首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immobilization of lipase onto micron-size magnetic beads   总被引:5,自引:0,他引:5  
A novel and economical magnetic poly(methacrylate-divinylbenzene) microsphere (less than 8 microm in diameter) was synthesized by the modified suspension polymerization of methacrylate and cross-linker divinylbenzene in the presence of magnetic fluid. Then, surface aminolysis was employed to obtain a high content of surface amino groups (0.40-0.55 mmolg(-1) supports). The morphology and properties of these magnetic supports were characterized with scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and a vibrating sample magnetometer. These magnetic supports exhibited superparamagnetism with a high specific saturation magnetization (sigma(s)) of 14.6 emicrog(-1). Candida cylindracea lipase was covalently immobilized on the amino-functionalized magnetic supports with the activity recovery up to 72.4% and enzyme loading of 34.0 mgg(-1) support, remarkably higher than the previous studies. The factors involved in the activity recovery and enzymatic properties of the immobilized lipase prepared were studied in comparison with free lipase, for which olive oil was chosen as the substrate. The results show that the immobilized lipase has good stability and reusability after recovery by magnetic separation within 20s.  相似文献   

2.
BACKGROUND: Magnetic nanoparticles have been significantly used for coupling with biomolecules, due to their unique properties. METHODS: Magnetic nanoparticles were synthesized by thermal co-precipitation of ferric and ferrous chloride using two different base solutions. Glucose oxidase was bound to the particles by direct attachment via carbodiimide activation or by thiophene acetylation of magnetic nanoparticles. Transmission electron microscopy was used to characterize the size and structure of the particles while the binding of glucose oxidase to the particles was confirmed using Fourier transform infrared spectroscopy. RESULTS: The direct binding of glucose oxidase via carbodiimide activity was found to be more effective, resulting in bound enzyme efficiencies between 94-100% while thiophene acetylation was 66-72% efficient. Kinetic and stability studies showed that the enzyme activity was more preserved upon binding onto the nanoparticles when subjected to thermal and various pH conditions. The overall activity of glucose oxidase was improved when bound to magnetic nanoparticles CONCLUSION: Binding of enzyme onto magnetic nanoparticles via carbodiimide activation is a very efficient method for developing bioconjugates for biological applications.  相似文献   

3.
Magnetic Fe3O4 nanoparticles were prepared by chemical coprecipitation method and subsequently coated with 3-aminopropyltriethoxysilane (APTES) via silanization reaction. The synthesized materials were characterized by transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). With glutaraldehyde as the coupling agent, the lipase from Serratia marcescens ECU1010 (SmL) was successfully immobilized onto the amino-functionalized magnetic nanoparticles. The results showed that the immobilized protein load could reach as high as 35.2 mg protein g−1 support and the activity recovery was up to 62.0%. The immobilized lipase demonstrated a high enantioselectivity toward (+)-MPGM (with an E-value of 122) and it also displayed the improved thermal stability as compared to the free lipase. When the immobilized lipase was employed to enantioselectively hydrolyze (±)-trans-3-(4-methoxyphenyl)glycidic acid methyl ester [(±)-MPGM] in water/toluene biphasic reaction system for 11 consecutive cycles (totally 105 h), still 59.6% of its initial activity was retained, indicating a high stability in practical operation.  相似文献   

