首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Horizontal gene transfer greatly facilitates rapid genetic adaptation of bacteria to shifts in environmental conditions and colonization of new niches by allowing one-step acquisition of novel functions. Conjugation is a major mechanism of horizontal gene transfer mediated by conjugative plasmids and integrating conjugative elements (ICEs). While in most bacterial conjugative systems DNA translocation requires the assembly of a complex type IV secretion system (T4SS), in Actinobacteria a single DNA FtsK/SpoIIIE-like translocation protein is required. To date, the role and diversity of ICEs in Actinobacteria have received little attention. Putative ICEs were searched for in 275 genomes of Actinobacteria using HMM-profiles of proteins involved in ICE maintenance and transfer. These exhaustive analyses revealed 144 putative FtsK/SpoIIIE-type ICEs and 17 putative T4SS-type ICEs. Grouping of the ICEs based on the phylogenetic analyses of maintenance and transfer proteins revealed extensive exchanges between different sub-families of ICEs. 17 ICEs were found in Actinobacteria from the genus Frankia, globally important nitrogen-fixing microorganisms that establish root nodule symbioses with actinorhizal plants. Structural analysis of ICEs from Frankia revealed their unexpected diversity and a vast array of predicted adaptive functions. Frankia ICEs were found to excise by site-specific recombination from their host's chromosome in vitro and in planta suggesting that they are functional mobile elements whether Frankiae live as soil saprophytes or plant endosymbionts. Phylogenetic analyses of proteins involved in ICEs maintenance and transfer suggests that active exchange between ICEs cargo-borne and chromosomal genes took place within the Actinomycetales order. Functionality of Frankia ICEs in vitro as well as in planta lets us anticipate that conjugation and ICEs could allow the development of genetic manipulation tools for this challenging microorganism and for many other Actinobacteria.  相似文献   

2.
Summary: Plasmids are key vectors of horizontal gene transfer and essential genetic engineering tools. They code for genes involved in many aspects of microbial biology, including detoxication, virulence, ecological interactions, and antibiotic resistance. While many studies have decorticated the mechanisms of mobility in model plasmids, the identification and characterization of plasmid mobility from genome data are unexplored. By reviewing the available data and literature, we established a computational protocol to identify and classify conjugation and mobilization genetic modules in 1,730 plasmids. This allowed the accurate classification of proteobacterial conjugative or mobilizable systems in a combination of four mating pair formation and six relaxase families. The available evidence suggests that half of the plasmids are nonmobilizable and that half of the remaining plasmids are conjugative. Some conjugative systems are much more abundant than others and preferably associated with some clades or plasmid sizes. Most very large plasmids are nonmobilizable, with evidence of ongoing domestication into secondary chromosomes. The evolution of conjugation elements shows ancient divergence between mobility systems, with relaxases and type IV coupling proteins (T4CPs) often following separate paths from type IV secretion systems. Phylogenetic patterns of mobility proteins are consistent with the phylogeny of the host prokaryotes, suggesting that plasmid mobility is in general circumscribed within large clades. Our survey suggests the existence of unsuspected new relaxases in archaea and new conjugation systems in cyanobacteria and actinobacteria. Few genes, e.g., T4CPs, relaxases, and VirB4, are at the core of plasmid conjugation, and together with accessory genes, they have evolved into specific systems adapted to specific physiological and ecological contexts.  相似文献   

