共查询到20条相似文献,搜索用时 15 毫秒
1.
Two strains of marine Synechococcus possessed a much greater potential for photorespiration than other marine algae we have studied. This conclusion was based on the following physiological and biochemical characteristics: a) a light-dependent O2 inhibition of photosynthetic CO2 assimilation at atmospheric O2 concentrations. The degree of inhibition was dependent on the relative concentrations of dissolved O2 and CO2, being greatest at 100% O2 with no extra bicarbonate added to the medium; b) actively photosynthesizing cells had high levels of ribulose-1,5-bisphosphate carboxylase compared with phosphoenolpyruvate carboxylase; ribulose-1,5-bisphosphate oxygenase activities were three times greater than ribulose-1,5-bisphosphate carboxylase activities; c) cells photosynthesizing in 21% O2, showed significant 14C-labelling of phosphoglycolate and glycolate and the percentage of total carbon-14 incorporated into these two compounds increased when the O2 concentration was 100%; d) at 100% O2, there was a post-illumination enhanced rate of O2 consumption, which was three times greater than dark respiration, and the rate declined with increasing bicarbonate concentrations. The inhibitory effect of O2 on photosynthesis did not appear to be solely due to photorespiration, since O2 inhibition of photosynthetic O2 evolution was much greater than that of photosynthetic CO2 assimilation. Also, O2 inhibition of photosynthetic O2 evolution declined only slightly with decreasing light intensities, while the inhibition of CO2 assimilation declined rapidly with decreasing light intensity. 相似文献
2.
Lins U McCartney MR Farina M Frankel RB Buseck PR 《Applied and environmental microbiology》2005,71(8):4902-4905
High-resolution transmission electron microscopy and electron holography were used to study the habits of exceptionally large magnetite crystals in coccoid magnetotactic bacteria. In addition to the crystal habits, the crystallographic positioning of successive crystals in the magnetosome chain appears to be under strict biological control. 相似文献
3.
Antagonistic interactions among marine pelagic bacteria. 总被引:1,自引:0,他引:1
Recent studies suggest that bacterial abundance and species diversity in the ocean's water column are variable at the millimeter scale, apparently in response to the small-scale heterogeneity in the distribution of organic matter. We hypothesized that bacterium-bacterium antagonistic interactions may contribute to variations in community structure at the microscale. We examined each of the 86 isolates for their inhibition of growth of the remaining 85 isolates by the Burkholder agar diffusion assay. More than one-half of the isolates expressed antagonistic activity, and this trait was more common with particle-associated bacteria than with free-living bacteria. This was exemplified by members of the alpha subclass of the class Proteobacteria (alpha-proteobacteria), in which production of antagonistic molecules was dominated by attached bacteria. We found that gamma-proteobacteria (members of the orders Alteromonadales and Vibrionales) are the most prolific producers of inhibitory materials and also the most resilient to them, while members of the Bacteriodetes were the organisms that were least productive and most sensitive to antagonistic interactions. Widespread interspecies growth inhibition is consistent with the role of this phenomenon in structuring bacterial communities at the microscale. Furthermore, our results suggest that bacteria from pelagic marine particles may be an underutilized source of novel antibiotics. 相似文献
4.
Organic compounds are capable of repelling motile bacteria from marine surfaces. The most effective compounds were acrylamide and benzoic and tannic acids. These were active at concentrations that were not toxic to the bacteria. Repellents were incorporated in nontoxic paints and applied to metal panels. Treated panels immersed in seawater developed a bacterial film of only 10(6) bacteria per cm6 after 12 days compared with untreated panels, which had 5 times 10(12) bacteria per cm2 after the same period. Field studies confirmed the effectiveness of these repellents. The use of biological repellents provides a new approach to the control of marine fouling. 相似文献
5.
