首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
李伟  陈怀谷  李伟  张爱香  陈丽华  姜伟丽 《遗传》2007,29(9):1154-1160
利用公共的真菌基因组数据库资源, 对核盘菌(Sclerotinia sclerotiorum)和灰葡萄孢(Botrytis cinerea)基因组中SSRs的结构类型、分布、丰度及最长序列等进行了系统分析, 并与已经研究过的禾谷镰孢菌(Fusarium graminearum), 稻瘟病菌(Magnaporthe grisea)和黑粉菌(Ustilago maydis)等几种植物病原真菌基因组中的SSRs进行了比较。结果表明: 核盘菌和灰葡萄孢基因组中的SSRs非常丰富, 分别为6 539和8 627个, 并且在结构类型和分布规律上具有一定的相似性; 与其他几种病原真菌相比, 核盘菌和灰葡萄孢基因组中长重复的四、五、六核苷酸基序更为丰富, 从而使得这两种真菌具有更高的变异性。同时, 我们发现真菌基因组中SSRs的丰度与基因组的大小及GC含量没有必然的关系。文章对核盘菌和灰葡萄孢基因组中SSRs的丰度、出现频率及最长基序的分析为快速、便捷地设计多态性丰富的SSRs引物提供了有益的信息。  相似文献   

2.
BACKGROUND: Plants have evolved efficient mechanisms to combat pathogen attack. One of the earliest responses to attempted pathogen attack is the generation of oxidative burst that can trigger hypersensitive cell death. This is called the hypersensitive response (HR) and is considered to be a major element of plant disease resistance. The HR is thought to deprive the pathogens of a supply of food and confine them to initial infection site. Necrotrophic pathogens, such as the fungi Botrytis cinerea and Sclerotinia sclerotiorum, however, can utilize dead tissue. RESULTS: Inoculation of B. cinerea induced an oxidative burst and hypersensitive cell death in Arabidopsis. The degree of B. cinerea and S. sclerotiorum pathogenicity was directly dependent on the level of generation and accumulation of superoxide or hydrogen peroxide. Plant cells exhibited markers of HR death, such as nuclear condensation and induction of the HR-specific gene HSR203J. Growth of B. cinerea was suppressed in the HR-deficient mutant dnd1, and enhanced by HR caused by simultaneous infection with an avirulent strain of the bacterium Pseudomonas syringae. HR had an opposite (inhibitory) effect on a virulent (biotrophic) strain of P. syringae. Moreover, H(2)O(2) levels during HR correlated positively with B. cinerea growth but negatively with growth of virulent P. syringae. CONCLUSIONS: We show that, although hypersensitive cell death is efficient against biotrophic pathogens, it does not protect plants against infection by the necrotrophic pathogens B. cinerea and S. sclerotiorum. By contrast, B. cinerea triggers HR, which facilitates its colonization of plants. Hence, these fungi can exploit a host defense mechanism for their pathogenicity.  相似文献   

3.
During pathogenesis on sunflower cotyledons, Botrytis cinerea and Sclerotinia sclerotiorum show a striking resemblance in symptom development. Based on pH change profiles, the colonization process of both fungi can be divided into two stages. The first stage is associated with a pH decrease, resulting from an accumulation of citric and succinic acids. The second stage is correlated with a pH increase, resulting from an accumulation of ammonia. In this article, we also report that oxalic acid is produced at the late stage of the colonization process and that ammonia accumulation is concomitant with a decrease in free amino acids in decaying tissues. Sclerotinia sclerotiorum produces eight-fold more oxalic acid and two-fold less ammonia than B. cinerea. Consequently, during sunflower cotyledon colonization by B. cinerea, pH dynamics differ significantly from those of S. sclerotiorum. In vitro assays support the in planta results and show that decreases in pH are linked to glucose consumption. At different stages of the colonization process, expression profiles of genes encoding secreted proteases were investigated. This analysis highlights that the expression levels of the B. cinerea protease genes are higher than those of S. sclerotiorum. This work suggests that the overt similarities of S. sclerotiorum and B. cinerea symptom development have probably masked our recognition of the dynamic and potentially different metabolic pathways active during host colonization by these two necrotrophic fungi.  相似文献   

