首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The Oca family is a novel class of autotransporter-adhesins with highest structural similarity in their C-terminal transmembrane region, which supposedly builds a beta-barrel pore in the outer membrane (OM). The prototype of the Oca family is YadA, an adhesin of Yersinia enterocolitica and Yersinia pseudotuberculosis. YadA forms a homotrimeric lollipop-like structure on the bacterial surface. The C-terminal regions of three YadA monomers form a barrel in the OM and translocate the trimeric N-terminal passenger domain, consisting of stalk, neck, and head region to the exterior. To elucidate the structural and functional role of the C-terminal translocator domain (TLD) and to assess its promiscuous capability with respect to transport of related passenger domains, we constructed chimeric YadA proteins, which consist of the N-terminal YadA passenger domain and C-terminal TLDs of Oca family members UspA1 (Moraxella catarrhalis), EibA (Escherichia coli), and Hia (Haemophilus influenzae). These constructs were expressed in Y. enterocolitica and compared for OM localization, surface exposure, oligomerization, adhesion properties, serum resistance, and mouse virulence. We demonstrate that all chimeric YadA proteins translocated the YadA passenger domain across the OM. Y. enterocolitica strains producing YadA chimeras or wild-type YadA showed comparable binding to collagen and epithelial cells. However, strains producing YadA chimeras were attenuated in serum resistance and mouse virulence. These results demonstrate for the first time that TLDs of Oca proteins of different origin are efficient translocators of the YadA passenger domain and that the cognate TLD of YadA is essential for bacterial survival in human serum and mouse virulence.  相似文献   

5.
Many pathogens are equipped with factors providing resistance against the bactericidal action of complement. Yersinia enterocolitica, a Gram-negative enteric pathogen with invasive properties, efficiently resists the deleterious action of human complement. The major Y. enterocolitica serum resistance determinants include outer membrane proteins YadA and Ail. Lipopolysaccharide (LPS) O-antigen (O-ag) and outer core (OC) do not contribute directly to complement resistance. The aim of this study was to analyze a possible mechanism whereby Y. enterocolitica could inhibit the antibody-mediated classical pathway of complement activation. We show that Y. enterocolitica serotypes O:3, O:8, and O:9 bind C4b-binding protein (C4bp), an inhibitor of both the classical and lectin pathways of complement. To identify the C4bp receptors on Y. enterocolitica serotype O:3 surface, a set of mutants expressing YadA, Ail, O-ag, and OC in different combinations was tested for the ability to bind C4bp. The studies showed that both YadA and Ail acted as C4bp receptors. Ail-mediated C4bp binding, however, was blocked by the O-ag and OC, and could be observed only with mutants lacking these LPS structures. C4bp bound to Y. enterocolitica was functionally active and participated in the factor I-mediated degradation of C4b. These findings show that Y. enterocolitica uses two proteins, YadA and Ail, to bind C4bp. Binding of C4bp could help Y. enterocolitica to evade complement-mediated clearance in the human host.  相似文献   

6.
7.
Yersinia enterocolitica cross the intestinal epithelium via translocation through M cells, which are located in the follicle-associated epithelium (FAE) of Peyer's patches (PP). To investigate the molecular basis of this process, studies were performed using a recently developed in vitro model, in which the enterocyte-like cell line Caco-2 and PP lymphocytes are co-cultured in order to establish FAE-like structures including M cells. Here, we demonstrate that Y. enterocolitica does not adhere significantly to the apical membrane of differentiated enterocyte-like Caco-2 cells that express binding sites for Ulex europaeus agglutinin (UEA)-1. In contrast, Y. enterocolitica adhered to, and was internalized by, cells that lacked UEA-1 binding sites and displayed a disorganized brush border. These cells were considered to be converted to M-like cells. Further analysis revealed that part of these cells expressed β1 integrins at their apical surface and, as revealed by comparison of wild-type and mutant strains, interacted with invasin of Y. enterocolitica . Consistently, anti-β1 integrin antibodies significantly inhibited internalization of inv -expressing yersiniae. Experiments with Yersinia mutant strains deficient in YadA or Yop secretion revealed that these virulence factors play a minor role in this process. After internalization, yersiniae were transported within LAMP-1-negative vacuoles to, and released at, the basal surface. Internalization and transport of yersiniae was inhibited by cytochalasin D, suggesting that F-actin assembly is required for this process. These results provide direct evidence that expression of β1 integrins at the apical surface of M cells enables interaction with the invasin of Y. enterocolitica , and thereby initiates internalization and translocation of bacteria.  相似文献   

