutation at residue 54 as the parental event. The results also suggest that mutations can accumulate along various alternative paths within subtypes, as opposed to a unique total temporal ordering. Beyond HIV drug resistance, the statistical methodology is applicable more generally for the comparison of inferred mutational networks between any two groups. 相似文献
9.
10.
Hoffmüller U Knaute T Hahn M Höhne W Schneider-Mergener J Kramer A 《The EMBO journal》2000,19(18):4866-4874
We identified evolutionary pathways for the inter- conversion of three sequentially and structurally unrelated peptides, GATPEDLNQKL, GLYEWGGARI and FDKEWNLIEQN, binding to the same site of the hypervariable region of the anti-p24 (HIV-1) monoclonal antibody CB4-1. Conversion of these peptides into each other could be achieved in nine or 10 single amino acid substitution steps without loss of antibody binding. Such pathways were identified by analyzing all 7 620 480 pathways connecting 2560 different peptides, and testing them for CB4-1 binding. The binding modes of intermediate peptides of selected optimal pathways were characterized using complete sets of substitution analogs, revealing that a number of sequential substitutions accumulated without changing the pattern of key interacting residues. At a distinct step, however, one single amino acid exchange induces a sudden change in the binding mode, indicating a flip in specificity and conformation. Our data represent a model of how different specificities, structures and functions might evolve in protein-protein recognition. 相似文献
11.
Notley-McRobb L Seeto S Ferenci T 《Proceedings. Biological sciences / The Royal Society》2003,270(1517):843-848
The factors affecting the direction of evolutionary pathways and the reproducibility of adaptive responses were investigated under closely related but non-identical conditions. Replicate chemostat cultures of Escherichia coli were compared when adapting to partial or severe glucose limitation. Four independent populations used a reproducible sequence of early mutational changes under both conditions, with rpoS mutations always occurring first before mgl. However, there were interesting differences in the timing of mutational sweeps: rpoS mutations appeared in a clock-like fashion under both partial and severe glucose limitation, while mgl sweeps arose under both conditions but at different times. Interestingly, malT and mlc mutations appeared only under severe limitation. Even though the ancestors were genotypically identical, the semi-differentiated properties of bacteria growing with mild or severe glucose limitation sent the populations in characteristic directions. Mutation supply and the fitness contribution of mutations were estimated and demonstrated to be potential influences in the choice of particular adaptation pathways under severe and mild glucose limitation. Predicting all the mutations fixed in adapting populations is beyond our current understanding of evolutionary processes, but the interplay between ancestor physiology and the initiation of adaptation pathways is demonstrated and definable in bacterial populations. 相似文献
12.
We report here a second case of coreceptor switch in R5 simian-human immunodeficiency virus SF162P3N (SHIV(SF162P3N))-infected macaque CA28, supporting the use of this experimental system to examine factors that drive the change in coreceptor preference in vivo. Virus recovered from CA28 plasma (SHIV(CA28NP)) used both CCR5 and CXCR4 for entry, but the virus recovered from lymph node (SHIV(CA28NL)) used CXCR4 almost exclusively. Sequence and functional analyses showed that mutations in the V3 loop that conferred CXCR4 usage in macaque CA28 differed from those described in the previously reported case, demonstrating divergent mutational pathways for change in the coreceptor preference of the R5 SHIV(SF162P3N) isolate in vivo. 相似文献
13.
14.
Placental malaria is a special form of malaria that causes up to 200,000 maternal and infant deaths every year. Previous studies
show that two receptor molecules, hyaluronic acid and chondroitin sulphate A, are mediating the adhesion of parasite-infected
erythrocytes in the placenta of patients, which is believed to be a key step in the pathogenesis of the disease. In this study,
we aimed at identifying sites of malaria-induced adaptation by scanning for signatures of natural selection in 24 genes in
the complete biosynthesis pathway of these two receptor molecules. We analyzed a total of 24 Mb of publicly available polymorphism
data from the International HapMap project for three human populations with European, Asian and African ancestry, with the
African population from a region of presently and historically high malaria prevalence. Using the methods based on allele
frequency distributions, genetic differentiation between populations, and on long-range haplotype structure, we found only
limited evidence for malaria-induced genetic adaptation in this set of genes in the African population; however, we identified
one candidate gene with clear evidence of selection in the Asian population. Although historical exposure to malaria in this
population cannot be ruled out, we speculate that it might be caused by other pathogens, as there is growing evidence that
these molecules are important receptors in a variety of host-pathogen interactions. We propose to use the present methods
in a systematic way to help identify candidate regions under positive selection as a consequence of malaria.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
15.