4.
Phytopathogenic fungi are able to overcome plant chemical defenses through detoxification reactions that are enzyme mediated. As a result of such detoxifications, the plant is quickly depleted of its most important antifungal metabolites and can succumb to pathogen attack. Understanding and predicting such detoxification pathways utilized by phytopathogenic fungi could lead to approaches to control plant pathogens. Towards this end, the inhibitory activities and metabolism of the cruciferous phytoalexins camalexin, brassinin, cyclobrassinin, and brassilexin by the phytopathogenic fungus Botrytis cinerea Pers. (teleomorph: Botryotinia fuckeliana) was investigated. Brassilexin was the most antifungal of the phytoalexins, followed by camalexin, cyclobrassinin and brassinin. Although B. cinerea is a species phylogenetically related to the phytopathogenic fungus Sclerotinia sclerotiorum (Lib) de Bary, contrary to S. sclerotiorum, detoxification of strongly antifungal phytoalexins occurred via either oxidative degradation or hydrolysis but not through glucosylation, suggesting that glucosyl transferases are not involved. A strongly antifungal bisindolylthiadiazole that B. cinerea could not detoxify was discovered, which resulted from spontaneous oxidative dimerization of 3-indolethiocarboxamide, a camalexin detoxification product.  相似文献   

5.
Botrytis cinerea and Sclerotinia sclerotiorum secrete oxalic acid as a pathogenicity factor with a broad action. Consequently, it should be possible to interfere with the infection process by degrading oxalic acid during the interaction of these pathogens with their hosts. We have evaluated the potential of oxalate-degrading bacteria to protect plants against pathogenic fungi. Such bacteria were isolated from agricultural soil and selected on agar plates with Ca-oxalate as the sole carbon source. Four strains were retained with a medium-to-strong protective activity on Arabidopsis thaliana leaves against B. cinerea and S. sclerotiorum. They can provide 30 to 70% protection against fungal infection in different pathosystems, including B. cinerea on A. thaliana, cucumber, grapevine, and tomato. The oxalate-degrading bacteria induced only some marker genes for common plant signaling pathways for defenses, but protective effects were slightly reduced in A. thaliana mutants impaired in the ethylene and jasmonic acid signaling pathways. More detailed studies on the protective mechanism were performed in ox-strain B, identified as Cupriavidus campinensis, by analysis of transposon-tagged mutants that have a reduced ability to degrade oxalic acid.  相似文献   

6.
7.
Genome evolution in filamentous plant pathogens: why bigger can be better   总被引:2,自引:0,他引:2  
Many species of fungi and oomycetes are plant pathogens of great economic importance. Over the past 7 years, the genomes of more than 30 of these filamentous plant pathogens have been sequenced, revealing remarkable diversity in genome size and architecture. Whereas the genomes of many parasites and bacterial symbionts have been reduced over time, the genomes of several lineages of filamentous plant pathogens have been shaped by repeat-driven expansions. In these lineages, the genes encoding proteins involved in host interactions are frequently polymorphic and reside within repeat-rich regions of the genome. Here, we review the properties of these adaptable genome regions and the mechanisms underlying their plasticity, and we illustrate cases in which genome plasticity has contributed to the emergence of new virulence traits. We also discuss how genome expansions may have had an impact on the co-evolutionary conflict between these filamentous plant pathogens and their hosts.  相似文献   

8.
9.
Polygalacturonases (PGs) hydrolyze the homogalacturonan of plant cell-wall pectin and are important virulence factors of several phytopathogenic fungi. In response to abiotic and biotic stress, plants accumulate PG-inhibiting proteins (PGIPs) that reduce the activity of fungal PGs. In Arabidopsis thaliana, PGIPs with comparable activity against BcPG1, an important pathogenicity factor of the necrotrophic fungus Botrytis cinerea, are encoded by two genes, AtPGIP1 and AtPGIP2. Both genes are induced by fungal infection through different signaling pathways. We show here that transgenic Arabidopsis plants expressing an antisense AtPGIP1 gene have reduced AtPGIP1 inhibitory activity and are more susceptible to B. cinerea infection. These results indicate that PGIP contributes to basal resistance to this pathogen and strongly support the vision that this protein plays a role in Arabidopsis innate immunity.  相似文献   