3.
Integrative and conjugative elements (ICEs, also known as conjugative transposons) are mobile elements that are found integrated in a host genome and can excise and transfer to recipient cells via conjugation. ICEs and conjugative plasmids are found in many bacteria and are important agents of horizontal gene transfer and microbial evolution. Conjugative elements are capable of self-transfer and also capable of mobilizing other DNA elements that are not able to self-transfer. Plasmids that can be mobilized by conjugative elements are generally thought to contain an origin of transfer (oriT), from which mobilization initiates, and to encode a mobilization protein (Mob, a relaxase) that nicks a site in oriT and covalently attaches to the DNA to be transferred. Plasmids that do not have both an oriT and a cognate mob are thought to be nonmobilizable. We found that Bacillus subtilis carrying the integrative and conjugative element ICEBs1 can transfer three different plasmids to recipient bacteria at high frequencies. Strikingly, these plasmids do not have dedicated mobilization-oriT functions. Plasmid mobilization required conjugation proteins of ICEBs1, including the putative coupling protein. In contrast, plasmid mobilization did not require the ICEBs1 conjugative relaxase or cotransfer of ICEBs1, indicating that the putative coupling protein likely interacts with the plasmid replicative relaxase and directly targets the plasmid DNA to the ICEBs1 conjugation apparatus. These results blur the current categorization of mobilizable and nonmobilizable plasmids and indicate that conjugative elements play a role in horizontal gene transfer even more significant than previously recognized.  相似文献   

4.
贺羽  王帅  李慧  冯小刚  商学兵 《微生物学通报》2019,46(12):3424-3431
整合性接合元件(Integrative and conjugative elements,ICEs)主要介导原核生物间遗传信息的横向基因交换,在细菌毒性、耐药性、抗重金属等特性传播上发挥关键作用。ICEs的水平转移极大地加速了抗性基因在同种及不同种属之间的传播,造成细菌的耐药以至多重耐药问题日益严重,耐药机制日趋复杂;同时ICEs的接合转移过程受细菌Ⅳ型分泌系统(Type Ⅳ secretion system,T4SS)影响。本文着重从ICEs的基因结构、接合转移过程以及T4SS组成元件的结构进行概述,并对T4SS各组件间相互作用的研究进展进行了初步探讨。  相似文献   

5.
The F sex factor of Escherichia coli is a paradigm for bacterial conjugation and its transfer (tra) region represents a subset of the type IV secretion system (T4SS) family. The F tra region encodes eight of the 10 highly conserved (core) gene products of T4SS including TraAF (pilin), the TraBF, -KF (secretin-like), -VF (lipoprotein) and TraCF (NTPase), -EF, -LF and TraGF (N-terminal region) which correspond to TrbCP, -IP, -GP, -HP, -EP, -JP, DP and TrbLP, respectively, of the P-type T4SS exemplified by the IncP plasmid RP4. F lacks homologs of TrbBP (NTPase) and TrbFP but contains a cluster of genes encoding proteins essential for F conjugation (TraFF, -HF, -UF, -WF, the C-terminal region of TraGF, and TrbCF) that are hallmarks of F-like T4SS. These extra genes have been implicated in phenotypes that are characteristic of F-like systems including pilus retraction and mating pair stabilization. F-like T4SS systems have been found on many conjugative plasmids and in genetic islands on bacterial chromosomes. Although few systems have been studied in detail, F-like T4SS appear to be involved in the transfer of DNA only whereas P- and I-type systems appear to transport protein or nucleoprotein complexes. This review examines the similarities and differences among the T4SS, especially F- and P-like systems, and summarizes the properties of the F transfer region gene products.  相似文献   

6.
Integrating and conjugative elements (ICEs) are one of the three principal types of self-transmissible mobile genetic elements in bacteria. ICEs, like plasmids, transfer via conjugation; but unlike plasmids and similar to many phages, these elements integrate into and replicate along with the host chromosome. Members of the SXT/R391 family of ICEs have been isolated from several species of gram-negative bacteria, including Vibrio cholerae, the cause of cholera, where they have been important vectors for disseminating genes conferring resistance to antibiotics. Here we developed a plasmid-based system to capture and isolate SXT/R391 ICEs for sequencing. Comparative analyses of the genomes of 13 SXT/R391 ICEs derived from diverse hosts and locations revealed that they contain 52 perfectly syntenic and nearly identical core genes that serve as a scaffold capable of mobilizing an array of variable DNA. Furthermore, selection pressure to maintain ICE mobility appears to have restricted insertions of variable DNA into intergenic sites that do not interrupt core functions. The variable genes confer diverse element-specific phenotypes, such as resistance to antibiotics. Functional analysis of a set of deletion mutants revealed that less than half of the conserved core genes are required for ICE mobility; the functions of most of the dispensable core genes are unknown. Several lines of evidence suggest that there has been extensive recombination between SXT/R391 ICEs, resulting in re-assortment of their respective variable gene content. Furthermore, our analyses suggest that there may be a network of phylogenetic relationships among sequences found in all types of mobile genetic elements.  相似文献   

