首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Red oaks (Quercus rubra L.) were regenerated via direct and indirect asexual embryogenesis from immature zygotic embryo tissues. Late heart and early cotyledonary explants cultured in light on modified MS medium proved to be most embryogenic. Embryoids arose from explants cultured on various combinations of 2,4-D and BA. However, the highest percentages of normal polar embryoids were produced by explants cultured on growth-regulator-free media. Epicotyl dormancy of embryoids was overcome by desiccation (air drying and use of an osmoticum) and rehydration treatments. Asexual plantlet development paralleled developmental changes associated with seed germination. White oak (Quercus alba L.) embryoids were also regenerated, but failed to germinate.  相似文献   

2.
The metabolic rate and its scaling relationship to colony size were studied in the colonial ascidian Botrylloides simodensis. The colonial metabolic rate, measured by the oxygen consumption rate (V(O2) in millilitres of O(2) per hour) and the colony mass (wet weight M(w) in grams) showed the allometric relationship (V(O2) = 0.0412 M(w)(0.799). The power coefficient was statistically not different from 0.75, the value for unitary organisms. The size of the zooids and the tunic volume fraction in a colony were kept constant irrespective of the colonial size. These results, together with the two-dimensional colonial shape, excluded shape factors and colonial composition as possible causes of allometry. Botryllid ascidians show a takeover state in which all the zooids of the parent generation in a colony degenerate and zooids of a new generation develop in unison. The media for connection between zooids such as a common drainage system and connecting vessels to the common vascular system experienced reconstruction. The metabolic rate during the takeover state was halved and was directly proportional to the colonial mass. The scaling thus changed from being allometric to isometric. The alteration in the scaling that was associated with the loss of the connection between the zooids strongly support the hypothesis that the allometry was derived from mutual interaction among the zooids. The applicability of this hypothesis to unitary organisms is discussed.  相似文献   

3.
Abstract. We studied the effects of brackish water on larval attachment, events of metamorphosis, and juvenile mortality in three colonial ascidian species that live in a Florida coastal lagoon. Eudistoma olivaceum and Eudistoma hepaticum are restricted in their adult distribution to areas of relatively high and constant salinity near inlets, whereas Ecteinascidia turbinata extends more than 20 km into the Indian River, where salinity can be much more variable. In all three species, metamorphosis proceeded more quickly at 33 ppt than at lower salinities. The thresholds for successful metamorphosis differed among species in a manner that corresponded to the adult distributions, with E. turbinata being capable of completing metamorphosis at salinities as low as 22 ppt, E. hepaticum as low as 24 ppt, and E. olivaceum as low as 26 ppt. Larvae of both Eudistoma species delayed settlement in very low salinity water, whereas those of E. turbinata settled very quickly, then failed to complete metamorphosis. Juvenile mortality at salinities lower than 22 ppt was 100% for all three species. Survival in salinities higher than 22 ppt was strongly correlated with salinity in E. olivaceum and E. hepaticum , but not E. turbinata.  相似文献   

4.
A great variety of asexual reproductive modes are known among aquatic oligochaetes. The main types of these modes are shortly described. Based upon observations on natural populations, the possible genetical and ecological implications of asexual reproduction are discussed. The following points are emphasized: (1) The often expressed expectations of a strong predominance of one particularly adaptive genotype is not born out. (2) In most cases, a number of genetically distinct clones are present in each population, and they show a strong differential distribution in heterogeneous environments, indicating an effective exploitation of the available resources. (3) Most cases of asexual propagation are reproductive strategies of their own and not escape mechanisms. (4) The mechanisms underlying asexual propagation are complex and involve many aspects of the life history. The great variety of types among aquatic oligochaetes offer particularly useful models for the study of these problems.  相似文献   