8.
ABSTRACT: BACKGROUND: Yersinia enterocolitica is a gastrointestinal foodborne pathogen found worldwide and which especially affects infants and young children. While different bioserotypes have been associated with varying pathogenicity, research on Y. enterocolitica is mainly conducted on the highly virulent mouse-lethal strains of biotype 1B and serotype O:8. We demonstrate here that two Y. enterocolitica bioserotype 1B/O:8 strains, 8081 and WA-314, display different virulence and fitness properties in a mouse model. In vivo co-infection experiments revealed that strain WA-314 overcomes strain 8081 in the colonization of spleen and liver. To trace the reasons of this incongruity, we present here the first high-quality sequence of the whole genome of strain WA-314 and compare it to the published genome of strain 8081. RESULTS: Regions previously accepted as unique to strain 8081, like the YAPI and YGI-3 genomic islands, are absent from strain WA-314, confirming their strain-specificity. On the other hand, some fitness- and bacterial competition-associated features, such as a putative colicin cluster and a xenobiotic-acyltransferase-encoding gene, are unique to strain WA-314. Additional acquisitions of strain WA-314 are seven prophage-like regions. One of these prophages, the 28-kb P4-like prophage YWA-4, encodes a PilV-like protein that may be used for adhesion to and invasion of the intestinal cells. Furthermore, a putative autotransporter and two type 1 fimbrial proteins of strain WA-314 show a sequence similarity <50% with the orthologous proteins in strain 8081. The dissimilar sequences of these proteins indicate possible different functions or interaction modes, reflecting the specific adhesion properties of Y. enterocolitica strains 8081 and WA-314 and thus the different efficiency of host colonization. Further important differences were found in two pYV plasmid-encoded virulence factors, YopM and YscP. The impact of these differences on virulence is discussed. CONCLUSIONS: Our study emphasizes that the virulence of pathogens can be increased, by acquiring new genes and/or improving the function of essential virulence proteins, resulting in permanently hyper-virulent strains. This work also highlights the importance of addressing genetic and phenotypic variations among closely related bacterial strains, even those belonging to the same bioserotype.  相似文献   

9.
Phagocytosis of Yersinia pseudotuberculosis by macrophages is initiated by interactions between host cell integrin receptors and the bacterial adhesins, invasin and YadA. Two non-receptor protein tyrosine kinases, FAK and Pyk2, have been implicated in this process. In this study, we investigated the mechanisms of activation and functional requirements for these kinases during phagocytosis. A panel of Yersinia strains that differentially express invasin and YadA were used to infect cells in which FAK and/or Pyk2 expression was reduced by RNA interference. Bacterial strains that simultaneously express invasin and YadA activated FAK and Pyk2 signalling pathways that perform non-redundant functions required for Yersinia internalization. In contrast, FAK activation was found to be sufficient for phagocytosis of bacteria expressing invasin alone, and Pyk2 activation was sufficient when YadA was expressed in the absence of invasin. Based on these data, we suggest that the activation states of FAK and Pyk2, as well as the subsequent signalling events that lead to phagocytosis, are differentially regulated through the unique mechanisms of integrin engagement utilized by invasin and YadA. These findings lend insight into the molecular events that control bacterial phagocytosis as well as other integrin-based processes such as cell adhesion and migration.  相似文献   

