首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An oligomycin-sensitive F1F0-ATPase isolated from bovine heart mitochondria has been reconstituted into phospholipid vesicles and pumps protons. this preparation of F1F0-ATPase contains 14 different polypeptides that are resolved by polyacrylamide gel electrophoresis under denaturing conditions, and so it is more complex than bacterial and chloroplast enzymes, which have eight or nine different subunits. The 14 bovine subunits have been characterized by protein sequence analysis. They have been fractionated on polyacrylamide gels and transferred to poly(vinylidene difluoride) membranes, and N-terminal sequences have been determined in nine of them. By comparison with known sequences, eight of these have been identified as subunits beta, gamma, delta, and epsilon, which together with the alpha subunit form the F1 domain, as the b and c (or DCCD-reactive) subunits, both components of the membrane sector of the enzyme, and as the oligomycin sensitivity conferral protein (OSCP) and factor 6 (F6), both of which are required for attachment of F1 to the membrane sector. The sequence of the ninth, named subunit e, has been determined and is not related to any reported protein sequence. The N-terminal sequence of a tenth subunit, the membrane component A6L, could be determined after a mild acid treatment to remove an alpha-N-formyl group. Similar experiments with another membrane component, the a or ATPase-6 subunit, caused the protein to degrade, but the protein has been isolated from the enzyme complex and its position on gels has been unambiguously assigned. No N-terminal sequence could be derived from three other proteins. The largest of these is the alpha subunit, which previously has been shown to have pyrrolidonecarboxylic acid at the N terminus of the majority of its chains. The other two have been isolated from the enzyme complex; one of them is the membrane-associated protein, subunit d, which has an alpha-N-acetyl group, and the second, surprisingly, is the ATPase inhibitor protein. When it is isolated directly from mitochondrial membranes, the inhibitor protein has a frayed N terminus, with chains starting at residues 1, 2, and 3, but when it is isolated from the purified enzyme complex, its chains are not frayed and the N terminus is modified. Previously, the sequences at the N terminals of the alpha, beta, and delta subunits isolated from F1-ATPase had been shown to be frayed also, but in the F1F0 complex they each have unique N-terminal sequences.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
A delta epsilon complex has been purified as a molecular entity from pig heart mitochondrial F1-ATPase. This delta epsilon complex has also been reconstituted from purified delta and epsilon subunits. Both isolated and reconstituted delta epsilon complexes have delta 1 epsilon 1 stoichiometry and are indistinguishable by their chromatographic behavior, their circular dichroism spectra (CD spectra), and their intrinsic fluorescence features. The content of secondary structures deduced from CD spectra of the delta epsilon complex appears to be the sum of the respective contributions of purified delta and epsilon subunits. All intrinsic fluorescence studies carried out on isolated epsilon subunit and delta epsilon complex show that the single tryptophan residue located on epsilon is involved in the interaction between delta and epsilon subunits. Results obtained with F1-ATPase are in favor of the same delta epsilon interaction in the entire enzyme.  相似文献   

3.
Previously identified mutations in subunits a and b of the F0 sector of the F1F0-ATPase from Escherichia coli are further characterized by isolating detergent-solubilized, partially purified F1F0 complexes from cells bearing these mutations. The composition of the various F1F0 complexes was judged by quantitating the amount of each subunit present in the detergent-solubilized preparations. The composition of the F0 sectors containing altered polypeptides was determined by quantitating the F0 subunits that were immunoprecipitated by antibodies directed against the F1 portion. In this way, the relative amounts of F0 subunits (a, b, c) which survived the isolation procedure bound to F1 were determined for each mutation. This analysis indicates that both missense mutations in subunit a (aser206----leu and ahis245----tyr) resulted in the isolation of F1F0 complexes with normal subunit composition. The nonsense mutation in subunit a (atyr235----end) resulted in isolation of a complex containing the b and c subunits. The bgly131----asp mutation in the b subunit results in an F0 complex which does not assemble or survive the isolation. The isolated F1F0 complex containing the mutation bgly9----asp in the b subunit was defective in two regards: first, a reduction in F1 content relative to F0 and second, the absence of the a subunit. Immunoprecipitations of this preparation demonstrated that F1 interacts with both c and mutant b subunits. A strain carrying the mutation, bgly9----asp, and the compensating suppressor mutation apro240----leu (previously shown to be partially unc+) yielded an F1F0 ++ complex that remained partially defective in F1 binding to F0 but normal in the subunit composition of the F0 sector. The assembly, structure, and function of the F1F0-ATPase is discussed.  相似文献   