10.
核盘菌Sclerotinia sclerotiorum是一种典型的死体营养型植物病原真菌,全球分布且寄主范围广泛,严重危害多种植物,对农业生产造成严重损失。核盘菌研究主要集中在真菌生物学及病理学等方面。近年来,随着高通量分析技术的不断改进,多种组学技术为系统生物学研究提供了平台。文中主要综述利用多种组学研究方法在植物病原真菌核盘菌研究中的应用及研究进展,探讨开展植物病原物及病害发展的系统性研究思路,以期为核盘菌的分子生物学及致病机理等研究提供参考,同时也为其他植物病原物及病害系统研究提供理论依据。  相似文献   

11.
Licensed to kill: the lifestyle of a necrotrophic plant pathogen   总被引:5,自引:0,他引:5  
Necrotrophic plant pathogens have received an increasing amount of attention over the past decade. Initially considered to invade their hosts in a rather unsophisticated manner, necrotrophs are now known to use subtle mechanisms to subdue host plants. The gray mould pathogen Botrytis cinerea is one of the most comprehensively studied necrotrophic fungal plant pathogens. The genome sequences of two strains have been determined. Targeted mutagenesis studies are unraveling the roles played in the infection process by a variety of B. cinerea genes that are required for penetration, host cell killing, plant tissue decomposition or signaling. Our increasing understanding of the tools used by a necrotrophic fungal pathogen to invade plants will be instrumental to designing rational strategies for disease control.  相似文献   

12.
* Botrytis cinerea is a necrotrophic fungus that causes grey mould on a wide range of food plants, especially grapevine, tomato, soft fruits and vegetables. This disease brings about important economic losses in both pre- and postharvest crops. Successful protection of host plants against this pathogen is severely hampered by a lack of resistance genes in the hosts and the considerable phenotypic diversity of the fungus. * The aim of this study was to test whether B. cinerea manipulates the immunity-signalling pathways in plants to restore its disease. * We showed that B. cinerea caused disease in Nicotiana benthamiana through the activation of two plant signalling genes, EDS1 and SGT1, which have been shown to be essential for resistance against biotrophic pathogens; and more interestingly, virus-induced gene silencing of these two plant signalling components enhanced N. benthamiana resistance to B. cinerea. Finally, plants expressing the baculovirus antiapoptotic protein p35 were more resistant to this necrotrophic pathogen than wild-type plants. * This work highlights a new strategy used by B. cinerea to establish disease. This information is important for the design of strategies to improve plant pathogen resistance.  相似文献   

13.
14.
The genus Septoria contains more than 1000 species of plant pathogenic fungi, most of which have no known sexual stage. Species of Septoria without a known sexual stage could be recent derivatives of sexual species that have lost the ability to mate. To test this hypothesis, the mating-type region of S. passerinii, a species with no known sexual stage, was cloned, sequenced, and compared to that of its close relative S. tritici (sexual stage: Mycosphaerella graminicola). Both of the S. passerinii mating-type idiomorphs were approximately 3 kb in size and contained a single reading frame interrupted by one (MAT-2) or two (MAT-1) putative introns. The putative products of MAT-1 and MAT-2 are characterized by alpha-box and high-mobility-group sequences, respectively, similar to those in the mating-type genes of M. graminicolaand other fungi. The mating-type genes of S. passerinii and M. graminicolaare evolving rapidly, approximately ten times faster than the internal transcribed spacer region of the ribosomal DNA, and are not closely related to those from Cochliobolusor other loculoascomycetes in the order Pleosporales. Therefore, the class Loculoascomycetes may be polyphyletic. Furthermore, differences between the phylogenetic trees may indicate separate evolutionary histories for the MAT-1 and MAT-2 idiomorphs. A three-primer multiplex-PCR technique was developed that allowed rapid identification of the mating types of isolates of S. passerinii. Both mating types were present in approximately equal frequencies and often on the same leaf in fields in Minnesota and North Dakota. Analyses with isozyme and random amplified polymorphic DNA markers revealed that each isolate had a unique genotype. The common occurrence of both mating types on the same leaf and the high levels of genotypic diversity indicate that S. passerinii is almost certainly not an asexual derivative of a sexual fungus. Instead, sexual reproduction probably plays an integral role in the life cycle of S. passerinii and may be much more important than previously believed in this (and possibly other) "asexual" species of Septoria.  相似文献   