7.
Elements that excise and integrate, such as prophages, and transfer by conjugation, such as plasmids, have been found in various bacteria. These elements appear to have a diversified set of characteristics including cell-to-cell contact using pili or cell aggregation, transfer of single-stranded or double-stranded DNA, low or high specificity of integration and serine or tyrosine recombinases. This has led to a highly heterogeneous nomenclature, including conjugative transposons, integrative 'plasmids', genomic islands and numerous unclassified elements. However, all these elements excise by site-specific recombination, transfer the resulting circular form by conjugation and integrate by recombination between a specific site of this circular form and a site in the genome of their host. Whereas replication of the circular form probably occurs during conjugation, this replication is not involved in the maintenance of the element. In this review, we show that these elements share very similar characteristics and, therefore, we propose to classify them as integrative and conjugative elements (ICEs). These elements evolve by acquisition or exchanges of modules with various transferable elements including at least ICEs and plasmids. The ICEs are probably widespread among the bacteria.  相似文献   

8.
Integrative and conjugative elements (ICEs) are mobile genetic elements that transfer from cell to cell by conjugation (like plasmids) and integrate into the chromosomes of bacterial hosts (like lysogenic phages or transposons). ICEs are prevalent in bacterial chromosomes and play a major role in bacterial evolution by promoting horizontal gene transfer. Exclusion prevents the redundant transfer of conjugative elements into host cells that already contain a copy of the element. Exclusion has been characterized mostly for conjugative elements of Gram‐negative bacteria. Here, we report the identification and characterization of an exclusion mechanism in ICEBs1 from the Gram‐positive bacterium Bacillus subtilis. We found that cells containing ICEBs1 inhibit the activity of the ICEBs1‐encoded conjugation machinery in other cells. This inhibition (exclusion) was specific to the cognate conjugation machinery and the ICEBs1 gene yddJ was both necessary and sufficient to mediate exclusion by recipient cells. Through a mutagenesis and enrichment screen, we identified exclusion‐resistant mutations in the ICEBs1 gene conG. Using genes from a heterologous but related ICE, we found that the exclusion specificity was determined by ConG and YddJ. Finally, we found that under conditions that support conjugation, exclusion provides a selective advantage to the element and its host cells.  相似文献   

9.
Bacterial conjugation is an efficient and sophisticated mechanism of DNA transfer among bacteria. While mobilizable plasmids only encode a minimal MOB machinery that allows them to be transported by other plasmids, conjugative plasmids encode a complete set of transfer genes (MOB+T4SS). The only essential ingredient of the MOB machinery is the relaxase, the protein that initiates and terminates conjugative DNA processing. In this review we compared the sequences and properties of the relaxase proteins contained in gene sequence databases. Proteins were arranged in families and phylogenetic trees constructed from the family alignments. This allowed the classification of conjugative transfer systems in six MOB families: MOBF, MOBH, MOBQ, MOBC, MOBP and MOB. The main characteristics of each family were reviewed. The phylogenetic relationships of the coupling proteins were also analysed and resulted in phylogenies congruent to those of the cognate relaxases. We propose that the sequences of plasmid relaxases can be used for plasmid classification. We hope our effort will provide researchers with a useful tool for further mining and analysing the plasmid universe both experimentally and in silico .  相似文献   

