首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetotactic bacteria have the unique capacity of synthesizing intracellular single-domain magnetic particles called magnetosomes. The magnetosomes are usually organized in a chain that allows the bacteria to align and swim along geomagnetic field lines, a behavior called magnetotaxis. Two mechanisms of magnetotaxis have been described. Axial magnetotactic cells swim in both directions along magnetic field lines. In contrast, polar magnetotactic cells swim either parallel to the geomagnetic field lines toward the North Pole (north seeking) or antiparallel toward the South Pole (south seeking). In this study, we used a magnetospectrophotometry (MSP) assay to characterize both the axial magnetotaxis of “Magnetospirillum magneticum” strain AMB-1 and the polar magnetotaxis of magneto-ovoid strain MO-1. Two pairs of Helmholtz coils were mounted onto the cuvette holder of a common laboratory spectrophotometer to generate two mutually perpendicular homogeneous magnetic fields parallel or perpendicular to the light beam. The application of magnetic fields allowed measurements of the change in light scattering resulting from cell alignment in a magnetic field or in absorbance due to bacteria swimming across the light beam. Our results showed that MSP is a powerful tool for the determination of bacterial magnetism and the analysis of alignment and swimming of magnetotactic bacteria in magnetic fields. Moreover, this assay allowed us to characterize south-seeking derivatives and non-magnetosome-bearing strains obtained from north-seeking MO-1 cultures. Our results suggest that oxygen is a determinant factor that controls magnetotactic behavior.Magnetotactic bacteria are morphologically, metabolically, and phylogenetically diverse prokaryotes (1, 11). They synthesize unique intracellular organelles, the magnetosomes, which are single-domain magnetic crystals of the mineral magnetite or greigite enveloped by membranes. Magnetosomes are usually organized in a chain(s) within the cell and cause the cell to align along geomagnetic field lines while it swims. The highest numbers of magnetotactic bacteria are generally found at, or just below, the oxic-anoxic transition zone (OATZ) or redoxocline in aquatic habitats (1). Early studies showed that Northern Hemisphere magnetotactic bacteria swim preferentially northward in parallel with the geomagnetic field lines (north seeking [NS]) (2) and that those from the Southern Hemisphere swim preferentially antiparallel to the geomagnetic field lines to the magnetic South Pole (south seeking [SS]) (4). The geomagnetic field is inclined downward from horizontal in the Northern Hemisphere and upward in the Southern Hemisphere, with the inclination magnitude increasing from the equator to the poles. Therefore, magnetotaxis might guide cells in each hemisphere downward to less-oxygenated regions of aquatic habitats, where they would presumably stop swimming until conditions change (1). A recent study reported the coexistence of both NS and SS magnetotactic bacteria in the Northern Hemisphere, which conflicts with the prevalent model of the adaptive value of magnetotaxis (14).Under laboratory conditions, magnetotactic bacteria form microaerophilic bands of cells in oxygen-gradient medium. In fact, magnetotaxis and aerotaxis work together in these bacteria, and the behavior observed has been referred to as “magnetoaerotaxis.” Two different magnetoaerotactic mechanisms, termed polar and axial, are found in different bacterial species (6). The magnetotactic bacteria, principally the magnetotactic cocci, that swim persistently in one direction along the magnetic field (NS or SS) are polar magnetoaerotactic. Magnetotactic bacteria, especially the freshwater spirilla, that swim in either direction along the magnetic field lines with frequent, spontaneous reversals of swimming direction without turning around are axial magnetoaerotactic. For polar magnetotactic bacteria, the magnetic field provides an axis and a direction for motility, whereas for axial magnetotactic bacteria, the magnetic field provides only an axis of motility. The two mechanisms can best be seen in flattened capillary tubes containing suspensions of cells in reduced medium in a magnetic field oriented parallel to the capillary. An oxygen gradient forms along the tube, beginning at the ends of the capillary, with one oriented parallel and the other antiparallel to the magnetic field (1). Band formation by axial magnetoaerotactic cells, such as Magnetospirillum magnetotacticum cells, occurs at both ends of the capillary. Rotation of the magnetic field by 180° after the formation of the bands causes the cells in both bands to rotate 180°, but the bands remain intact. In contrast, band formation by polar magnetoaerotactic cells, such as the marine cocci, occurs only at the end of the capillary for which the magnetic field and the oxygen concentration gradient are oriented opposite to each other. Rotation of the magnetic field by 180° after the formation of the band causes the cells in the band to rotate 180° and swim away, resulting in the dispersal of the band (1). In this study, we developed a magnetospectrophotometry (MSP) assay that provides an alternative method for the quantitative and versatile characterization of the two magnetotactic mechanisms. Using this assay, we demonstrated the effect of artificial magnetic fields on the generation of homogeneous NS or SS magnetotactic bacterial populations.  相似文献   