10.
11.
Epithelial cells express genes whose products signal the presence of pathogenic microorganisms to the immune system. Pathogenicity factors of enteric bacteria modulate host cell gene expression. Using microarray technology we have profiled epithelial cell gene expression upon interaction with Yersinia enterocolitica. Yersinia enterocolitica wild-type and isogenic mutant strains were used to identify host genes modulated by invasin protein (Inv), which is involved in enteroinvasion, and Yersinia outer protein P (YopP) which inhibits innate immune responses. Among 22 283 probesets (14,239 unique genes), we found 193 probesets (165 genes) to be regulated by Yersinia infection. The majority of these genes were induced by Inv, whose recognition leads to expression of NF-kappa B-regulated factors such as cytokines and adhesion molecules. Yersinia virulence plasmid (pYV)-encoded factors counter regulated Inv-induced gene expression. Thus, YopP repressed Inv-induced NF-kappa B regulated genes at 2 h post infection whereas other pYV-encoded factors repressed host cell genes at 4 and 8 h post infection. Chromosomally encoded factors of Yersinia, other than Inv, induced expression of genes known to be induced by TGF-beta receptor signalling. These genes were also repressed by pYV-encoded factors. Only a few host genes were exclusively induced by pYV-encoded factors. We hypothesize that some of these genes may contribute to pYV-mediated silencing of host cells. In conclusion, the data demonstrates that epithelial cells express a limited number of genes upon interaction with enteric Yersinia. Both Inv and YopP appear to modulate gene expression in order to subvert epithelial cell functions involved in innate immunity.  相似文献   

12.
13.
14.
Beta1 integrins are anchored on the basal membrane of enterocytes, but little is known about their localization in M cells, which are the main entry route into the intestinal mucosa for many bacterial pathogens. In particular, it has been suggested that adhesion of enteropathogenic Yersinia to M cells is mediated by interaction of the bacterial protein invasin and apical beta1 integrins. Using a novel in vitro model of M cells, we demonstrate an augmented apical and basolateral targeting of beta1 integrins in M cells associated with increased total alpha chain synthesis. The alpha3 and alpha6 subunits were targeted to the basal pole, but alpha2 subunit was targeted at both poles. No other alpha subunit was found associated with apical beta1 integrins on M cells. Interestingly, Y. enterocolitica still adhered to the apical surface of M cells, despite the fact that alpha2beta1 is not a receptor for invasin. We therefore studied the adhesive properties of invasin-mutant Y. enterocolitica and invasin-expressing Escherichia coli on the apical surface of M cells. We show that it is not invasin, but the product of an as yet unidentified bacterial chromosomal gene, that is involved in the adhesion of Y. enterocolitica to the apical membrane of M cells.  相似文献   

15.
16.
Temperature has a pleiotropic effect on Yersinia enterocolitica gene expression. Temperature-dependent phenotypes include the switching between two type III protein secretion systems, flagellum biosynthesis (相似文献   

17.
Yersinia pseudotuberculosis is a pathogenic enteric bacteria that evades host cellular immune response and resides extracellularly in vivo. Nevertheless, an important contribution of T cells to defense against Yersinia has been previously established. In this study we demonstrate that Lewis rats infected with virulent strains of Y. pseudotuberculosis, mount a Yersinia-specific, RT1-A-restricted, CD8+ T cell-mediated, cytotoxic response. Sensitization of lymphoblast target cells for cytolysis by Yersinia-specific CTLs required their incubation with live Yersinia and was independent of endocytosis. Although fully virulent Yersinia did not invade those cells, they attached to their surface. In contrast, invasin-deficient strain failed to bind to blast targets or to sensitize them for cytolysis. Furthermore, an intact virulence plasmid was an absolute requirement for Yersinia to sensitize blast targets for cytolysis. Using a series of Y. pseudotuberculosis mutants selectively deficient in virulence plasmid-encoded proteins, we found no evidence for a specific role played by YadA, YopH, YpkA, or YopJ in the sensitization process of blast targets. In contrast, mutations suppressing YopB, YopD, or YopE expression abolished the capacity of Yersinia to sensitize blast targets. These results are consistent with a model in which extracellular Yersinia bound to lymphoblast targets via invasin translocate inside eukaryotic cytosol YopE, which is presented in a class I-restricted fashion to CD8+ cytotoxic T cells. This system could represent a more general mechanism by which bacteria harboring a host cell contact-dependent or type III secretion apparatus trigger a class I-restricted CD8+ T cell response.  相似文献   