5.
6.
7.
Symbiosis with microorganisms has been well documented for many marine invertebrate taxa. However, knowledge of the diversity of microorganisms associated with ascidians is still limited. This study assessed the microbial epibionts of Didemnum galacteum and Cystodytes sp., two ascidian species collected from the western coast of Ceará state (Brazil), at Dois Coqueiros beach and the port of Pecém, respectively. The microbiota were examined using optical microscopy, followed by subsequent analysis of fingerprinting profiles obtained by denaturing gradient gel electrophoresis (DGGE) and 16S rRNA clone libraries. The microscopy analysis showed for both ascidians a community comprising cyanobacteria, mainly Prochloron-like species, and diatoms. The DGGE results indicated that D. galacteum hosts a more diverse microbiota when compared to Cystodytes sp. The same analysis also suggested that the diversity of the seawater microbiota was higher than the diversity of the ascidian-associated microbiota. The analysis of the 16S rRNA clone libraries revealed the dominance of Proteobacteria symbionts associated with both ascidians, with Alphaproteobacteria as the major component in D. galacteum and Gammaproteobacteria the major component in Cystodytes sp. The analysis of the clone libraries also revealed the presence of other taxa such as Bacteroidetes, Planctomycetes, Actinobacteria, Cyanobacteria, and uncultured bacteria in D. galacteum, but not in Cystodytes sp. Among the bacteria found to be exclusively associated with the ascidians, none were shared by the two studied hosts. The combined results point to a diverse microbiota associated with the external surface of the ascidians, with a mixed composition including organisms typically found in the surrounding seawater, but also a more specific set of taxa.  相似文献   

8.
9.
Surveys of genetic structure of introduced populations of nonindigenous species may reveal the source(s) of introduction, the number of introduction events, and total inoculum size. Here we use the mitochondrial cytochrome c oxidase subunit 1 (COI) gene to explore genetic structure and contrast invasion histories of two ecologically similar and highly invasive colonial ascidians, the golden star tunicate Botryllus schlosseri and the violet tunicate Botrylloides violaceus, in their global and introduced North American ranges. Haplotype and nucleotide diversities for B. schlosseri were significantly higher than for B. violaceus both globally (h = 0.872; ?? = 0.054 and h = 0.461; ?? = 0.007, respectively) and in their overlapping North American ranges (h = 0.874; ?? = 0.012 and h = 0.384; ?? = 0.006, respectively). Comparative population genetics and phylogenetic analyses revealed clear differences in patterns of invasion for these two species. B. schlosseri populations on the west and east coasts of North America were seeded from the Pacific and Mediterranean regions, respectively, whereas all North American B. violaceus populations were founded by one or more introduction events from Japan. Differences in genetic structure of invasive populations for these species in North America are consistent with their contrasting probable introduction vectors. B. schlosseri invasions most likely resulted from vessel hull fouling, whereas B. violaceus was likely introduced as a ??fellow traveler?? in the shellfish aquaculture trade.  相似文献   

10.
Invasive ascidians are a growing concern for ecologists and natural resource managers, yet few studies have documented their short- and long-term temporal patterns of abundance. This study focuses on the invasion of the Gulf of Maine by the colonial ascidians Botryllus schlosseri, Botrylloides violaceus, Diplosoma listerianum and Didemnum sp. A. We examined the time of arrival and potential vectors for these four invasive ascidians using survey data (collected from 1969 onwards) and literature documentation. We also compared the dominance and seasonal patterns of abundance of these species using data from two identical panel studies; one conducted from 1979 to 1980, the other from 2003 to 2005. Didemnum and Botrylloides were most likely first introduced into the Damariscotta River, Maine in the early 1970's through oyster aquaculture while Botryllus and Diplosoma were probably transported by commercial and recreational vessels. The overall abundance of colonial ascidians has increased since 1979 and 1980. Botryllus was the only invasive colonial ascidian present during the 1979 to 1980 study and accounted for an average of 6.16% cover on panels. From 2003 to 2005, the more recently arrived colonial ascidians Botrylloides and Didemnum accounted for 7.38% and 2.08% cover respectively, while Botryllus covered only 1.16%. Our results reveal a shift in seasonal abundance between 1979 to 1980 and 2003 to 2004. In 1979 and 1980, colonial ascidians had the highest percent cover in fall and winter while in 2003 and 2005 they had highest percent cover in summer and fall. Seasonal patterns of space occupation by colonial ascidians were correlated with seasonal changes in seawater temperature.  相似文献   

11.
The allometric scaling of metabolic rate of organisms, the three-quarters power rule, has led to a questioning of the basis for the relation. We attacked this problem experimentally for the first time by employing the modular organism, the ascidian that forms a single layered flat colony, as a model system. The metabolic rate and colony size followed the three-quarters power relation, which held even after the colony size was experimentally manipulated. Our results established that the three-quarters power relation is a real continuous function, not an imaginary statistical regression. The fact that all the hypotheses failed to explain why the two-dimensional organism adhered to the three-quarters power relation led us to propose a new hypothesis, in which the allometric relation derives from the self-organized criticality based on local interaction between modulus-comprising organisms.  相似文献   

