首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatitis C virus (HCV) is remarkable at disrupting human immunity to establish chronic infection. Upregulation of inhibitory signaling pathways (such as T cell Ig and mucin domain protein-3 [Tim-3]) and accumulation of regulatory T cells (Tregs) play pivotal roles in suppressing antiviral effector T cell (Teff) responses that are essential for viral clearance. Although the Tim-3 pathway has been shown to negatively regulate Teffs, its role in regulating Foxp3(+) Tregs is poorly explored. In this study, we investigated whether and how the Tim-3 pathway alters Foxp3(+) Treg development and function in patients with chronic HCV infection. We found that Tim-3 was upregulated, not only on IL-2-producing CD4(+)CD25(+)Foxp3(-) Teffs, but also on CD4(+)CD25(+)Foxp3(+) Tregs, which accumulate in the peripheral blood of chronically HCV-infected individuals when compared with healthy subjects. Tim-3 expression on Foxp3(+) Tregs positively correlated with expression of the proliferation marker Ki67 on Tregs, but it was inversely associated with proliferation of IL-2-producing Teffs. Moreover, Foxp3(+) Tregs were found to be more resistant to, and Foxp3(-) Teffs more sensitive to, TCR activation-induced cell apoptosis, which was reversible by blocking Tim-3 signaling. Consistent with its role in T cell proliferation and apoptosis, blockade of Tim-3 on CD4(+)CD25(+) T cells promoted expansion of Teffs more substantially than Tregs through improving STAT-5 signaling, thus correcting the imbalance of Foxp3(+) Tregs/Foxp3(-) Teffs that was induced by HCV infection. Taken together, the Tim-3 pathway appears to control Treg and Teff balance through altering cell proliferation and apoptosis during HCV infection.  相似文献   

2.
Activation of CD4(+)CD25(+)Foxp3(+) naturally occurring regulatory T cells (nTregs) resulting in suppression of lung allergic responses requires interaction of MHC class I on nTregs and CD8. In the absence of CD8 (CD8(-/-) recipients), transferred nTregs restored airway hyperresponsiveness, eosinophilic inflammation, and IL-13 levels following allergen exposure. Enhancement of lung allergic responses was accompanied by reduced expression of Foxp3 and increased expression of IL-13 in the transferred nTregs. In CD8(-/-) recipients pretreated with glucocorticoid-induced TNFR-related protein-ligand Ab, the transferred nTregs maintained high levels of Foxp3 and did not result in altered lung responses. Thus, the regulatory function of nTregs can be subverted by reducing the expression of Foxp3 and following signaling through glucocorticoid-induced TNFR-related protein are converted nTregs into IL-13-producing CD4(+) T cells mediating lung allergic responses.  相似文献   

3.
Wang F  He W  Zhou H  Yuan J  Wu K  Xu L  Chen ZK 《Cellular immunology》2007,250(1-2):68-74
CD8+ alloreactive T cells are the key mediators of accelerated rejection. Vigorous CD8+ alloreactive T cells responses against alloantigens, which is the main effector mechanism in acute allograft rejection, has been well described. But the molecular mechanisms to dampen activated CD8+ T cells are largely unknown. On the other hand, Tim-3 is a molecule expressed on terminally differentiated CD4+ Th1 cells. Engaging Tim-3 with its ligand galectin-9 causes an inhibitory signal, resulting in apoptosis of Th1 cells and negatively regulates Th1 type immunity. However, the question whether CD8+ T cells express surface molecular Tim-3 has not been fully elucidated. In this study, we have investigated which CD8+ subset express molecular Tim-3 by flow cytometric assay. In addition, cytotoxic assay was applied to analyze whether CD8+ alloreactive T cells were sensitive to galectin-9 induced apoptosis. Here, our results demonstrated that Tim-3 was expressed on activated CD8+ alloreactive T cells (CD8+CD44highCD62Llow), but not expressed on na?ve CD8+ T cells. Furthermore, alloreactive CD8+ cytotoxic T cells were sensitive to galectin-9 induced apoptosis both in vitro and vivo, resulting in attenuation of CD8+ alloreactive T cells mediated cytotoxicity and prolonged survival of skin graft.  相似文献   