18.
The OmpR regulator positively influences flagella synthesis and negatively regulates invasin expression in Yersinia enterocolitica. To determine the physiological consequences of this inverse regulation, we analyzed the effect of the ompR mutation on the ability of Y. enterocolitica Ye9 (serotype O9, biotype 2) to adhere to and invade human epithelial HEp-2 cells and to form biofilms. Cell culture assays with ompR, flhDC and inv mutant strains, which vary in their motility and invasin expression, confirmed the important contribution of flagella to the adherent-invasive abilities of Y. enterocolitica Ye9. However, the loss of motility in the ompR strain was apparently not responsible for its low adhesion ability. When the nonmotile phenotype of the ompR mutant was artificially eliminated, an elevated level of invasion, exceeding that of the wild-type strain, was observed. Confocal laser microscopy demonstrated a decrease in the biofilm formation ability of the ompR strain that was only partially correlated with its loss of motility. These data provide evidence that OmpR promotes biofilm formation in this particular strain of Y. enterocolitica, although additional OmpR-dependent factors are also required. In addition, our findings suggest that OmpR-dependent regulation of biofilm formation could be an additional aspect of OmpR regulatory function.  相似文献   

19.
Abstract Yersinia enterocolitica and Y. pseudotuberculosis are enteropathogenic for humans. Essential virulence functions of these pathogens are determined by a 40-mDa plasmid. Plasmid-bearing Y. pseudotuberculosis strains and Y. enterocolitica strains of serotypes 0 : 8, 0 : 13, 0 : 20 and 0 : 40 are lethal for mice. In contrast, human pathogenic Y. enterocolitica strains of serotype 0 : 3, 0 : 9 and 0 : 5.27 are not mouse-lethal. Using a sensitive siderophore-indicator CAS-agar, we were able to detect siderophore production in all mouse-lethal Y. enterocolitica and Y. pseudotuberculosis strains mentioned above. By Tn5-transposon insertions into the chromosome of a serotype 0 : 8 strain we obtained two siderophore-deficient mutants. Introduction of the virulence plasmid did not render these mutants mouse-lethal, indicating that siderophore production is an essential virulence factor. The human nonpathogenic, aerobactin-producing strains of Y. intermedia, Y. kristensenii and Y. frederiksenii remained avirulent for mice after receiving the virulence plasmid of Y. enterocolitica . Obviously the siderophore aerobactin does not contribute to virulence in the genus Yersinia .  相似文献   

20.
An essential virulence attribute for Yersinia enterocolitica and Yersinia pseudotuberculosis is the ability to invade the intestinal epithelium of mammals. The chromosomal invasin gene (inv) has been cloned from both of these Yersinia species, and the Y. pseudotuberculosis invasin has been well characterized (R. R. Isberg, D. L. Voorhis, and S. Falkow, Cell 50:769-778, 1987). Here we constructed TnphoA translational fusions to the Y. enterocolitica inv gene to identify, characterize, and localize the inv protein product in Escherichia coli. The cloned Y. enterocolitica inv locus encoded a unique protein of ca. 92 kilodaltons when expressed in minicells. A protein of comparable size was detected in immunoblots by using monoclonal antibodies directed against the Y. pseudotuberculosis invasin. This protein, which we also refer to as invasin, promoted both attachment to and invasion of cultured epithelial cells. These two functions were not genetically separable by insertional mutagenesis. We determined that the Y. enterocolitica invasin was localized on the outer membrane and that it was exposed on the bacterial cell surface, which may have implications for how invasin functions to mediate invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号