Fusion accessibility of endocytic compartments along the recycling and lysosomal endocytic pathways in intact cells 总被引:13,自引:15,他引:13 下载免费PDF全文
A fluorescence assay developed for the quantitation of intracellular fusion of sequentially formed endocytic compartments (Salzman, N. H., and F. R. Maxfield. 1988 J. Cell Biol. 106:1083-1091) has been used to measure the time course of endosome fusion accessibility along the recycling and degradative endocytic pathways. Transferrin (Tf) was used to label the recycling pathway, and alpha2-macroglobulin (alpha 2 M) was used to label the lysosomal degradative pathway. Along the degradative pathway, accessibility of vesicles containing alpha 2M to fusion with subsequently formed endocytic vesicles decreased with apparent first order kinetics. The t12 for the loss of fusion accessibility was approximately 8 min. The behavior of Tf is more complex. Initially the fusion accessibility of Tf decayed rapidly (t1/2 less than 3 min), but a constant level of fusion accessibility was then observed for 10 min. This suggests that Tf moves through one fusion accessible endosome rapidly and then enters a second fusion accessible compartment on the recycling pathway. At 18 degrees C, fusion of antifluorescein antibodies (AFA) containing vesicles with F-alpha 2M was observed when the interval between additions was 10 min. However, if the interval was increased to 1 h, no fusion with incoming vesicles was observed. These results identify the site of F-alpha 2M accumulation at 18 degrees C as a prelysosomal late endosome that no longer fuses with newly formed endosomes since no delivery to lysosomes is observed at this temperature. 相似文献
16.
Recently there has been significant interest in deducing the form of the rate laws for chemical reactions occurring in the intracellular environment. This environment is typically characterized by low-dimensionality and a high macromolecular content; this leads to a spatial heterogeneity not typical of the well stirred in vitro environments. For this reason, the classical law of mass action has been presumed to be invalid for modeling intracellular reactions. Using lattice-gas automata models, it has recently been postulated [H. Berry, Monte Carlo simulations of enzyme reactions in two dimensions: Fractal kinetics and spatial segregation, Biophys. J. 83 (2002) 1891-1901; S. Schnell, T.E. Turner, Reaction kinetics in intracellular environments with macromolecular crowding: simulations and rate laws, Prog. Biophys. Mol. Biol. 85 (2004) 235-260] that the reaction kinetics is fractal-like. In this article we systematically investigate for the first time how the rate laws describing intracellular reactions vary as a function of: the geometry and size of the intracellular surface on which the reactions occur, the mobility of the macromolecules responsible for the crowding effects, the initial reactant concentrations and the probability of reaction between two reactant molecules. We also compare the rate laws valid in heterogeneous environments in which there is an underlying spatial lattice, for example crystalline alloys, with the rate laws valid in heterogeneous environments where there is no such natural lattice, for example in intracellular environments. Our simulations indicate that: (i) in intracellular environments both fractal kinetics and mass action can be valid, the major determinant being the probability of reaction, (ii) the geometry and size of the intracellular surface on which reactions are occurring does not significantly affect the rate law, (iii) there are considerable differences between the rate laws valid in heterogeneous non-living structures such as crystals and those valid in intracellular environments. Deviations from mass action are less pronounced in intracellular environments than in a crystalline material of similar heterogeneity. 相似文献
17.
Biophysical studies in proteases are severely hampered due to the auto-cleavage property of these enzymes. In this context, we develop here a kinetic model and an NMR-based strategy to use this very autolytic property to derive useful insights into multiple unfolding pathways and mutational plasticities in these proteins. The basic idea lies in the interpretation of the auto-cleavage-driven decay of the folded protein peaks in the HSQC spectra as a function of time. The different peaks are seen to decay at different rates. As unfolding is the rate-determining step in the auto-cleavage reaction, the NMR spectral changes reflect on local unfolding processes at the residue level. A formalism is presented to gain insights into unfolding free energies and evaluate local perturbations due to single point mutations. The model is applied to HIV-1 protease-tethered dimer as an example, considering mutations at a particular site. Significant perturbations are seen even at very remote areas from the site of the mutation. 相似文献
18.