10.
Type IV secretion systems (T4SS) translocate DNA and protein substrates across prokaryotic cell envelopes generally by a mechanism requiring direct contact with a target cell. Three types of T4SS have been described: (i) conjugation systems, operationally defined as machines that translocate DNA substrates intercellularly by a contact-dependent process; (ii) effector translocator systems, functioning to deliver proteins or other macromolecules to eukaryotic target cells; and (iii) DNA release/uptake systems, which translocate DNA to or from the extracellular milieu. Studies of a few paradigmatic systems, notably the conjugation systems of plasmids F, R388, RP4, and pKM101 and the Agrobacterium tumefaciens VirB/VirD4 system, have supplied important insights into the structure, function, and mechanism of action of type IV secretion machines. Information on these systems is updated, with emphasis on recent exciting structural advances. An underappreciated feature of T4SS, most notably of the conjugation subfamily, is that they are widely distributed among many species of gram-negative and -positive bacteria, wall-less bacteria, and the Archaea. Conjugation-mediated lateral gene transfer has shaped the genomes of most if not all prokaryotes over evolutionary time and also contributed in the short term to the dissemination of antibiotic resistance and other virulence traits among medically important pathogens. How have these machines adapted to function across envelopes of distantly related microorganisms? A survey of T4SS functioning in phylogenetically diverse species highlights the biological complexity of these translocation systems and identifies common mechanistic themes as well as novel adaptations for specialized purposes relating to the modulation of the donor-target cell interaction.  相似文献   

11.
Beres SB  Musser JM 《PloS one》2007,2(8):e800
Variation in gene content among strains of a bacterial species contributes to biomedically relevant differences in phenotypes such as virulence and antimicrobial resistance. Group A Streptococcus (GAS) causes a diverse array of human infections and sequelae, and exhibits a complex pathogenic behavior. To enhance our understanding of genotype-phenotype relationships in this important pathogen, we determined the complete genome sequences of four GAS strains expressing M protein serotypes (M2, M4, and 2 M12) that commonly cause noninvasive and invasive infections. These sequences were compared with eight previously determined GAS genomes and regions of variably present gene content were assessed. Consistent with the previously determined genomes, each of the new genomes is approximately 1.9 Mb in size, with approximately 10% of the gene content of each encoded on variably present exogenous genetic elements. Like the other GAS genomes, these four genomes are polylysogenic and prophage encode the majority of the variably present gene content of each. In contrast to most of the previously determined genomes, multiple exogenous integrated conjugative elements (ICEs) with characteristics of conjugative transposons and plasmids are present in these new genomes. Cumulatively, 242 new GAS metagenome genes were identified that were not present in the previously sequenced genomes. Importantly, ICEs accounted for 41% of the new GAS metagenome gene content identified in these four genomes. Two large ICEs, designated 2096-RD.2 (63 kb) and 10750-RD.2 (49 kb), have multiple genes encoding resistance to antimicrobial agents, including tetracycline and erythromycin, respectively. Also resident on these ICEs are three genes encoding inferred extracellular proteins of unknown function, including a predicted cell surface protein that is only present in the genome of the serotype M12 strain cultured from a patient with acute poststreptococcal glomerulonephritis. The data provide new information about the GAS metagenome and will assist studies of pathogenesis, antimicrobial resistance, and population genomics.  相似文献   

12.
Integrating conjugative elements (ICEs) are a class of bacterial mobile genetic elements that disseminate via conjugation and then integrate into the host cell genome. The SXT/R391 family of ICEs consists of more than 30 different elements that all share the same integration site in the host chromosome but often encode distinct properties. These elements contribute to the spread of antibiotic resistance genes in several gram-negative bacteria including Vibrio cholerae, the agent of cholera. Here, using comparative analyses of the genomes of several SXT/R391 ICEs, we found evidence that the genomes of these elements have been shaped by inter–ICE recombination. We developed a high throughput semi-quantitative method to explore the genetic determinants involved in hybrid ICE formation. Recombinant ICE formation proved to be relatively frequent, and to depend on host (recA) and ICE (s065 and s066) loci, which can independently and potentially cooperatively mediate hybrid ICE formation. s065 and s066, which are found in all SXT/R391 ICEs, are orthologues of the bacteriophage λ Red recombination genes bet and exo, and the s065/s066 recombination system is the first Red-like recombination pathway to be described in a conjugative element. Neither ICE excision nor conjugative transfer proved to be essential for generation of hybrid ICEs. Instead conjugation facilitates the segregation of hybrids and could provide a means to select for functional recombinant ICEs containing novel combinations of genes conferring resistance to antibiotics. Thus, ICEs promote their own diversity and can yield novel mobile elements capable of disseminating new combinations of antibiotic resistance genes.  相似文献   