Truong VK Webb HK Fadeeva E Chichkov BN Wu AH Lamb R Wang JY Crawford RJ Ivanova EP 《Biofouling》2012,28(6):539-550
Superhydrophobic titanium surfaces fabricated by femtosecond laser ablation to mimic the structure of lotus leaves were assessed for their ability to retain coccoid bacteria. Staphylococcus aureus CIP 65.8T, S. aureus ATCC 25923, S. epidermidis ATCC 14990T and Planococcus maritimus KMM 3738 were retained by the surface, to varying degrees. However, each strain was found to preferentially attach to the crevices located between the microscale surface features. The upper regions of the microscale features remained essentially cell-free. It was hypothesised that air entrapped by the topographical features inhibited contact between the cells and the titanium substratum. Synchrotron SAXS revealed that even after immersion for 50 min, nano-sized air bubbles covered 45% of the titanium surface. After 1 h the number of cells of S. aureus CIP 65.8T attached to the lotus-like titanium increased to 1.27×10(5) mm(-2), coinciding with the replacement of trapped air by the incubation medium. 相似文献
6.
Two psychrophillic bacterial isolates of marine fish origin unable to grow at 20 degrees C or above were found to be distinguishable on the basis of autolysis at elevated temperature in various buffer systems. Isolate OP2 exhibited autolysis at 30 degrees C and above, while isolate OP7 underwent autolysis only at 35 degrees C and above. Tris buffer at pH 7.0 and 8.0 and at 35 degrees C significantly protected isolate OP2 from autolysis and failed to do so with isolate OP7. At pH 5.0, suspension phosphate buffer resulted in significantly greater autolysis of both isolates than did suspension in succinate buffer. 相似文献
7.
Obligate oil-degrading marine bacteria 总被引:3,自引:0,他引:3
Over the past few years, a new and ecophysiologically unusual group of marine hydrocarbon-degrading bacteria - the obligate hydrocarbonoclastic bacteria (OHCB) - has been recognized and shown to play a significant role in the biological removal of petroleum hydrocarbons from polluted marine waters. The introduction of oil or oil constituents into seawater leads to successive blooms of a relatively limited number of indigenous marine bacterial genera--Alcanivorax, Marinobacter, Thallassolituus, Cycloclasticus, Oleispira and a few others (the OHCB)--which are present at low or undetectable levels before the polluting event. The types of OHCB that bloom depend on the latitude/temperature, salinity, redox and other prevailing physical-chemical factors. These blooms result in the rapid degradation of many oil constituents, a process that can be accelerated further by supplementation with limiting nutrients. Genome sequencing and functional genomic analysis of Alcanivorax borkumensis, the paradigm of OHCB, has provided significant insights into the genomic basis of the efficiency and versatility of its hydrocarbon utilization, the metabolic routes underlying its special hydrocarbon diet, and its ecological success. These and other studies have revealed the potential of OHCB for multiple biotechnological applications that include not only oil pollution mitigation, but also biopolymer production and biocatalysis. 相似文献
8.
Various aspects of the social life of bacteria are exposed here, in the light of recently published discoveries on the adaptive mechanisms of bacterial adhesion and biofilm formation, and on their importance at all ecological levels. There is now a need for studying models such as macrophytic algae and their associated microbial flora in order to integrate observations on simple laboratory models into the spatio-temporal perspective afforded by evolutionarily stable biocenoses. 相似文献
9.
Isolation and distribution of oligotrophic marine bacteria. 总被引:7,自引:0,他引:7
A useful plate culture method for isolating oligotrophic bacteria found in the low-nutrient environment of the open sea has been developed. The method uses a glass-fiber filter substitute for agar. Nutritional requirements of oligotrophic bacteria consisted of a dilute mutrient solution containing 16.8 mg C/l total organic carbon aseptically added to the sterilized filter. Distribution of bacteria in oceanic and neritic seawater was determined using the membrane filter method. In the case of seawater containing less than 0.5 mg/l dissolved carbohydrates, plate counts of oligotrophic bacteria were found to be several- to 100-fold greater than the heterotrophic bacterial counts enumerated by standard methods routinely used for enumeration. However, in seawater containing approximately over 0.5 mg/l dissolved carbohydrates, heterotrophic bacterial counts were 10-fold greater than oligotrophic bacterial counts. 相似文献
10.