4.
Polypeptides of beef heart mitochondrial complex I were isolated from 15 mg of solubilized beef heart mitochondria using antibodies immobilized on an agarose chromatography column. The preparation was examined by SDS electrophoresis and Western blotting using affinity-purified antibodies to complex I and compared to beef heart complex I purified according to the conventional method of Hatefi and Rieske. There was a high degree of homology between the two preparations as judged by SDS-polyacrylamide electrophoresis and by immunoblotting with seven affinity-purified antibodies to various complex I subunits. This method could be applied to the preparation of complex I subunits from small samples such as human muscle biopsy specimens.  相似文献   

5.
A method has been developed which allows isolation of 0.3--0.5 g of mitochondrial aspartate aminotransferase in five days starting from 10 pig hearts; the method does not involve initial preparation of mitochondria. Mitochondrial malate dehydrogenase and the cytoplasmic aspartate aminotransferase may conveniently be recovered from side fractions. The product mitochondrial aspartate aminotransferase is homogeneous as judged by various electrophoretic techniques and by N-terminal analysis. Crystals of the enzyme have been obtained both from concentrated, essentially salt-free, solutions and from solutions of ammonium sulphate. The amino acid composition, N and C-terminal amino acid sequences and subunit molecular weight have been determined; these characteristic properties are compared with those of the cytoplasmic isozyme from the same source.  相似文献   

6.
All five subunits of bovine heart mitochondrial F1-ATPase have been isolated by reverse-phase HPLC and NH2-terminal sequences determined by gas phase Edman degradations. Bovine gamma exhibits 16 identities in the first 30 residues compared with the NH2-terminus of gamma from E.coli F1. Bovine delta exhibit about 27% identity with residues 28-59 of precursor delta from N.crassa and in the first six residues is identical with delta from S.cerevisiae. Approximately half of bovine epsilon has been sequenced. Possibly significant sequence similarities exist between bovine gamma and epsilon and kinase-related gene and oncogene products. The bovine alpha subunit has a blocked NH2-terminus.  相似文献   

7.
A highly active phosphate transporter was extracted with octylglucoside from bovine heart submitochondrial particles that were first partially depleted of other membrane components. It was then partially purified by ammonium sulfate fractionation. After reconstitution of the transporter into liposomes prepared with a crude mixture of soybean phospholipids, the Pi/OH exchange, but not the Pi/Pi exchange, was stimulated three- to fourfold by valinomycin and nigericin in the presence of K+. Both Pi/OH and Pi/Pi exchange activities were sensitive to mercurials and other SH reagents. The rutamycin-sensitive ATPase complex from mitochondria was reconstituted together with the phosphate transporter and adenine nucleotide transporter into liposomes. After inhibition of externally located ATPase, the hydrolysis of ATP was sensitive to atractyloside and mersalyl.  相似文献   

8.
ATP synthase, the assembly which makes ATP in mitochondria, chloroplasts and bacteria, uses transmembrane proton gradients generated by respiration or photosynthesis to drive the phosphorylation of ADP. Its membrane domain is joined by a slender stalk to a peripheral catalytic domain, F1-ATPase. This domain is made of five subunits with stoichiometries of 3 alpha: 3 beta: 1 gamma: 1 delta: 1 epsilon, and in bovine mitochondria has a molecular mass of 371,000. We have determined the 3-dimensional structure of bovine mitochondrial F1-ATPase to 6.5 A resolution by X-ray crystallography. It is an approximately spherical globule 110 A in diameter, on a 40 A stem which contains two alpha-helices in a coiled-coil. This stem is presumed to be part of the stalk that connects F1 with the membrane domain in the intact ATP synthase. A pit next to the stem penetrates approximately 35 A into the F1 particle. The stem and the pit are two examples of the many asymmetric features of the structure. The central element in the asymmetry is the longer of the two alpha-helices in the stem, which extends for 90 A through the centre of the assembly and emerges on top into a dimple 15 A deep. Features with threefold and sixfold symmetry, presumed to be parts of homologous alpha and beta subunits, are arranged around the central rod and pit, but the overall structure is asymmetric. The central helix provides a possible mechanism for transmission of conformational changes induced by the proton gradient from the stalk to the catalytic sites of the enzyme.  相似文献   