13.
Conjugation drives the horizontal transfer of adaptive traits across prokaryotes. One-fourth of the plasmids encode the functions necessary to conjugate autonomously, the others being eventually mobilizable by conjugation. To understand the evolution of plasmid mobility, we studied plasmid size, gene repertoires, and conjugation-related genes. Plasmid gene repertoires were found to vary rapidly in relation to the evolutionary rate of relaxases, for example, most pairs of plasmids with 95% identical relaxases have fewer than 50% of homologs. Among 249 recent transitions of mobility type, we observed a clear excess of plasmids losing the capacity to conjugate. These transitions are associated with even greater changes in gene repertoires, possibly mediated by transposable elements, including pseudogenization of the conjugation locus, exchange of replicases reducing the problem of incompatibility, and extensive loss of other genes. At the microevolutionary scale of plasmid taxonomy, transitions of mobility type sometimes result in the creation of novel taxonomic units. Interestingly, most transitions from conjugative to mobilizable plasmids seem to be lost in the long term. This suggests a source-sink dynamic, where conjugative plasmids generate nonconjugative plasmids that tend to be poorly adapted and are frequently lost. Still, in some cases, these relaxases seem to have evolved to become efficient at plasmid mobilization in trans, possibly by hijacking multiple conjugative systems. This resulted in specialized relaxases of mobilizable plasmids. In conclusion, the evolution of plasmid mobility is frequent, shapes the patterns of gene flow in bacteria, the dynamics of gene repertoires, and the ecology of plasmids.  相似文献   

14.
Legionella encodes multiple classes of Type IV Secretion Systems (T4SSs), including the Dot/Icm protein secretion system that is essential for intracellular multiplication in amoebal and human hosts. Other T4SSs not essential for virulence are thought to facilitate the acquisition of niche-specific adaptation genes including the numerous effector genes that are a hallmark of this genus. Previously, we identified two novel gene clusters in the draft genome of Legionella pneumophila strain 130b that encode homologues of a subtype of T4SS, the genomic island-associated T4SS (GI-T4SS), usually associated with integrative and conjugative elements (ICE). In this study, we performed genomic analyses of 14 homologous GI-T4SS clusters found in eight publicly available Legionella genomes and show that this cluster is unusually well conserved in a region of high plasticity. Phylogenetic analyses show that Legionella GI-T4SSs are substantially divergent from other members of this subtype of T4SS and represent a novel clade of GI-T4SSs only found in this genus. The GI-T4SS was found to be under purifying selection, suggesting it is functional and may play an important role in the evolution and adaptation of Legionella. Like other GI-T4SSs, the Legionella clusters are also associated with ICEs, but lack the typical integration and replication modules of related ICEs. The absence of complete replication and DNA pre-processing modules, together with the presence of Legionella-specific regulatory elements, suggest the Legionella GI-T4SS-associated ICE is unique and may employ novel mechanisms of regulation, maintenance and excision. The Legionella GI-T4SS cluster was found to be associated with several cargo genes, including numerous antibiotic resistance and virulence factors, which may confer a fitness benefit to the organism. The in-silico characterisation of this new T4SS furthers our understanding of the diversity of secretion systems involved in the frequent horizontal gene transfers that allow Legionella to adapt to and exploit diverse environmental niches.  相似文献   