4.
Preparation and characterization of YADH-bound magnetic nanoparticles   总被引:17,自引:0,他引:17  
The covalently binding of yeast alcohol dehydrogenase (YADH) to magnetic nanoparticles via carbodiimide activation was studied. The magnetic nanoparticles Fe3O4 with a mean diameter of 10.6 nm were prepared by co-precipitating Fe2+ and Fe3+ ions in an ammonia solution and treating under hydrothermal conditions. Transmission electron microscopy (TEM) micrographs showed that the magnetic nanoparticles remained discrete and had no significant change in size after binding YADH. X-ray diffraction (XRD) patterns indicated both the magnetic nanoparticles before and after binding YADH were pure Fe3O4. Magnetic measurement revealed the resultant magnetic nanoparticles were superparamagnetic characteristics, and their saturation magnetization was reduced only slightly after enzyme binding. The analysis of Fourier transform infrared (FTIR) spectroscopy confirmed the binding of YADH to magnetic nanoparticles and suggested a possible binding mechanism. In addition, the measurement of protein content revealed that the maximum weight ratio of YADH bound to magnetic nanoparticles was 0.125, below which the binding efficiency of YADH was almost 100%. The kinetic measurements indicated the bound YADH retained 62% of its original activity and exhibited a 10-fold improved stability than did the free enzyme. The maximum specific activities and Michaelis constants were also determined.  相似文献   

5.
Direct binding of protein to magnetic particles   总被引:12,自引:0,他引:12  
A new method of binding bovine serum albumin on to freshly precipitated magnetic particles is reported. The binding was confirmed by electron micrograph studies, magnetic measurements and FTIR spectroscopy. Under optimum conditions more than 90% of the protein was bound to the magnetic particles. When alkaline phosphatase was immo-bilised using this method, it retained 75% enzyme activity. The method may prove to be applicable to radio-immuno assays (binding of antibodies to magnetic particles), cell and enzyme immobilisation and in affinity chromatography  相似文献   

6.
Hybrid magnetic Fe3O4@SiO2-poly(ethylene oxide)-maltose (Fe3O4@SiO2-PEO-mal) nanoparticles synthesized by our group can be used as affinity adsorption carriers for direct separation of maltose binding protein-fused Hep I (MBP-Hep I) from a crude enzyme solution in a magnetic field. In this work, different PEO molecular weights for Fe3O4@SiO2-PEO-mal nanoparticles were used for characterizing of MBP-Hep I immobilization. The results showed that all four kinds of Fe3O4@SiO2-PEO-mal magnetic nanoparticles (6k, 20k, 35k and 100k for PEO) exhibited excellent adsorption capacities and the adsorption ratio increased as the PEO molecular weight increased from 6k to 100k. All four kinds of immobilized MBP-Hep I exhibited significantly improved stability at 30 °C compared with free MBP-Hep I and their half-lives were 20–50 times that of the free MBP-Hep I. Fe3O4@SiO2-PEO-mal nanoparticles with a PEO molecular weight of 100k were best able to immobilize MBP-Hep I (Fe3O4@SiO2-PEO100k-mal-MBP-Hep I). The molecular weight distribution profiles and anticoagulant activities, obtained from heparin depolymerization by free Hep I, free MBP-Hep I and Fe3O4@SiO2-PEO100k-mal-MBP-Hep I were the same. Furthermore, Fe3O4@SiO2-PEO100k-mal-MBP-Hep I exhibited reasonable reusability during enzymatic production of low molecular weight heparins (LMWHs).  相似文献   

7.
A novel magnetic poly(vinyl acetate (VAc)–divinyl benzene (DVB)) material (8–34 μm) was synthesized by copolymerization of vinyl acetate and divinyl benzene using oleic acid-stabilized magnetic colloids as magnetic cores. The magnetic colloids and the copolymer microspheres were characterized with transmission and scanning electron microscopes, respectively. Magnetization of the microspheres could be described by the Langevin function. All the observations indicated that the microspheres were superparamagnetic. Magnetic sedimentation of the microspheres was achieved within 3 min, over 300 times faster than the gravitational sedimentation. Candida cylindracea lipase (CCL) was immobilized to the porous carrier at up to 6750 IU/g carrier, remarkably higher than the previous studies. The pH and temperature dependencies of the immobilized CCL were investigated and the optimum temperature and pH for the immobilized CCL were determined. Activity amelioration of the immobilized CCL for the hydrolysis of olive oil was observed, indicating an interfacial activation of the enzyme after immobilization. Moreover, the immobilized CCL showed enhanced thermal stability and good durability in the repeated use after recovered by magnetic separations.  相似文献   