9.
The F1 portion of the H+-ATPase from Clostridium thermoaceticum was purified to homogeneity by solubilization at low ionic strength, ion-exchange chromatography, and gel filtration. The last indicated the Mr to be 370,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the pure enzyme revealed four bands with Mr corresponding to 60,000, 55,000, 37,000, and 17,000 in an apparent molar ratio of 3:3:1:1. The purified enzyme would bind to stripped membranes to reconstitute dicyclohexylcarbodiimide-sensitive ATPase activity. Phosphohydrolase activity, measured at 58 degrees C, was optimal at pH 8.5. In the presence of a 1 mM excess of Mg2+ over the concentration of ATP, the Km for ATP was 0.4 mM, and the Vmax was 6.7 mumol min-1 mg-1. Unlike the membrane-bound F1F0 complex, the F1-ATPase was relatively insensitive to the inhibitors dicyclohexylcarbodiimide and tributyltin chloride. Both the complex and the F1-ATPase were inhibited by quercetin, azide, 7-chloro-4-nitro-benz-2-oxa-1,3-diazole, and free magnesium, and both were stimulated by primary alcohols and sulfite. In whole cells, the F1F0-ATPase catalyzed the synthesis of ATP in response to a pH gradient.  相似文献   

10.
Mitochondrial F1-ATPase was purified from the mycelium of Phycomyces blakesleeanus NRRL 1555(-) and its kinetic characteristics were studied. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the enzyme reveals five bands (alpha, beta, gamma, delta, and epsilon) characteristic of the F1 portion with apparent molecular weights of 60,000, 53,000, 31,000, 25,000, and 21,000, respectively. The molecular weight of the native F1-ATPase from Phycomyces blakesleeanus was in agreement with the stoichiometry alpha 3 beta 3 gamma delta epsilon. The MgATP complex is the true substrate for ATPase activity which has a Km value of 0.15 mM. High concentrations of free ATP or free Mg2+ ions inhibit the ATPase activity. ADP appears to act as a negative allosteric effector with regard to MgATP hydrolysis, with the apparent Vmax remaining unchanged.  相似文献   

11.
B Norling  B Hamasur  E Glaser 《FEBS letters》1987,223(2):309-314
Cross-reconstitution of isolated potato mitochondrial F1-ATPase with F1-depleted beef heart and yeast submitochondrial particles is reported. Potato F1 binds to the heterologous membrane and confers oligomycin sensitivity on the ATPase activity of the reconstituted system. Binding of F1 is promoted by the presence of Mg2+ with the maximal stimulatory effect at 20 mM. Mg2+ increase the sensitivity to oligomycin of the reconstituted system consisting of potato F1 and yeast membranes, however, they do not influence oligomycin sensitivity of potato F1 and beef heart membranes.  相似文献   

12.
The structure of bovine F(1)-ATPase, crystallized in the presence of AMP-PNP and ADP, but in the absence of azide, has been determined at 1.9A resolution. This structure has been compared with the previously described structure of bovine F(1)-ATPase determined at 1.95A resolution with crystals grown under the same conditions but in the presence of azide. The two structures are extremely similar, but they differ in the nucleotides that are bound to the catalytic site in the beta(DP)-subunit. In the present structure, the nucleotide binding sites in the beta(DP)- and beta(TP)-subunits are both occupied by AMP-PNP, whereas in the earlier structure, the beta(TP) site was occupied by AMP-PNP and the beta(DP) site by ADP, where its binding is enhanced by a bound azide ion. Also, the conformation of the side chain of the catalytically important residue, alphaArg-373 differs in the beta(DP)- and beta(TP)-subunits. Thus, the structure with bound azide represents the ADP inhibited state of the enzyme, and the new structure represents a ground state intermediate in the active catalytic cycle of ATP hydrolysis.  相似文献   

13.
1. This paper is the first detailed report of the purification of a mitochondrial ATPase from an avian species. 2. The Gallus gallus liver mitochondrial F1-ATPase was purified by chloroform extraction and ion-exchange chromatography. 3. The enzyme shows the five alpha, beta, tau, delta, and epsilon subunits characteristic of mitochondrial F1-ATPases. 4. The Km for ATP is 1 mM and for Mg 0.5 mM with a specific activity of 25.2 mu moles of ATP hydrolyzed x min-1 x mg-1. 5. Unlike mammals enzymes the chicken mitochondrial ATPase shows maximal activity with ITP as substrate, and is strongly inhibited by Cu.  相似文献   