15.
Integrative and Conjugative Elements (ICEs) of the SXT/R391 family disseminate multidrug resistance among pathogenic Gammaproteobacteria such as Vibrio cholerae. SXT/R391 ICEs are mobile genetic elements that reside in the chromosome of their host and eventually self-transfer to other bacteria by conjugation. Conjugative transfer of SXT/R391 ICEs involves a transient extrachromosomal circular plasmid-like form that is thought to be the substrate for single-stranded DNA translocation to the recipient cell through the mating pore. This plasmid-like form is thought to be non-replicative and is consequently expected to be highly unstable. We report here that the ICE R391 of Providencia rettgeri is impervious to loss upon cell division. We have investigated the genetic determinants contributing to R391 stability. First, we found that a hipAB-like toxin/antitoxin system improves R391 stability as its deletion resulted in a tenfold increase of R391 loss. Because hipAB is not a conserved feature of SXT/R391 ICEs, we sought for alternative and conserved stabilization mechanisms. We found that conjugation itself does not stabilize R391 as deletion of traG, which abolishes conjugative transfer, did not influence the frequency of loss. However, deletion of either the relaxase-encoding gene traI or the origin of transfer (oriT) led to a dramatic increase of R391 loss correlated with a copy number decrease of its plasmid-like form. This observation suggests that replication initiated at oriT by TraI is essential not only for conjugative transfer but also for stabilization of SXT/R391 ICEs. Finally, we uncovered srpMRC, a conserved locus coding for two proteins distantly related to the type II (actin-type ATPase) parMRC partitioning system of plasmid R1. R391 and plasmid stabilization assays demonstrate that srpMRC is active and contributes to reducing R391 loss. While partitioning systems usually stabilizes low-copy plasmids, srpMRC is the first to be reported that stabilizes a family of ICEs.  相似文献   

16.
The conjugative tetracycline resistance plasmid pCW3 is the paradigm conjugative plasmid in the anaerobic gram-positive pathogen Clostridium perfringens. Two closely related FtsK/SpoIIIE homologs, TcpA and TcpB, are encoded on pCW3, which is significant since FtsK domains are found in coupling proteins of gram-negative conjugation systems. To develop an understanding of the mechanism of conjugative transfer in C. perfringens, we determined the role of these proteins in the conjugation process. Mutation and complementation analysis was used to show that the tcpA gene was essential for the conjugative transfer of pCW3 and that the tcpB gene was not required for transfer. Furthermore, complementation of a pCW3DeltatcpA mutant with divergent tcpA homologs provided experimental evidence that all of the known conjugative plasmids from C. perfringens use a similar transfer mechanism. Functional genetic analysis of the TcpA protein established the essential role in conjugative transfer of its Walker A and Walker B ATP-binding motifs and its FtsK-like RAAG motif. It is postulated that TcpA is the essential DNA translocase or coupling protein encoded by pCW3 and as such represents a key component of the unique conjugation process in C. perfringens.  相似文献   

17.
Integrative and conjugative elements (ICEs), also known as conjugative transposons, are mobile genetic elements that can transfer from one bacterial cell to another by conjugation. ICEBs1 is integrated into the trnS-leu2 gene of Bacillus subtilis and is regulated by the SOS response and the RapI-PhrI cell-cell peptide signaling system. When B. subtilis senses DNA damage or high concentrations of potential mating partners that lack the element, ICEBs1 excises from the chromosome and can transfer to recipients. Bacterial conjugation usually requires a DNA relaxase that nicks an origin of transfer (oriT) on the conjugative element and initiates the 5'-to-3' transfer of one strand of the element into recipient cells. The ICEBs1 ydcR (nicK) gene product is homologous to the pT181 family of plasmid DNA relaxases. We found that transfer of ICEBs1 requires nicK and identified a cis-acting oriT that is also required for transfer. Expression of nicK leads to nicking of ICEBs1 between a GC-rich inverted repeat in oriT, and NicK was the only ICEBs1 gene product needed for nicking. NicK likely mediates conjugation of ICEBs1 by nicking at oriT and facilitating the translocation of a single strand of ICEBs1 DNA through a transmembrane conjugation pore.  相似文献   