8.
The aim of this study was to be able to reversibly bind histidine-rich proteins to the surface of maghemite magnetic nanoparticles via coordinative bonding using Zn ions as the anchoring points. We showed that in order to adsorb Zn ions on the maghemite, the surface of the latter needs to be modified. As silica is known to strongly adsorb zinc ions, we chose to modify the maghemite nanoparticles with a nanometre-thick silica layer. This layer appeared to be thin enough for the maghemite nanoparticles to preserve their superparamagnetic nature. As a model the histidine-rich protein bovine serum albumin (BSA) was used. The release of the BSA bound to Zn-decorated silica-coated maghemite nanoparticles was analysed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). We demonstrated that the bonding of the BSA to such modified magnetic nanoparticles is highly reversible and can be controlled by an appropriate change of the external conditions, such as a pH decrease or the presence/supply of other chelating compounds.  相似文献   

9.
10.
Glucose oxidase (GOD) and lactate dehydrogenase (LDH) were immobilized onto magnetic nanoparticles, viz. Fe3O4, via carbodiimide and glutaraldehyde. The immobilization efficiency was largely dependent upon the immobilization time and concentration of glutaraldehyde. The magnetic nanoparticles had a mean diameter of 9.3 nm and were superparamagnetic. The immobilization of GOD and LDH on the nanoparticles slightly decreased their saturation magnetization. However, the FT-IR spectra showed that GOD and LDH were immobilized onto the nanoparticles by different binding mechanisms, the reason for which was not well explained. The optimum pH values of the immobilized GOD and LDH were changed to 8 and 10, respectively. The free and immobilized enzyme kinetic parameters (Km and Vmax) were determined by Michaelis-Menten enzyme kinetics. The Km values for free and immobilized GOD were 0.168 and 0.324 mM, respectively, while those for free and immobilized LDH were 0.19 and 0.163 mM for NAD, and 2.976 and 4.785 mM for lactate, respectively. High operational stability was observed, with more than 80% of the initial enzyme activity being retained for the immobilized GOD up to 12 h and for the immobilized LDH up to 24 h. The immobilized GOD was applied to a sequential injection analysis system for the application of bioprocess monitoring.  相似文献   

11.
A lipoprotein lipase (LPL) was made water insoluble by immobilizing onto the surface of polyacrolein (PAA) microspheres with and without oligoglycines as spacer. The activity of the immobilized LPL was found to remain high toward a small ester substrate, p-nitrophenyl laurate (pNPL). The relative activity of the immobilized LPL without spacer decreased gradually with the decreasing surface concentration of the immobilized LPL on the PAA microsphere. On the contrary, the immobilized LPL with oligoglycine spacers gave an almost constant activity for the substrate hydrolysis within the surface concentration region studied and gave a much higher relative activity than that without any spacer. The Michaelis constant K(m) and the maximum reaction velocity V(m) were estimated for the free and the immobilized LPL. The apparent K(m) was larger for the immobilized LPL than for the free one, while V(m) was smaller for the immobilized LPL. The pH, thermal, and storage stabilities of the immobilized LPL were higher than those of the free one. The initial enzymatic activity of the immobilized LPL maintained almost unchanged without any leakage and inactivation of LPL when the batch enzyme reaction was performed repeatedly, indicating the excellent durability of the immobilized LPL.  相似文献   

12.
Yang  Tao  Sun  Shuguo  Ma  Meihu  Lin  Qinlu  Zhang  Lin  Li  Yan  Luo  Feijun 《Bioprocess and biosystems engineering》2015,38(10):2023-2034
Bioprocess and Biosystems Engineering - A simple optimization method of immobilization of avidin on magnetic nanoparticles (MNPs)’ surface was proposed in this study. The avidin-immobilized...  相似文献   