2.
Magnetotactic bacteria are microorganisms that orient and migrate along magnetic field lines. The classical model of polar magnetotaxis predicts that the field-parallel migration velocity of magnetotactic bacteria increases monotonically with the strength of an applied magnetic field. We here test this model experimentally on magnetotactic coccoid bacteria that swim along helical trajectories. It turns out that the contribution of the field-parallel migration velocity decreases with increasing field strength from 0.1 to 1.5 mT. This unexpected observation can be explained and reproduced in a mathematical model under the assumption that the magnetosome chain is inclined with respect to the flagellar propulsion axis. The magnetic disadvantage, however, becomes apparent only in stronger than geomagnetic fields, which suggests that magnetotaxis is optimized under geomagnetic field conditions. It is therefore not beneficial for these bacteria to increase their intracellular magnetic dipole moment beyond the value needed to overcome Brownian motion in geomagnetic field conditions.  相似文献   

3.
Microorganisms living in gradient environments affect large-scale processes, including the cycling of elements such as carbon, nitrogen or sulfur, the rates and fate of primary production, and the generation of climatically active gases. Aerotaxis is a common adaptation in organisms living in the oxygen gradients of stratified environments. Magnetotactic bacteria are such gradient-inhabiting organisms that have a specific type of aerotaxis that allows them to compete at the oxic-anoxic interface. They biomineralize magnetosomes, intracellular membrane-coated magnetic nanoparticles, that comprise a permanent magnetic dipole that causes the cells to align along magnetic field lines. The magnetic alignment enables them to efficiently migrate toward an optimal oxygen concentration in microaerobic niches. This phenomenon is known as magneto-aerotaxis. Magneto-aerotaxis has only been characterized in a limited number of available cultured strains. In this work, we characterize the magneto-aerotactic behavior of 12 magnetotactic bacteria with various morphologies, phylogenies, physiologies, and flagellar apparatus. We report six different magneto-aerotactic behaviors that can be described as a combination of three distinct mechanisms, including the reported (di-)polar, axial, and a previously undescribed mechanism we named unipolar. We implement a model suggesting that the three magneto-aerotactic mechanisms are related to distinct oxygen sensing mechanisms that regulate the direction of cells’ motility in an oxygen gradient.  相似文献   

4.
Microorganisms living in gradient environments affect large-scale processes, including the cycling of elements such as carbon, nitrogen or sulfur, the rates and fate of primary production, and the generation of climatically active gases. Aerotaxis is a common adaptation in organisms living in the oxygen gradients of stratified environments. Magnetotactic bacteria are such gradient-inhabiting organisms that have a specific type of aerotaxis that allows them to compete at the oxic-anoxic interface. They biomineralize magnetosomes, intracellular membrane-coated magnetic nanoparticles, that comprise a permanent magnetic dipole that causes the cells to align along magnetic field lines. The magnetic alignment enables them to efficiently migrate toward an optimal oxygen concentration in microaerobic niches. This phenomenon is known as magneto-aerotaxis. Magneto-aerotaxis has only been characterized in a limited number of available cultured strains. In this work, we characterize the magneto-aerotactic behavior of 12 magnetotactic bacteria with various morphologies, phylogenies, physiologies, and flagellar apparatus. We report six different magneto-aerotactic behaviors that can be described as a combination of three distinct mechanisms, including the reported (di-)polar, axial, and a previously undescribed mechanism we named unipolar. We implement a model suggesting that the three magneto-aerotactic mechanisms are related to distinct oxygen sensing mechanisms that regulate the direction of cells’ motility in an oxygen gradient.  相似文献   