18.
别路垚  徐海 《微生物学通报》2015,42(11):2215-2222
整合性接合元件是近年来在细菌中发现的一种可移动的基因元件,它位于染色体上,可通过接合转移的方式介导细菌间基因的水平转移。这种基因的水平转移有助于细菌适应特定的环境条件,但许多整合性接合元件包含耐药基因,这些遗传元件的水平转移极大地加速了耐药基因在同种及不同种属之间的传播,造成细菌的耐药以至多重耐药问题日益严重,耐药机制日趋复杂;同时整合性接合元件与基因岛有着密切的联系,因此对其特征及转移机制进行研究很有必要。  相似文献   

19.
Integrating conjugative elements (ICEs) are self-transmissible mobile elements that transfer between bacteria via conjugation and integrate into the host chromosome. SXT and related ICEs became prevalent in Asian Vibrio cholerae populations in the 1990s and play an important role in the dissemination of antibiotic resistance genes in V. cholerae. Here, we carried out genomic and functional analyses of ICEPdaSpa1, an SXT-related ICE derived from a Spanish isolate of Photobacterium damselae subsp. piscicida, the causative agent of fish pasteurellosis. The approximately 102-kb DNA sequence of ICEPdaSpa1 shows nearly 97% DNA sequence identity to SXT in genes that encode essential ICE functions, including integration and excision, conjugal transfer, and regulation. However, approximately 25 kb of ICEPdaSpa1 DNA, including a tetracycline resistance locus, is not present in SXT. Most ICEPdaSpa1-specific DNA is inserted at loci where other SXT-related ICEs harbor element-specific DNA. ICEPdaSpa1 excises itself from the chromosome and is transmissible to other Photobacterium strains, as well as to Escherichia coli, in which it integrates into prfC. Interestingly, the P. damselae virulence plasmid pPHDP10 could be mobilized from E. coli in an ICEPdaSpa1-dependent fashion via the formation of a cointegrate between pPHDP10 and ICEPdaSpa1. pPHDP10-Cm integrated into ICEPdaSpa1 in a non-site-specific fashion independently of RecA. The ICEPdaSpa1::pPHDP10 cointegrates were stable, and markers from both elements became transmissible at frequencies similar to those observed for the transfer of ICEPdaSpa1 alone. Our findings reveal the plasticity of ICE genomes and demonstrate that ICEs can enable virulence gene transfer.  相似文献   

20.
Many Helicobacter pylori (Hp) strains carry cryptic plasmids of different size and gene content, the function of which is not well understood. A subgroup of these plasmids (e.g. pHel4, pHel12), contain a mobilisation region, but no cognate type IV secretion system (T4SS) for conjugative transfer. Instead, certain H. pylori strains (e.g. strain P12 carrying plasmid pHel12) can harbour up to four T4SSs in their genome (cag-T4SS, comB, tfs3, tfs4). Here, we show that such indigenous plasmids can be efficiently transferred between H. pylori strains, even in the presence of extracellular DNaseI eliminating natural transformation. Knockout of a plasmid-encoded mobA relaxase gene significantly reduced plasmid DNA transfer in the presence of DNaseI, suggesting a DNA conjugation or mobilisation process. To identify the T4SS involved in this conjugative DNA transfer, each individual T4SS was consecutively deleted from the bacterial chromosome. Using a marker-free counterselectable gene deletion procedure (rpsL counterselection method), a P12 mutant strain was finally obtained with no single T4SS (P12ΔT4SS). Mating experiments using these mutants identified the comB T4SS in the recipient strain as the major mediator of plasmid DNA transfer between H. pylori strains, both in a DNaseI-sensitive (natural transformation) as well as a DNaseI-resistant manner (conjugative transfer). However, transfer of a pHel12::cat plasmid from a P12ΔT4SS donor strain into a P12ΔT4SS recipient strain provided evidence for the existence of a third, T4SS-independent mechanism of DNA transfer. This novel type of plasmid DNA transfer, designated as alternate DNaseI-Resistant (ADR) mechanism, is observed at a rather low frequency under in vitro conditions. Taken together, our study describes for the first time the existence of three distinct pathways of plasmid DNA transfer between H. pylori underscoring the importance of horizontal gene transfer for this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号