14.
15.
The enzyme complex F1-ATPase has been isolated from bovine heart mitochondria by gel filtration of the enzyme released by chloroform from sub-mitochondrial particles. The five individual subunits alpha, beta, gamma, delta and epsilon that comprise the complex have been purified from it, and their amino acid sequences determined almost entirely by direct protein sequence analysis. A single overlap in the gamma-subunit was obtained by DNA sequence analysis of a complementary DNA clone isolated from a bovine cDNA library using a mixture of 32 oligonucleotides as the hybridization probe. The alpha, beta, gamma, delta and epsilon subunits contain 509, 480, 272, 146 and 50 amino acids, respectively. Two half cystine residues are present in the alpha-subunit and one in each of the gamma- and epsilon-chains; they are absent from the beta- and delta-subunits. The stoichiometry of subunits in the complex is estimated to be alpha 3 beta 3 gamma 1 delta 1 epsilon 1 and the molecular weight of the complex is 371,135. Mild trypsinolysis of the F1-ATPase complex, which has little effect on the hydrolytic activity of the enzyme, releases peptides from the N-terminal regions of the alpha- and beta-chains only; the C-terminal regions are unaffected. Sequence analysis of the released peptides demonstrates that the N terminals of the alpha- and beta-chains are ragged. In 65% of alpha-chains, the terminus is pyrrolidone carboxylic acid; in the remainder this residue is absent and the chains commence at residue 2, i.e. lysine. In the beta-subunit a minority of chains (16%) have N-terminal glutamine, or its deamidation product, glutamic acid (6%), or the cyclized derivative, pyrrolidone carboxylic acid (5%). A further 28% commence at residue 2, alanine, and 45% at residue 3, serine. The delta-chains also are heterogeneous; in 50% of chains the N-terminal alanine residue is absent. The sequences of the alpha- and beta-chains show that they are weakly homologous, as they are in bacterial F1-ATPases. The sequence of the bovine delta-subunit of F1-ATPase shows that it is the counterpart of the bacterial epsilon-subunit. The bovine epsilon-subunit is not related to any known bacterial or chloroplast H+-ATPase subunit, nor to any other known sequence. The counterpart of the bacterial delta-subunit is bovine oligomycin sensitivity conferral protein, which helps to bind F1 to the inner mitochondrial membrane.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Summary The combined use of proteolytic digestion and lactoperoxidase catalyzed labelling with [125I] applied to membrane-bound or soluble pure F1-ATPase from Micrococcus lysodeikticus has allowed us to establish the topography of its , , and subunits within the protein molecule and with respect to the plane of the membrane.The subunit is most externally located to the membrane bilayer looking towards the cytoplasmic face, a position consistent with its proposed catalytic role. The and subunits lie in an intermediate layer between the subunits and the membrane, in which the subunit occupies a central position within the F1-ATPase molecule in contact with the subunit. The subunit appears to be tightly bound to the F0 component of the ATPase complex, probably buried in the membrane bilayer. A molecular arrangement of M. lysodeikticus ATPase is proposed that, taking into account the subunit stoichiometry 3 3 2 2 (MW 420 000), accommodates the role assigned to each subunit and most, if not all, the known properties of this bacterial energy-transducing protein.  相似文献   

17.
Assembly of F1-ATPase in isolated mitochondria   总被引:2,自引:0,他引:2  
The assembly of the proton-translocating ATPase complex was studied in isolated mitochondria by incubating yeast mitochondria with radiolabeled precursors of mitochondrial proteins which had been made in a cell-free protein synthesis system. Following such an incubation, the ATPase complex (F1F0) was isolated. Newly assembled F1-ATPase was detected by autoradiography of the isolated enzyme, only peptide subunits which had been made in vitro and imported into the isolated mitochondria could be radioactive. Incorporation of radiolabeled ATPase subunits into the enzyme does not occur in the presence of an uncoupler of oxidative phosphorylation or of a divalent metal chelator, nor does it occur in submitochondrial particles rather than intact mitochondria. Incorporation of labeled ATPase subunits into the enzyme can be completed by unlabeled subunits, provided the unlabeled proteins are added before the mitochondria are incubated with radioactive precursors. These findings suggest that F1-ATPase is assembled from a pool of subunits in mitochondria.  相似文献   

18.
19.
20.
The yeast mitochondrial ATPase has been genetically modified to include a His(6) Ni-affinity tag on the amino end of the mature beta-subunit. The modified beta-subunit is imported into the mitochondrion, properly processed to the mature form, and assembled into a mature and fully active ATP synthase. The F(1)-ATPase has been purified from submitochondrial particles after release from the membrane with chloroform, followed by Ni-chelate-affinity and gel filtration chromatography. The final enzyme is a homogeneous preparation with full activity and no apparent degradation products. This enzyme preparation has been used to obtain crystals that diffract to better than 2.8 A resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号