4.
T cell Ig domain and mucin domain (TIM)-3 has previously been established as a central regulator of Th1 responses and immune tolerance. In this study, we examined its functions in allograft rejection in a murine model of vascularized cardiac transplantation. TIM-3 was constitutively expressed on dendritic cells and natural regulatory T cells (Tregs) but only detected on CD4(+)FoxP3(-) and CD8(+) T cells in acutely rejecting graft recipients. A blocking anti-TIM-3 mAb accelerated allograft rejection only in the presence of host CD4(+) T cells. Accelerated rejection was accompanied by increased frequencies of alloreactive IFN-γ-, IL-6-, and IL-17-producing splenocytes, enhanced CD8(+) cytotoxicity against alloantigen, increased alloantibody production, and a decline in peripheral and intragraft Treg/effector T cell ratio. Enhanced IL-6 production by CD4(+) T cells after TIM-3 blockade plays a central role in acceleration of rejection. Using an established alloreactivity TCR transgenic model, blockade of TIM-3 increased allospecific effector T cells, enhanced Th1 and Th17 polarization, and resulted in a decreased frequency of overall number of allospecific Tregs. The latter is due to inhibition in induction of adaptive Tregs rather than prevention of expansion of allospecific natural Tregs. In vitro, targeting TIM-3 did not inhibit nTreg-mediated suppression of Th1 alloreactive cells but increased IL-17 production by effector T cells. In summary, TIM-3 is a key regulatory molecule of alloimmunity through its ability to broadly modulate CD4(+) T cell differentiation, thus recalibrating the effector and regulatory arms of the alloimmune response.  相似文献   

5.
Tim-3, a member of the novel Tim (T cell immunoglobulin and mucin domain) family, has been reported to negatively regulate the immune responses against viral infection and had implications for autoimmune disease. However, the nature and role of Tim-3+ CD4 T cells in human tumors remain largely unknown. In the present study, we characterized Tim-3+ CD4 T cells in 100 specimens from human hepatocellular, cervical, colorectal and ovarian carcinoma patients. Compared with peripheral blood and nontumor-infiltrating lymphocytes, the lymphocytes isolated from the corresponding tumor tissues of hepatocellular, cervical, colorectal and ovarian carcinoma patients contained significantly greater proportion of Tim-3+ CD4 T cells. The majority of tumor-derived Tim-3+ CD4 T cells exhibited an impaired capacity to produce IFN-γ and IL-2, but expressed higher levels of CD25, Foxp3, CTLA-4 and GITR than their Tim-3 CD4 T cell counterparts. In contrast, most Tim-3+ CD4 T cells isolated from the paired nontumor tissues and peripheral blood did not express these molecules. Moreover, tumor-derived Tim-3+ CD4 T cells, but not tumor-derived Tim-3 CD4 T cells, significantly suppressed the proliferation of autologous CD8+ T cells in vitro. Notably, multi-color immunofluorescence and confocal microscopy demonstrated that Tim-3+Foxp3+CD4+ cells were preferentially distributed in the tumor nest rather than the peritumoral stroma of hepatocellular carcinoma. Together, our data indicate that Tim-3-expressing CD4 T cells in human tumors could represent the functional regulatory T cells which contribute to the formation of the immune-suppressive tumor micromilieu.  相似文献   

6.
Naturally occurring CD4(+)CD25(+)Foxp3(+) T regulatory cells (nTregs) regulate lung allergic responses through production of IL-10 and TGF-β. nTregs from CD8(-/-) mice failed to suppress lung allergic responses and were characterized by reduced levels of Foxp3, IL-10, and TGF-β, and high levels of IL-6. Administration of anti-IL-6 or anti-IL-6R to wild-type recipients prior to transfer of CD8(-/-) nTregs restored suppression. nTregs from IL-6(-/-) mice were suppressive, but lost this capability if incubated with IL-6 prior to transfer. The importance of CD8 in regulating the production of IL-6 in nTregs was demonstrated by the loss of suppression and increases in IL-6 following transfer of nTregs from wild-type donors depleted of CD8(+) cells. Transfer of nTregs from CD8(-/-) donors reconstituted with CD8(+) T cells was suppressive, and accordingly, IL-6 levels were reduced. These data identify the critical role of CD8-T regulatory cell interactions in regulating the suppressive phenotype of nTregs through control of IL-6 production.  相似文献   