Lipid storage compounds in marine bacteria 总被引:15,自引:0,他引:15
Forty psychrophile or psychrotrophic crude-oil-utilizing marine bacteria were investigated for their ability to accumulate
lipid storage compounds in the cytoplasm during cultivation under nitrogen-limiting conditions. Most of them (73%) were able
to accumulate specialized lipids like polyhydroxyalkanoic acids (PHA) while other lipids such as wax esters occurred in two
isolates. Accumulation of PHA occurred predominantly at low temperatures (4–20 °C) as demonstrated for three isolates. Electron
microscopy revealed polyphosphate inclusions occurring in two isolates in addition to PHA. Cells of the isolate Acinetobacter sp. 211 were able to synthesize and accumulate lipid inclusions during growth on acetate, ethanol, olive oil, hexadecanol
and heptadecane. The composition of the lipid inclusions depended on the compounds provided as carbon source. Wax esters and
acylglycerols occurred mainly during the cultivation on olive oil; in contrast, wax esters and free alcohols occurred during
cultivation on hexadecanol. Total fatty acids in cells of the Acinetobacter sp. 211 amounted to 25% of the cellular dry weight in olive-oil-grown cells. Palmitic acid was the main fatty acid in the
lipids when the cells were cultivated on acetate or ethanol (44% and 32% of total fatty acids respectively). In contrast,
fatty acids occurring in the lipids during cultivation on hexadecanol, heptadecane or olive oil were related to the carbon
source. The fatty acids present in the accumulated lipids consisted predominantly of saturated and unsaturated straight-chain
fatty acids with a chain length ranging from 12 to 18 carbon atoms. Analysis of the lipid-granule-associated proteins in cells
of Acinetobacter sp. 211 revealed a protein of 39 kDa as the predominant protein species.
Received: 2 July 1996 / Received revision: 3 September 1996 / Accepted: 28 September 1996 相似文献
11.
12.
A E Allen M G Booth M E Frischer P G Verity J P Zehr S Zani 《Applied and environmental microbiology》2001,67(11):5343-5348
A PCR approach was used to construct a database of nasA genes (called narB genes in cyanobacteria) and to detect the genetic potential for heterotrophic bacterial nitrate utilization in marine environments. A nasA-specific PCR primer set that could be used to selectively amplify the nasA gene from heterotrophic bacteria was designed. Using seawater DNA extracts obtained from microbial communities in the South Atlantic Bight, the Barents Sea, and the North Pacific Gyre, we PCR amplified and sequenced nasA genes. Our results indicate that several groups of heterotrophic bacterial nasA genes are common and widely distributed in oceanic environments. 相似文献
13.
Thermophilic sulfate-reducing bacteria in cold marine sediment 总被引:3,自引:0,他引:3
Abstract Sulfate reduction was measured with the 35 SO4 2− -tracer technique in slurries of sediment from Aarhus Bay, Denmark, where seasonal temperatures range from 0° to 15°C. The incubations were made at temperatures from 0°C to 80°C in temperature increments of 2°C to search for presence of psychrophilic, mesophilic and thermophilic sulfate-reducing bacteria. Detectable activity was initially only in the mesophilic range, but after a lag phase sulfate reduction by thermophilic sulfate-reducing bacteria were observed. No distinct activity of psychrophilic sulfate-reducing bacteria was detected. Time course experiments showed constant sulfate reduction rates at 4°C and 30°C, whereas the activity at 60°C increased exponentially after a lag period of one day. Thermophilic, endospore-forming sulfate-reducing bacteria, designated strain P60, were isolated and characterized as D esulfotomaculum kuznetsovii . The temperature response of growth and respiration of strain P60 agreed well with the measured sulfate reduction at 50°–70°C. Bacteria similar to strain P60 could thus be responsible for the measured thermophilic activity. The viable population of thermophilic sulfate-reducing bacteria and the density of their spores was determined in most probable number (MPN) dilutions. The density was 2.8·104 cells·.g−1 fresh sediment, and the enumerations suggested that they were all present as spores. This result agrees well with the observed lag period in sulfate reduction above 50°C. No environment with temperatures supporting the growth of these thermophiles is known in the region around Aarhus Bay. 相似文献
14.
《Journal of Marine Biotechnology》1997,5(2-3):172-177
15.