5.
Many motile unicellular organisms have evolved specialized behaviors for detecting and responding to environmental cues such as chemical gradients (chemotaxis) and oxygen gradients (aerotaxis). Magnetotaxis is found in magnetotactic bacteria and it is defined as the passive alignment of these cells to the geomagnetic field along with active swimming. Herein we show that Magnetospirillum magneticum (AMB-1) show a unique set of responses that indicates they sense and respond not only to the direction of magnetic fields by aligning and swimming, but also to changes in the magnetic field or magnetic field gradients. We present data showing that AMB-1 cells exhibit sudden motility reversals when we impose them to local magnetic field gradients. Our system employs permalloy (Ni80Fe20) islands to curve and diverge the magnetic field lines emanating from our custom-designed Helmholtz coils in the vicinity of the islands (creating a drop in the field across the islands). The three distinct movements we have observed as they approach the permalloy islands are: unidirectional, single reverse and double reverse. Our findings indicate that these reverse movements occur in response to magnetic field gradients. In addition, using a permanent magnet we found further evidence that supports this claim. Motile AMB-1 cells swim away from the north and south poles of a permanent magnet when the magnet is positioned less than ∼30 mm from the droplet of cells. All together, these results indicate previously unknown response capabilities arising from the magnetic sensing systems of AMB-1 cells. These responses could enable them to cope with magnetic disturbances that could in turn potentially inhibit their efficient search for nutrients.  相似文献   

6.
Magnetite and magnetotaxis in microorganisms   总被引:5,自引:0,他引:5  
Magnetotactic bacteria from freshwater and marine sediments orient and navigate along geomagnetic field lines. Their magnetotactic response is based on intracellular, single magnetic domains of ferrimagnetic magnetite, which impart a permanent magnetic dipole moment to the cell.  相似文献   

7.
Magnetotactic bacteria (MTB) are a heterogeneous group of aquatic prokaryotes with a unique intracellular organelle, the magnetosome, which orients the cell along magnetic field lines. Magnetotaxis is a complex phenotype, which depends on the coordinate synthesis of magnetosomes and the ability to swim and orient along the direction caused by the interaction with the Earth's magnetic field. Although a number of putative magnetotaxis genes were recently identified within a conserved genomic magnetosome island (MAI) of several MTB, their functions have remained mostly unknown, and it was speculated that additional genes located outside the MAI might be involved in magnetosome formation and magnetotaxis. In order to identify genes specifically associated with the magnetotactic phenotype, we conducted comparisons between four sequenced magnetotactic Alphaproteobacteria including the nearly complete genome of Magnetospirillum gryphiswaldense strain MSR-1, the complete genome of Magnetospirillum magneticum strain AMB-1, the complete genome of the magnetic coccus MC-1, and the comparative-ready preliminary genome assembly of Magnetospirillum magnetotacticum strain MS-1 against an in-house database comprising 426 complete bacterial and archaeal genome sequences. A magnetobacterial core genome of about 891 genes was found shared by all four MTB. In addition to a set of approximately 152 genus-specific genes shared by the three Magnetospirillum strains, we identified 28 genes as group specific, i.e., which occur in all four analyzed MTB but exhibit no (MTB-specific genes) or only remote (MTB-related genes) similarity to any genes from nonmagnetotactic organisms and which besides various novel genes include nearly all mam and mms genes previously shown to control magnetosome formation. The MTB-specific and MTB-related genes to a large extent display synteny, partially encode previously unrecognized magnetosome membrane proteins, and are either located within (18 genes) or outside (10 genes) the MAI of M. gryphiswaldense. These genes, which represent less than 1% of the 4,268 open reading frames of the MSR-1 genome, as yet are mostly of unknown functions but are likely to be specifically involved in magnetotaxis and, thus, represent prime targets for future experimental analysis.  相似文献   

8.
Formation of magnetosomes in magnetotactic bacteria   总被引:1,自引:0,他引:1  
The ability of magnetotactic bacteria to orient and migrate along geomagnetic field lines is based on intracellular magnetic structures, the magnetosomes, which comprise nano-sized, membrane bound crystals of magnetic iron minerals. The formation of magnetosomes is achieved by a biological mechanism that controls the accumulation of iron and the biomineralization of magnetic crystals with a characteristic size and morphology within membrane vesicles. This paper focuses on the current knowledge about magnetotactic bacteria and will outline aspects of the physiology and molecular biology of magnetosome formation. The biotechnological potential of the biomineralization process is discussed.  相似文献   