12.
Colonies of the free-living bryozoan Cupuladria exfragminis [Herrera-Cubilla, A., Dick, M.H., Sanner, J., Jackson, J.B.C., 2006. Neogene Cupuladriidae of Tropical America. I:. Taxonomy of Recent Cupuladria from opposite sides of the Isthmus of Panama. Journal of Paleontology. 80, 245-263.] from the Gulf of Panama are observed to separate into viable fragments without external force. The process, termed autofragmentation, involves the development of distinctive morphologies designed to assist in colony division. Culturing C. exfragminis shows that fragments that are a consequence of autofragmentation are significantly better able to regenerate than fragments originating from mechanical fragmentation. However, the relative importance of auto- versus mechanical fragmentation in natural populations remains unknown. Autofragmentation in C. exfragminis is found to be stimulated by cooling waters, and analysis of growth in natural populations demonstrates that colonies undergo periodic fragmentation coincident with lowered water temperatures during seasonal upwelling in the Gulf of Panama. These observations suggest that C. exfragminis uses the drop in temperature that occurs during upwelling as a cue to indicate times of increased food availability which may assist in the successful regeneration of fragments. These results are discussed in the context of the morphological, ecological and evolutionary significance of autofragmentation as a method of asexual propagation in cupuladriids.  相似文献   

13.
Asexual reproduction and regeneration ofCatenula (Turbellaria,Archoophora)   总被引:1,自引:0,他引:1  
Summary Studies were made onCatenula, a turbellarian of the order Catenulida, which had been cultured for 6 years in our laboratory. Fission begins inCatenula when the animal exceeds a specifically defined length. Neoblasts accumulate where the body wall narrows, near the subepithelial nerve cell. These cells have a large nucleus of condensed chromatin and a large active nucleolus. They have little cytoplasm, which in addition to free ribosomes, contains a small number of rough endoplastic reticular cisternae and a few mitochondria. Stem cells of epithelium were also found. These cells are similar to neoblasts, having additionally a bundle of centrioles in the cytoplasm.Differentiation of tissues and cells during regeneration proceeds in a manner identical to that during paratomy. After injury the neoblasts collect in two primordia of the brain, but do not form blastemae, as occurs in Tricladida. It is likely that dedifferentiation plays some role in each of the processes examined. A theoretical model of the mechanisms controlling paratomy and regeration is presented. The factors controlling these processes include the inductor formed by the subepithelial nerve cells and the inhibitor blocking it, formed by the brain. The inductor is probably a neurosecretion that combines with a competent receptor on the surface of cells capable of dedifferentiation.  相似文献   

14.
The stolonic vessel is a tubular projection of the epidermis from the anterior part of the abdomen in the didemnid ascidians, and the vessel has been supposed to be closely related to the stolons, vascular appendages, and the posterior ends of the abdomen in other aplousobranch ascidians. We compared the morphology of the stolonic vessels of Diplosoma virens with similar or related tissue in other colonial ascidians, e.g. stolons of Clavelina, vascular appendages of Distaplia and Eudistoma, tunic vesicle of Aplidium, and vascular ampullae of Botrylloides. The epidermis of the stolonic vessel is composed of cuboidal cells in lateral wall and columnar cells at the distal tip of the vessel. The cuboidal cells have microvilli that probably anchor the stolonic vessel to the tunic. The columnar cells contain round granules that may concern with the secretion of some tunic components. The secretion of the granules, however, could not observed in this study. The stolonic vessel of D. virens is similar in morphology to the vascular ampullae of Botrylloides and the tunic vesicle of Aplidium rather than the other tissue examined here. Since the cell morphology is supposed to reflect its function but not the phylogenetic relationship, the present study could not provide conclusive evidences to prove the homology and the phylogenetic relationship among the tubular, epidermal projections in the colonial ascidians.  相似文献   

15.
Koide  Yuki  Sakai  Yoichi 《Ichthyological Research》2021,68(4):461-470
Ichthyological Research - Boxfishes (Ostraciidae) are known to be benthivores and mainly consume sessile organisms on reefs, such as tunicates. Ascidian tunicates contain various toxins and seldom...  相似文献   

16.
In organisms that propagate by agametic cloning, the parental body is the reproductive unit and fitness increases with clonal size, so that colonial metazoans, despite lack of experimental data, have been considered potentially immortal. Using asexual propagation rate as a measure of somatic performance, and telomerase activity and relative telomere length as molecular markers of senescence, old (7-12 years) asexual strains of a colonial ascidian, Diplosoma listerianum, were compared with their recent sexually produced progeny. We report for the first time evidence for long-term molecular senescence in asexual lineages of a metazoan, and that only passage between sexual generations provides total rejuvenation permitting indefinite propagation and growth. Thus, this colonial ascidian has not fully escaped ageing. The possibility of somatic replicative senescence also potentially helps to explain why metazoans, with the capacity for asexual propagation through agametic cloning, commonly undergo cycles of sexual reproduction in the wild.  相似文献   