7.
Although T cells infiltrate many types of murine and human neoplasms, in many instances tumor-specific cytotoxicity is not observed. Strategies to stimulate CTL-mediated antitumor immunity have included in vitro stimulation and/or genetic engineering of T cells, followed by adoptive transfer into tumor-bearing hosts. In this model of B cell lymphoma in SJL/J mice, we used Tim-3(+) T-bet(+) Th1 cells to facilitate the development of tumor-specific CTL. Tumor-specific Th1 cell lines were polarized with IL-12 during in vitro stimulation and long term maintenance. As few as 5 million Tim-3(+) T-bet(+) Th1 cells enabled recipients to resist growth of malignant transplantable cells. In addition, similar numbers of Th1 cells injected into 2- to 3-mo-old mice inhibited development of the spontaneous primary lymphomas, which normally arise in 90% of aging mice. CFSE(+) Th1 cells colocalized with injected tumor cells in vivo and formed conjugates with the tumor cells within follicles, whereas in nontumor-challenged recipients the CFSE(+) Th1 cells localized only within the T cell zones of the spleen. These results provide evidence that adoptive immunotherapy with Tim-3(+) T-bet(+) tumor-specific Th1 cells can be used to induce host cytotoxic responses that inhibit the development and growth of neoplastic cells.  相似文献   

8.
T cell immunoglobulin and mucin domain (Tim)-3 is expressed on activated CD4+ and CD8+ T cells. Identification of galectin-9 as a ligand for Tim-3 has now firmly established the Tim-3/galectin-9 pathway, which results in apoptosis of effector CD4+ and CD8+ T cells. Moreover, Th17 cells are a recently discovered CD4+ effector T cell, which are important in antimicrobial immunity. Whether the Tim-3/galectin-9 pathway affects Th17 immunity has not been elucidated. Here, we demonstrated expression of Tim-3 on Th17 cells by flow cytometry. Th17-skewed cells were sensitive to galectin-9-induced apoptosis. In vitro administration of galectin-9 decreased stimulated Th17 cells and inhibited production of IL-17. Interestingly, Klebsiella pneumoniae (K. pneumoniae) infection led to enhanced IL-17 levels. Recombinant galectin-9 significantly decreased IL-17 in vivo, which resulted in reduced bacterial clearance and high mortality. These observations suggest that the Tim-3/galectin-9 pathway plays an important role in termination of Th17-immune responses, and could be a therapeutic target for inflammatory diseases.  相似文献   

9.
The TIM gene family regulates autoimmune and allergic diseases   总被引:17,自引:0,他引:17  
The recently identified TIM gene family encodes cell-surface receptors that are involved in the regulation of Th1- and Th2-cell-mediated immunity. Tim-3 protein is specifically expressed on Th1 cells and negatively regulates Th1 responses, whereas Tim-2 is preferentially expressed in Th2 cells. Tim-1, previously identified as the hepatitis A virus receptor, co-stimulates T-cell expansion and cytokine production. Tim-4, which is preferentially expressed on mature dendritic cells, is the ligand for Tim-1. In mouse models of asthma and multiple sclerosis, affecting the function of Tim molecules altered disease phenotype. Because TIM molecules are differentially expressed on effector Th1 and Th2 cells, further understanding of the mechanisms by which they regulate Th1- and Th2-effector functions will probably provide opportunities for the therapeutic modulation of immune-mediated diseases.  相似文献   

10.
T-cell immune responses modulated by T-cell immunoglobulin and mucin domain-containing molecule 3 (Tim-3) during Mycobacterium tuberculosis (Mtb) infection in humans remain poorly understood. Here, we found that active TB patients exhibited increases in numbers of Tim-3-expressing CD4+ and CD8+ T cells, which preferentially displayed polarized effector memory phenotypes. Consistent with effector phenotypes, Tim-3+CD4+ and Tim-3+CD8+ T-cell subsets showed greater effector functions for producing Th1/Th22 cytokines and CTL effector molecules than Tim-3 counterparts, and Tim-3-expressing T cells more apparently limited intracellular Mtb replication in macrophages. The increased effector functions for Tim-3-expressing T cells consisted with cellular activation signaling as Tim-3+CD4+ and Tim-3+CD8+ T-cell subsets expressed much higher levels of phosphorylated signaling molecules p38, stat3, stat5, and Erk1/2 than Tim-3- controls. Mechanistic experiments showed that siRNA silencing of Tim-3 or soluble Tim-3 treatment interfering with membrane Tim-3-ligand interaction reduced de novo production of IFN-γ and TNF-α by Tim-3-expressing T cells. Furthermore, stimulation of Tim-3 signaling pathways by antibody cross-linking of membrane Tim-3 augmented effector function of IFN-γ production by CD4+ and CD8+ T cells, suggesting that Tim-3 signaling helped to drive stronger effector functions in active TB patients. This study therefore uncovered a previously unknown mechanism for T-cell immune responses regulated by Tim-3, and findings may have implications for potential immune intervention in TB.  相似文献   