15.
Glycosyl hydrolase family 28 (GH28) is a set of structurally related enzymes that hydrolyze glycosidic bonds in pectin, and are important extracellular enzymes for both pathogenic and saprotrophic fungi. Yet, very little is understood about the evolutionary forces driving the diversification of GH28s in fungal genomes. We reconstructed the evolutionary history of family GH28 in fungi by examining the distribution of GH28 copy number across the phylogeny of fungi, and by reconstructing the phylogeny of GH28 genes. We also examined the relationship between lineage-specific GH28 expansions and fungal ecological strategy, testing the hypothesis that GH28 evolution in fungi is driven by ecological strategy (pathogenic vs. non-pathogenic) and pathogenic niche (necrotrophic vs. biotrophic). Our results showed that GH28 phylogeny of Ascomycota and Basidiomycota sequences was structured by specific biochemical function, with endo-polygalacturonases and endo-rhamnogalacturonases forming distinct, apparently ancient clades, while exo-polygalacturonases are more widely distributed. In contrast, Mucoromycotina and Stramenopile sequences formed taxonomically-distinct clades. Large, lineage-specific variation in GH28 copy number indicates that the evolution of this gene family is consistent with the birth-and-death model of gene family evolution, where diversity of GH28 loci within genomes was generated through multiple rounds of gene duplication followed by functional diversification and loss of some gene family members. Although GH28 copy number was correlated with genome size, our findings suggest that ecological strategy also plays an important role in determining the GH28 repertoire of fungi. Both necrotrophic and biotrophic fungi have larger genomes than non-pathogens, yet only necrotrophs possess more GH28 enzymes than non-pathogens. Hence, lineage-specific GH28 expansion is the result of both variation in genome size across fungal species and diversifying selection within the necrotrophic plant pathogen ecological niche. GH28 evolution among necrotrophs has likely been driven by a co-evolutionary arms race with plants, whereas the need to avoid plant immune responses has resulted in purifying selection within biotrophic fungi.  相似文献   

16.
Botrytis cinerea is a filamentous plant pathogen of a wide range of plant species, and its infection may cause enormous damage both during plant growth and in the post-harvest phase. We have constructed a cDNA library from an isolate of B. cinerea and have sequenced 11,482 expressed sequence tags that were assembled into 1,003 contigs sequences and 3,032 singletons. Approximately 81% of the unigenes showed significant similarity to genes coding for proteins with known functions: more than 50% of the sequences code for genes involved in cellular metabolism, 12% for transport of metabolites, and approximately 10% for cellular organization. Other functional categories include responses to biotic and abiotic stimuli, cell communication, cell homeostasis, and cell development. We carried out pair-wise comparisons with fungal databases to determine the B. cinerea unisequence set with relevant similarity to genes in other fungal pathogenic counterparts. Among the 4,035 non-redundant B. cinerea unigenes, 1,338 (23%) have significant homology with Fusarium verticillioides unigenes. Similar values were obtained for Saccharomyces cerevisiae and Aspergillus nidulans (22% and 24%, respectively). The lower percentages of homology were with Magnaporthe grisae and Neurospora crassa (13% and 19%, respectively). Several genes involved in putative and known fungal virulence and general pathogenicity were identified. The results provide important information for future research on this fungal pathogen.  相似文献   