13.
d-Amino acid oxidase from Rhodosporidium toruloides was immobilized onto glutaraldehyde-activated magnetic nanoparticles. Approximately four enzyme molecules were attached to one magnetic nanoparticle when the weight ratio of the enzyme to the support was 0.12. After immobilization, the T m was increased from 45°C of the free form to 55°C. In the presence of 20 mM H2O2, the immobilized form retained 93% of its activity after 5 h while the free form was completely inactivated after 3.5 h.  相似文献   

14.
Gum arabic coated magnetic Fe3O4 nanoparticles (GAMNP) were prepared by chemical co-precipitation method and their surface morphology, particle size and presence of polymer-coating was confirmed by various measurements, including transmission electron microscopy (TEM), X-ray diffraction (XRD), thermo gravimetric analysis (TGA), and Fourier transform infra red (FTIR) analysis. Magnetic particles were employed for their potential application as a support material for lipase immobilization. Glutaraldehyde was used as a coupling agent for efficient binding of lipase onto the magnetic carrier. For this purpose, the surface of a Candida rugosa lipase was initially coated with various surfactants, to stabilize enzyme in its open form, and then immobilized on to the support. This immobilized system was used as a biocatalyst for ethyl isovalerate, a flavor ester, production. The influence of various factors such as type of surfactant, optimum temperature and pH requirement, organic solvent used, amount of surfactant in coating lipase and effect of enzyme loadings on the esterification reaction were systematically studied. Different surfactants were used amongst which non-ionic surfactant performed better, showing about 80% esterification yield in 48 h as compared to cationic/anionic surfactants. Enhanced activity due to interfacial activation was observed for immobilized non-ionic surfactant–lipase complex. The immobilized surfactant coated lipase activity was retained after reusing seven times.  相似文献   

15.
The covalently immobilized of Saccharomyces cerevisiae alcohol dehydrogenase (SCAD) to magnetic Fe(3)O(4) nanoparticles via glutaraldehyde coupling reaction was studied. The magnetic Fe(3)O(4) nanoparticles were prepared by hydrothermal method using H(2)O(2) as an oxidizer. Functionalization of surface-modified magnetic particles was performed by the covalent binding of chitosan onto the surface. The amino functional group on the magnetic Fe(3)O(4)-chitosan particles surface and the amino group of the dehydrogenase were coupled with glutaraldehyde. The immobilization process did not affect the size and structure of magnetic nanoparticles. For the reduction of phenylglyoxylic acid by immobilized SCAD, the kinetic analysis data indicated that the immobilized SCAD retained 48.77% activity of its original activity. The activation energy within 20-40 degrees C, the maximum specific activity and the Michaelis constants for phenylglyoxylic acid were 7.79 KJ mol(-1), 279.33 nmol min(-1) and 37.77 mmol l(-1), respectively. Furthermore, the immobilized SCAD enhanced thermal stability and good durability in the repeated use after recovered by magnetic separations.  相似文献   

16.
Carbonic anhydrases (CAs; EC 4.2.1.1) are metalloenzymes with a pivotal potential role in the biomimetic CO2 capture process (CCP) because these biocatalysts catalyse the simple but physiologically crucial reaction of carbon dioxide hydration to bicarbonate and protons in all life kingdoms. The CAs are among the fastest known enzymes, with kcat values of up to 106?s?1 for some members of the superfamily, providing thus advantages when compared with other CCP methods, as they are specific for CO2. Thermostable CAs might be used in CCP technology because of their ability to perform catalysis in operatively hard conditions, typical of the industrial processes. Moreover, the improvement of the enzyme stability and its reuse are important for lowering the costs. These aspects can be overcome by immobilising the enzyme on a specific support. We report in this article that the recombinant thermostable SspCA (α-CA) from the thermophilic bacterium Sulfurihydrogenibium yellowstonense can been heterologously produced by a high-density fermentation of Escherichia coli cultures, and covalently immobilised onto the surface of magnetic Fe3O4 nanoparticles (MNP) via carbodiimide activation reactions. Our results demonstrate that using a benchtop bioprocess station and strategies for optimising the bacterial growth, it is possible to produce at low cost a large amount SspCA. Furthermore, the enzyme stability and storage greatly increased through the immobilisation, as SspCA bound to MNP could be recovered from the reaction mixture by simply using a magnet or an electromagnetic field, due to the strong ferromagnetic properties of Fe3O4.  相似文献   