11.
Mice infected with Schistosoma mansoni develop polarized Th2 responses in which Th1 responses are prevented by IL-10-mediated suppression of IL-12 production. We show that dendritic cells from infected mice are primed to make IL-12 in response to CD40 ligation, and that IL-10 acts by inhibiting this process. In infected mice, two subpopulations of CD4(+) cells, separable by their expression of CD25, make IL-10. CD25(+)CD4(+) cells expressed forkhead box P3, inhibited proliferation of CD4(+) T cells, and made IL-10, but little IL-5. In contrast, CD25(-)CD4(+) cells failed to express forkhead box P3 or to inhibit proliferation and accounted for all the IL-5, IL-6, and IL-13 produced by unseparated splenic populations. Thus, CD25(+) and CD25(-) subpopulations could be characterized as regulatory T cells (Treg cells) and Th2 cells, respectively. Consistent with their ability to make IL-10, both CD25(+) and CD25(-)CD4(+) T cells from infected mice were able, when stimulated with egg Ag, to suppress IL-12 production by CD40 agonist-stimulated dendritic cells. Additionally, in adoptive transfer experiments, both CD4(+) subpopulations of cells were able to partially inhibit the development of Th1 responses in egg-immunized IL-10(-/-) mice. The relationship of Treg cells in infected mice to natural Treg cells was strongly suggested by the ability of CD25(+)CD4(+) cells from naive mice to inhibit Th1 response development when transferred into egg-immunized or infected IL-10(-/-) mice. The data suggest that natural Treg cells and, to a lesser extent, Th2 cells play roles in suppressing Th1 responses and ensuring Th2 polarization during schistosomiasis.  相似文献   

12.
The aim of the study is to elucidate the profiles of T-cell immunoglobulin and mucin domain-3 (Tim-3) and its ligand Galecin-9 in acute pulmonary rejection by using a rat model of lung transplantation. Left lung grafts retrieved from Lewis or Fisher 344 rats were orthotopically transplanted into Lewis recipients without any immunosuppressions; the grafts were harvested at day 3, 7 or 10 after transplantation. The grade of acute rejection was histopathologically evaluated. Tim-3, Galectin-9, immune antigen and related cytokines expression were assessed with immunological techniques and real-time polymerase chain reaction (RT-PCR), respectively. Then, our results showed that Tim-3 and its ligand Galectin-9 were markedly up-regulated at protein and mRNA levels in allografts compared with syngrafts. Meanwhile, the decreased CD4/CD8 ratio was associated with acute rejection occurring and Tim-3 expression on CD4+ and CD8+ T cells in allografts was increased. Therefore, our study firstly described that enhanced Tim-3 and its ligand Galectin-9 in allografts might play an important role in the pathogenesis of rat lung transplant rejection, implying new valuable markers for detecting acute allograft rejection.  相似文献   

13.
After HSV-1 infection, CD8(+) T cells accumulate in the trigeminal ganglion (TG) and participate in the maintenance of latency. However, the mechanisms underlying intermittent virus reactivation are poorly understood. In this study, we demonstrate the role of an inhibitory interaction between T cell Ig and mucin domain-containing molecule 3 (Tim-3)-expressing CD8(+) T cells and galectin 9 (Gal-9) that could influence HSV-1 latency and reactivation. Accordingly, we show that most K(b)-gB tetramer-specific CD8(+) T cells in the TG of HSV-1-infected mice express Tim-3, a molecule that delivers negative signals to CD8(+) T cells upon engagement of its ligand Gal-9. Gal-9 was also upregulated in the TG when replicating virus was present as well during latency. This could set the stage for Gal-9/Tim-3 interaction, and this inhibitory interaction was responsible for reduced CD8(+) T cell effector function in wild-type mice. Additionally, TG cell cultures exposed to recombinant Gal-9 in the latent phase caused apoptosis of most CD8(+) T cells. Furthermore, Gal-9 knockout TG cultures showed delayed and reduced viral reactivation as compared with wild-type cultures, demonstrating the greater efficiency of CD8(+) T cells to inhibit virus reactivation in the absence of Gal-9. Moreover, the addition of recombinant Gal-9 to ex vivo TG cultures induced enhanced viral reactivation compared with untreated controls. Our results demonstrate that the host homeostatic mechanism mediated by Gal-9/Tim-3 interaction on CD8(+) T cells can influence the outcome of HSV-1 latent infection, and manipulating Gal-9 signals might represent therapeutic means to inhibit HSV-1 reactivation from latency.  相似文献   