17.
18.
The smut fungi are obligately parasitic during the sexual phase of their life cycle, and the mating-type genes of these fungi play key roles in both sexual development and pathogenicity. Among species of smut fungi it is common to find a bipolar mating system in which one locus with two alternate alleles is believed to control cell fusion and establishment of the infectious cell type. Alternatively, several species have a tetrapolar mating system in which two different genetic loci, one of which has multiple alleles, control fusion and subsequent development of the infection hyphae. Cloned sequences from the a and b mating-type loci of the tetrapolar smut fungus Ustilago maydis were used as hybridization probes to DNAs from 23 different fungal strains, including smut fungi with both tetrapolar and bipolar mating systems. In general, all of the smut fungi hybridized with the mating-type genes from U. maydis, suggesting conservation of the sequences involved in mating interactions. A selection of DNAs from other ascomycete and basidiomycete fungi failed to hybridize with the U. maydis mating-type sequences. Exceptions to this finding include hybridization of DNA from the a1 idiomorph of U. maydis to DNA from one strain of U. violacea and hybridization of both a idiomorphs to DNA from Saccharomyces cerevisiae.  相似文献   

19.
Mating between different species produces hybrids that are usually asexual and stuck as diploids, but can also lead to the formation of new species. Here, we report the genome sequences of 27 isolates of the pathogenic yeast Candida orthopsilosis. We find that most isolates are diploid hybrids, products of mating between two unknown parental species (A and B) that are 5% divergent in sequence. Isolates vary greatly in the extent of homogenization between A and B, making their genomes a mosaic of highly heterozygous regions interspersed with homozygous regions. Separate phylogenetic analyses of SNPs in the A- and B-derived portions of the genome produces almost identical trees of the isolates with four major clades. However, the presence of two mutually exclusive genotype combinations at the mating type locus, and recombinant mitochondrial genomes diagnostic of inter-clade mating, shows that the species C. orthopsilosis does not have a single evolutionary origin but was created at least four times by separate interspecies hybridizations between parents A and B. Older hybrids have lost more heterozygosity. We also identify two isolates with homozygous genomes derived exclusively from parent A, which are pure non-hybrid strains. The parallel emergence of the same hybrid species from multiple independent hybridization events is common in plant evolution, but is much less documented in pathogenic fungi.  相似文献   

20.
Balancing selection, an evolutionary force that retains genetic diversity, has been detected in multiple genes and organisms, such as the sexual mating loci in fungi. However, to quantify the strength of balancing selection and define the mating-related genes require a large number of strains. In tetrapolar basidiomycete fungi, sexual type is determined by two unlinked loci, MATA and MATB. Genes in both loci define mating type identity, control successful mating and completion of the life cycle. These loci are usually highly diverse. Previous studies have speculated, based on culture crosses, that species of the non-model genus Trichaptum (Hymenochaetales, Basidiomycota) possess a tetrapolar mating system, with multiple alleles. Here, we sequenced a hundred and eighty strains of three Trichaptum species. We characterized the chromosomal location of MATA and MATB, the molecular structure of MAT regions and their allelic richness. The sequencing effort was sufficient to molecularly characterize multiple MAT alleles segregating before the speciation event of Trichaptum species. Analyses suggested that long-term balancing selection has generated trans-species polymorphisms. Mating sequences were classified in different allelic classes based on an amino acid identity (AAI) threshold supported by phylogenetics. 17,550 mating types were predicted based on the allelic classes. In vitro crosses allowed us to support the degree of allelic divergence needed for successful mating. Even with the high amount of divergence, key amino acids in functional domains are conserved. We conclude that the genetic diversity of mating loci in Trichaptum is due to long-term balancing selection, with limited recombination and duplication activity. The large number of sequenced strains highlighted the importance of sequencing multiple individuals from different species to detect the mating-related genes, the mechanisms generating diversity and the evolutionary forces maintaining them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号