17.
Hepatic lipase has been purified to homogeneity from rat liver homogenates. The purified enzyme exhibits a single band on SDS-polyacrylamide gel electrophoresis. The molecular size of the native hepatic lipase is 200000, while on SDS-polyacrylamide gel electrophoresis the apparent minimum molecular weight of the enzyme is 53000, suggesting that the active enzyme is composed of four subunits. The relationship between triacylglycerol, monoacylglycerol and phospholipid hydrolyzing activities of the purified rat liver enzyme was studied. All three activities had a pH optimum of 8.5. The maximal reaction rates obtained with triolein, monoolein and dipalmitoylphosphatidylcholine were 55000, 66000 and 2600 μmol fatty acid/mg per h with apparent Michaelis constant (Km) values of 0.4, 0.25 and 1.0 mM, respectively. Hydrolysis of triolein and monoolein probably takes place at the same site on the enzyme molecule, since competitive inhibition between these two substrates was observed, and a similar loss of hydrolytic activity occurred in the presence of diisopropylfluorophosphate. Addition of apolipoproteins C-II and C-I had no effect on the hydrolytic activity of the enzyme with the three substrates tested. However, the triacylglycerol hydrolyzing activity was inhibited by the addition of apolipoprotien C-III. Monospecific antiserum to the pure hepatic lipase has been raised in a rabbit.  相似文献   

18.
19.
Endocannabinoids such as 2-arachidonylglycerol (2-AG) are ligands for cannabinoid receptors that contribute to the transmission and modulation of pain signals. The antinociceptive effect of exogenous 2-AG suggests that inhibition of monoglyceride lipase (MGLL), the enzyme responsible for degrading 2-AG and arresting signaling, may be a target for pain modulation. Here we describe the characterization of MGLL ligands following a high-throughput screening campaign. Ligands were discovered using ThermoFluor, a label-free affinity-based screening tool that measures ligand binding via modulation of protein thermal stability. A kinetic fluorescent assay using the substrate 4-methylcoumarin butyrate was used to counterscreen confirmed HTS positives. A comparison of results from binding and inhibition assays allowed elucidation of compound mechanism of action. We demonstrate the limit of each technology and the benefits of using orthogonal assay techniques in profiling compounds.  相似文献   

20.
In this study, we synthesized magnetic nanoparticles (MNPs) by co-precipitation method. After that, silica coating with tetraethyl orthosilicate (TEOS) (SMNPs), amine functionalization of silica coated MNPs (ASMNPs) by using 3-aminopropyltriethoxysilane (APTES) were performed, respectively. After activation with glutaraldehyde (GA) of ASMNPs, human carbonic anhydrase (hCA I) was immobilized on ASMNPs. The characterization of nanoparticles was performed by transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD) and vibrating sample magnetometer (VSM). The immobilization conditions such as GA concentration, activation time of support with GA, enzyme amount, enzyme immobilization time were optimized. In addition of that, optimum conditions for activity, kinetic parameters (Km, Vmax, kcat, kcat/Km), thermal stability, storage stability and reusability of immobilized enzyme were determined.The immobilized enzyme activity was optimum at pH 8.0 and 25 °C. The Km value of the immobilized enzyme (1.02 mM) was higher than the free hCA I (0.48 mM). After 40 days incubation at 4 °C and 25 °C, the immobilized hCA I sustained 89% and 85% of its activity, respectively. Also, it sustained 61% of its initial activity after 13 cycles. Such results revealed good potential of immobilized enzyme for various applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号