14.
IL-33 administration is associated with facilitation of Th2 responses and cardioprotective properties in rodent models. However, in heart transplantation, the mechanism by which IL-33, signaling through ST2L (the membrane-bound form of ST2), promotes transplant survival is unclear. We report that IL-33 administration, while facilitating Th2 responses, also increases immunoregulatory myeloid cells and CD4(+) Foxp3(+) regulatory T cells (Tregs) in mice. IL-33 expands functional myeloid-derived suppressor cells, CD11b(+) cells that exhibit intermediate (int) levels of Gr-1 and potent T cell suppressive function. Furthermore, IL-33 administration causes an St2-dependent expansion of suppressive CD4(+) Foxp3(+) Tregs, including an ST2L(+) population. IL-33 monotherapy after fully allogeneic mouse heart transplantation resulted in significant graft prolongation associated with increased Th2-type responses and decreased systemic CD8(+) IFN-γ(+) cells. Also, despite reducing overall CD3(+) cell infiltration of the graft, IL-33 administration markedly increased intragraft Foxp3(+) cells. Whereas control graft recipients displayed increases in systemic CD11b(+) Gr-1(hi) cells, IL-33-treated recipients exhibited increased CD11b(+) Gr-1(int) cells. Enhanced ST2 expression was observed in the myocardium and endothelium of rejecting allografts, however the therapeutic effect of IL-33 required recipient St2 expression and was dependent on Tregs. These findings reveal a new immunoregulatory property of IL-33. Specifically, in addition to supporting Th2 responses, IL-33 facilitates regulatory cells, particularly functional CD4(+) Foxp3(+) Tregs that underlie IL-33-mediated cardiac allograft survival.  相似文献   

15.
Tim-3, a member of the T cell Ig mucin (TIM) family regulates effector Th1 responses. We examined Tim-3 and its ligand expression as well as the effects of anti-Tim-3 mAb treatment in a murine model of acute graft-vs-host disease (aGVHD). In mice with aGVHD, Tim-3 expression was markedly up-regulated on splenic and hepatic CD4+ and CD8+ T cells, dendritic cells (DCs), and macrophages, and this was especially dramatic in hepatic CD8+ T cells. Both donor- and host-derived CD8+ T cells induced similar levels of Tim-3. Tim-3 ligand expression was also up-regulated in splenic T cells, DCs, and macrophages, but not in the hepatic lymphocytes. The administration of anti-Tim-3 mAbs accelerated aGVHD, as demonstrated by body weight loss, reduction in total splenocyte number, and infiltration of lymphocytes in the liver. IFN-gamma expression by splenic and hepatic CD4+ and CD8+ T cells was significantly augmented by anti-Tim-3 mAb treatment. In addition, the cytotoxicity against host alloantigen by donor CD8+ T cells was enhanced. These results demonstrate that the anti-Tim-3 treatment in aGVHD augmented the activation of effector T cells expressing IFN-gamma or exerting cytotoxicity. Our results suggest that Tim-3 may play a crucial role in the regulation of CD8+ T cells responsible for the maintenance of hepatic homeostasis and tolerance.  相似文献   

16.
17.
The T cell immunoglobulin mucin 3 (Tim-3) receptor is highly expressed on HIV-1-specific T cells, rendering them partially "exhausted" and unable to contribute to the effective immune mediated control of viral replication. To elucidate novel mechanisms contributing to the HTLV-1 neurological complex and its classic neurological presentation called HAM/TSP (HTLV-1 associated myelopathy/tropical spastic paraparesis), we investigated the expression of the Tim-3 receptor on CD8(+) T cells from a cohort of HTLV-1 seropositive asymptomatic and symptomatic patients. Patients diagnosed with HAM/TSP down-regulated Tim-3 expression on both CD8(+) and CD4(+) T cells compared to asymptomatic patients and HTLV-1 seronegative controls. HTLV-1 Tax-specific, HLA-A*02 restricted CD8(+) T cells among HAM/TSP individuals expressed markedly lower levels of Tim-3. We observed Tax expressing cells in both Tim-3(+) and Tim-3(-) fractions. Taken together, these data indicate that there is a systematic downregulation of Tim-3 levels on T cells in HTLV-1 infection, sustaining a profoundly highly active population of potentially pathogenic T cells that may allow for the development of HTLV-1 complications.  相似文献   