Ample evidence has accumulated for the evolutionary importance of duplication events. However, little is known about the ensuing step-by-step divergence process and the selective conditions that allow it to progress. Here we present a computational study on the divergence of two repressors after duplication. A central feature of our approach is that intermediate phenotypes can be quantified through the use of in vivo measured repression strengths of Escherichia coli lac mutants. Evolutionary pathways are constructed by multiple rounds of single base pair substitutions and selection for tight and independent binding. Our analysis indicates that when a duplicated repressor co-diverges together with its binding site, the fitness landscape allows funneling to a new regulatory interaction with early increases in fitness. We find that neutral mutations do not play an essential role, which is important for substantial divergence probabilities. By varying the selective pressure we can pinpoint the necessary ingredients for the observed divergence. Our findings underscore the importance of coevolutionary mechanisms in regulatory networks, and should be relevant for the evolution of protein-DNA as well as protein-protein interactions. 相似文献
19.
The proton-coupled transporter (PCFT) mediates intestinal folate absorption and folate transport from blood across the choroid plexus. The membrane topology of PCFT has been defined using the substituted cysteine accessibility method; an intramolecular disulfide bond between the Cys 66 and 298 residues, in the first and fourth extracellular loops, respectively, is present but not essential for function. The current report describes Lys 422 mutations (K422C, K422E) that have no effect on transport activity when introduced into wild-type PCFT but result in a marked loss of activity when introduced into a Cys-less PCFT which is otherwise near-fully functional. The loss of activity of both mutant PCFTs was shown to be due to impaired protein stability and expression. Additional studies were conducted with the K422C mutation in Cys-less PCFT. The impact of re-introduction of one, two, three or five, Cys residues was assessed. While there were some differences in the impact of the different Cys residues re-introduced, restoration was attributed more to a cumulative effect rather than the specific role of individual Cys residues. Preservation of the Cys66-Cys298 intramolecular disulfide bond was not required for stability of the K422C protein. These observations are relevant to studies with Cys-less transporters utilized for the characterization of proteins with the substituted cysteine accessibility method and indicate that functional defects detected in a Cys-less protein, when the tertiary structure of the molecule is stressed, are not necessarily relevant to the wild-type protein. 相似文献
20.
The mutagenic and lethal effects of a monofunctional sulfur mustard, 2-chloro-ethylethylsulfide (CEES), have been studied in a number of repair deficient variants of Escherichia coli K12, B/r and B. The results indicate that CEES induces a (pre)mutational lesion which is subject to Uvr+-excision-repair. Extensive CEES-induced mutagenesis can occur in exrA- uvrA- and recA- uvrB- variants suggesting that the majority of the mutations in Uvr-bacteria do not arise from error-prone repair. These findings are similar to results previously reported with a volatile degradation product of captan and with ethyl methanesulfonate (EMS) but differ from those reported with methyl methanesulfonate (MMS). It is hypothesized that CEES alkylates guanine at the O-6 position (R-O-6-G) and that this R-O-6-G which is Uvr+-excisable is directly mutagenic by producing G-C to A-T transitions during replication. Reduced levels of induced mutation frequencies observed in an endonuclease II-deficient variant lead us to postulate that, in constrast to Uvr- bacteria, CEES-induced mutation in wild-type cells arise from error-prone repair of apurinic sites. Analysis of the lethal actions of CEES indicates that the lesion produced is largely unexcisable by the Uvr+ system. Host-cell reactivation of CEES-treated TI bacteriophage shows that the production of the (pre)ethal lesion is dependent on both the initial dose and post-treatment incubation. The efficient repair of the (pre)ethal lesion requires both endonuclease II and polymerase I. Moreover, deficiencies of these two enzymes rendered bacteria more sensitive to the cytotoxic action of CEES. It is postulated that the lethal mechanism of CEES involves: (I) alkylation at the N-3 position of adenine and the N-7 position of guanine; (2) spontaneous depurination of these alkylated bases; and (3) production of apurinic sites which are lethal unless repaired by the endonuclease II-polymerase I excision-repair system. 相似文献