17.
Immunocytochemical methods were used to study the presence and distribution of IL-1-alpha- and TNF-alpha-like molecules in the hemocytes of the colonial ascidian Botryllus schlosseri. Only a few unstimulated hemocytes were positive to both the antibodies used. When the hemocytes were stimulated with either mannan or phorbol 12-mono-myristate, the phagocytes were not significantly changed in their number, staining intensity, or cell morphology. In contrast, stimulated morula cells were intensely labeled, indicating that these cells play an important immunomodulatory role.  相似文献   

18.
The cellular and molecular features of multipotent epithelial cells during regeneration and asexual reproduction in colonial tunicates are described in the present study. The epicardium has been regarded as the endodermal tissue-forming epithelium in the order Enterogona, because only body fragments having the epicardium exhibit the regenerative potential. Epicardial cells in Polycitor proliferus have two peculiar features; they always accompany coelomic undifferentiated cells, and they contain various kinds of organelles in the cytoplasm. During strobilation a large amount of organelles are discarded in the lumen, and then, each tissue-forming cell takes an undifferentiated configuration. Septum cells in the stolon are also multipotent in Enterogona. Free cells with a similar configuration to the septum inhabit the hemocoel. They may provide a pool for epithelial septum cells. At the distal tip of the stolon, septum cells are columnar in shape and apparently undifferentiated. They are the precursor of the stolonial bud. In Pleurogona, the atrial epithelium of endodermal origin is multipotent. In Polyandrocarpa misakiensis, it consists of pigmented squamous cells. The cells have ultrastructurally fine granules in the cytoplasm. During budding, coelomic cells with similar morphology become associated with the atrial epithelium. Then, cells of organ placodes undergo dedifferentiation, enter a cell division cycle, and commence morphogenesis. Retinoic acid-related molecules are involved in this dedifferentiation process of multipotent cells. We conclude that in colonial tunicates two systems support the flexibility of tissue remodeling during regeneration and asexual reproduction; dedifferentiation of epithelial cells and epithelial transformation of coelomic free cells.  相似文献   

19.
In chordates, obligate photosynthetic symbiosis has been reported exclusively in some colonial ascidians of the family Didemnidae. The vertical transmission of the symbionts is crucial in establishing the obligate symbiosis between the cyanobacteria and the host ascidians. The results of comparative surveys on the morphological processes of cyanobacterial transmission suggest the occurrence of convergent evolution of the vertical transmission in the host species harboring symbionts in the cloacal cavity. In Trididemnum species harboring cyanobacterial cells in the tunic, the symbiont cells are transported by the tunic cells to the tunic of embryos brooded in the tunic of the parent colony. The present study examined whether the mode of symbiont transmission is the same in host species harboring the symbionts in the tunic, regardless of host genera, or whether non-Trididemnum hosts have a different vertical transmission mode. Our results showed that the vertical transmission process in Lissoclinum midui was almost the same as in the Trididemnum species, supporting the occurrence of convergent evolution in the two distinct didemnid genera, that is, Trididemnum and Lissoclinum. High plasticity of the embryogenic process in didemnid ascidians may be important in developing the mechanism of vertical transmission; this assumption may also explain why the obligate cyanobacterial symbiosis has been exclusively established in didemnid ascidians among chordates.  相似文献   

20.
In reviewing recent research published in Russian on regeneration and asexual reproduction, the following morphogenetic processes in the planarian Dugesia tigrina are considered: 1) regeneration of lost parts of the body; 2) regeneration of the whole worm from fragments of the body, either by normal regeneration when the inital polarity of the fragment is retained or by somatic embryogenesis when one or more new axes of polarity arise; 3) somatic embryogenesis, or development of individuals from somatic cells; 4) hypermorphosis, or the presence of more than the usual number of organs or body parts, a process that can be interpreted in terms of somatic embryogenesis; and 5) asexual reproduction. Some morphological, biochemical, and physiological studies of the division zone in D. tigrina demonstrate peculiarities of a local breakdown of integrative functions, a breakdown which in turn causes division of the individual to take place at this zone; timing of division is controlled by the organism as an integrated whole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号