18.
Prolonged immune activation drives the upregulation of multiple checkpoint receptors on the surface of virus-specific T cells, inducing their exhaustion. Reversing HIV-1-induced T cell exhaustion is imperative for efficient virus clearance; however, viral mediators of checkpoint receptor upregulation remain largely unknown. The enrichment of checkpoint receptors on T cells upon HIV-1 infection severely constrains the generation of an efficient immune response. Herein, we examined the role of HIV-1 Nef in mediating the upregulation of checkpoint receptors on peripheral blood mononuclear cells. We demonstrate that the HIV-1 accessory protein Nef upregulates cell surface levels of the checkpoint receptor T-cell immunoglobulin mucin domain-3 (Tim-3) and that this is dependent on Nef''s dileucine motif LL164/165. Furthermore, we used a bimolecular fluorescence complementation assay to demonstrate that Nef and Tim-3 form a complex within cells that is abrogated upon mutation of the Nef dileucine motif. We also provide evidence that Nef moderately promotes Tim-3 shedding from the cell surface in a dileucine motif–dependent manner. Treating HIV-1-infected CD4+ T cells with a matrix metalloprotease inhibitor enhanced cell surface Tim-3 levels and reduced Tim-3 shedding. Finally, Tim-3-expressing CD4+ T cells displayed a higher propensity to release the proinflammatory cytokine interferon-gamma. Collectively, our findings uncover a novel mechanism by which HIV-1 directly increases the levels of a checkpoint receptor on the surface of infected CD4+ T cells.  相似文献   

19.
The family of T-cell immunoglobulin domain and mucin domain (TIM) proteins is identified to be expressed on T cells. A member of Tim family, TIM-1, is considered as a membrane protein that is associated with the development of Th2 biased immune responses and may be selectively expressed on Th2 cells. In the present study, we analyzed the association of allele and genotype frequencies between asthma or atopy patients and the controls without asthma and atopy using large sample size at 5383_5397del and 5509_5511delCAA variations of Tim-1 gene. Although the allele frequency of 5509_5511delCAA variation in asthma was not significantly different (P=0.085), the genotype of 5509_5511delCAA variation in asthma was significantly associated with the susceptibility to asthma (P=0.037). The genotype and allele frequencies of 5383_5397del variation in atopic dermatitis were significantly different from those in the non-asthmatic and non-atopic controls (P=0.005 and P=0.002, respectively). Our results strongly suggest that the 5383_5397del variation site of Tim-1 exon 4 might be associated with atopic dermatitis susceptibility.  相似文献   

20.
Cytotoxic CD8(+) T cells (CTLs) contain virus infections through the release of granules containing both perforin and granzymes. T cell 'exhaustion' is a hallmark of chronic persistent viral infections including HIV. The inhibitory regulatory molecule, T cell Immunoglobulin and Mucin domain containing 3 (Tim-3) is induced on HIV-specific T cells in chronic progressive infection. These Tim-3 expressing T cells are dysfunctional in terms of their capacities to proliferate or to produce cytokines. In this study, we evaluated the effect of Tim-3 expression on the cytotoxic capabilities of CD8(+) T cells in the context of HIV infection. We investigated the cytotoxic capacity of Tim-3 expressing T cells by examining 1) the ability of Tim-3(+) CD8(+) T cells to make perforin and 2) the direct ability of Tim-3(+) CD8(+) T cells to kill autologous HIV infected CD4(+) target cells. Surprisingly, Tim-3(+) CD8(+) T cells maintain higher levels of perforin, which was mainly in a granule-associated (stored) conformation, as well as express high levels of T-bet. However, these cells were also defective in their ability to degranulate. Blocking the Tim-3 signalling pathway enhanced the cytotoxic capabilities of HIV specific CD8(+) T cells from chronic progressors by increasing; a) their degranulation capacity, b) their ability to release perforin, c) their ability to target activated granzyme B to HIV antigen expressing CD4(+) T cells and d) their ability to suppress HIV infection of CD4(+) T cells. In this latter effect, blocking the Tim-3 pathway enhances the cytotoxcity of CD8(+) T cells from chronic progressors to the level very close to that of T cells from viral controllers. Thus, the Tim-3 receptor, in addition to acting as a terminator for cytokine producing and proliferative functions of CTLs, can also down-regulate the CD8(+) T cell cytotoxic function through inhibition of degranulation and perforin and granzyme secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号