H M Dalton A E Goodman K C Marshall 《Journal of industrial microbiology & biotechnology》1996,17(3-4):228-234
Using laminar flow chambers and time-lapse video imaging, colonization of surfaces by four marine bacteria revealed a diverse range of morphological characteristics and cell-cell interactions. The strain SW5 formed a compact, multilayered single- and double-cell biofilm on hydrophobic surfaces but developed long multicellular chains on hydrophilic surfaces. The morphologically similar SW8 showed unusual proximal vertical packing of cells on both substrata.Vibrio sp strain S14 exhibited cyclical colonization-detachment events on both substrata.Pseudomonas sp strain S9 initially displayed reversible and then irreversible adhesion apparently triggered by a cell density phenomenon that led to the development of regular microcolonies on both substrata with individual cells translocating between the colonies. The length of time bacteria were exposed to and their density at a surface influenced behavioral traits, with diverse and distinctive species-specific behavioral events. 相似文献
16.
During aerobic growth on glucose, several species of luminous marine bacteria exhibited an imcomplete oxidative catabolism of substrate. Pyruvate, one of the products of glucose metabolism, was excreted into the medium during exponential growth and accounted for up to 50% of the substrate carbon metabolized. When glucose was depleted from the medium, the excreted pyruvate was promptly utilized, demonstrating that the cells are capable of pyruvate catabolism. Pyruvate excretion is not a general phenomenon of carbohydrate metabolism since it does not occur during the utilization of glycerol or maltose. When cells pregrown on glycerol were exposed to glucose, they began to excrete pyruvate, even if protein synthesis was blocked with chloramphenicol. Glucose thus appears to have an effect on the activity of preexisting catabolic enzymes. 相似文献
17.
During aerobic growth on glucose, several species of luminous marine bacteria exhibited an imcomplete oxidative catabolism of substrate. Pyruvate, one of the products of glucose metabolism, was excreted into the medium during exponential growth and accounted for up to 50% of the substrate carbon metabolized. When glucose was depleted from the medium, the excreted pyruvate was promptly utilized, demonstrating that the cells are capable of pyruvate catabolism. Pyruvate excretion is not a general phenomenon of carbohydrate metabolism since it does not occur during the utilization of glycerol or maltose. When cells pregrown on glycerol were exposed to glucose, they began to excrete pyruvate, even if protein synthesis was blocked with chloramphenicol. Glucose thus appears to have an effect on the activity of preexisting catabolic enzymes. 相似文献
18.
Phospholipid composition and cardiolipin synthesis in fermentative and nonfermentative marine bacteria.
下载免费PDF全文

Twenty biochemically distinct isolates of marine bacteria, comprising a collection of gram-negative, motile, straight and curved rod-shaped organisms, were separated into fermentative and nonfermentative groups. The isolates were analyzed fro phospholipid composition and the activities of the enzymes, cardiolipin synthetase, and a phosphilipase were determined. The phospholipid compositions of all isolates were generally similar. Phosphatidylethanolamine and phosphatidylglycerol were the major phospholipid classes detected. The absence of cardiolipin in most of the nonfermentative isolates was the most striking observation noted. This was verified chromatographically and by the absence of cardiolipin synthetase activity. In isolates which had cardiolipin, it apparently was synthesized by the condensation of two molecules of phosphatidylglycerol, a mechanism similar to that observed in terrestrial bacteria. Possible correlations between the presence of cardiolipin and Mg-2+ requirements for growth are discussed. 相似文献
19.
Ultrastructure of bacteria and the proportion of Gram-negative bacteria in marine sediments 总被引:3,自引:0,他引:3
Bacteria in sediments from the surface aerobic layer (0–1 cm) and a deeper anaerobic layer (20–21 cm) of a seagrass bed were examined in section by transmission electron microscopy. Bacteria with a Gram-negative ultrastructure made up 90% of bacteria in the surface layer, and Gram-positive bacteria comprised 10%. In the anaerobic zone, Gram-negative bacteria comprised 70% and Gram-positive bacteria 30% of the bacterial population. These differences were highly significant and support predictions of these proportions made from muramic acid measurements and direct counting with fluorescence microscopy. Most cells were enveloped in extracellular slime layers or envelopes, some with considerable structural complexity. The trophic value to animals of these envelopes is discussed. A unique organism with spines was observed. 相似文献
20.