9.
10.
Magnetotactic bacteria move by rotating their flagella and concomitantly are aligned to magnetic fields because they present magnetosomes, which are intracellular organelles composed by membrane-bound magnetic crystals. This results in magnetotaxis, which is swimming along magnetic field lines. Magnetotactic bacteria are morphologically diverse, including cocci, rods, spirilla and multicellular forms known as magnetotactic multicellular prokaryotes (MMPs). ‘Candidatus Magnetoglobus multicellularis’ is presently the best known MMP. Here we describe the helical trajectories performed by these microorganisms as they swim forward, as well as their response to UV light. We measured the radius of the trajectory, time period and translational velocity (velocity along the helix axis), which enabled the calculation of other trajectory parameters such as pitch, tangential velocity (velocity along the helix path), angular frequency, and theta angle (the angle between the helix path and the helix axis). The data revealed that ‘Ca. M. multicellularis’ swims along elongated helical trajectories with diameters approaching the diameter of the microorganism. In addition, we observed that ‘Ca. M. multicellularis’ responds to UV laser pulses by swimming backwards, returning to forward swimming several seconds after the UV laser pulse. UV light from a fluorescence microscope showed a similar effect. Thus, phototaxis is used in addition to magnetotaxis in this microorganism.  相似文献   

11.
Magnetotactic bacteria show an ability to navigate along magnetic field lines because of magnetic particles called magnetosomes. All magnetotactic bacteria are unicellular except for the multicellular prokaryote (recently named 'Candidatus Magnetoglobus multicellularis'), which is formed by an orderly assemblage of 17-40 prokaryotic cells that swim as a unit. A ciliate was used in grazing experiments with the M. multicellularis to study the fate of the magnetosomes after ingestion by the protozoa. Ciliates ingested M. multicellularis, which were located in acid vacuoles as demonstrated by confocal laser scanning microscopy. Transmission electron microscopy and X-ray microanalysis of thin-sectioned ciliates showed the presence of M. multicellularis and magnetosomes inside vacuoles in different degrees of degradation. The magnetosomes are dissolved within the acidic vacuoles of the ciliate. Depending on the rate of M. multicellularis consumption by the ciliates the iron from the magnetosomes may be recycled to the environment in a more soluble form.  相似文献   

12.
Magnetotactic bacteria produce magnetosomes, which are magnetic particles enveloped by biological membranes, in a highly controlled mineralization process. Magnetosomes are used to navigate in magnetic fields by a phenomenon called magnetotaxis. Two levels of organization and control are recognized in magnetosomes. First, magnetotactic bacteria create a spatially distinct environment within vesicles defined by their membranes. In the vesicles, the bacteria control the size, composition and purity of the mineral content of the magnetic particles. Unique crystal morphologies are produced in magnetosomes as a consequence of this bacterial control. Second, magnetotactic bacteria organize the magnetosomes in chains within the cell body. It has been shown in a particular case that the chains are positioned within the cell body in specific locations defined by filamentous cytoskeleton elements. Here, we describe an additional level of organization of the magnetosome chains in uncultured magnetotactic cocci found in marine and freshwater sediments. Electron microscopy analysis of the magnetosome chains using a goniometer showed that the magnetic crystals in both types of bacteria are not oriented at random along the crystal chain. Instead, the magnetosomes have specific orientations relative to the other magnetosomes in the chain. Each crystal is rotated either 60°, 180° or 300° relative to their neighbors along the chain axis, causing the overlapping of the (1?1?1) and [Formula in text] capping faces of neighboring crystals. We suggest that genetic determinants that are not present or active in bacteria with magnetosomes randomly rotated within a chain must be present in bacteria that organize magnetosomes so precisely. This particular organization may also be used as an indicative biosignature of magnetosomes in the study of magnetofossils in the cases where this symmetry is observed.  相似文献   

13.
An improved technique for the isolation of magnetotactic bacteria was used for the axenic cultivation of microaerophilic magnetotactic spirilla. Magnetotactic bacteria were first separated from non-magnetic contaminants by exploiting their active migration along magnetic field lines by a capillary "racetrack" method. The purified magnetic cells were then inoculated into a two-layer isolation medium with opposing oxygen and sulfide gradients. Several strains of magnetotactic spirilla were isolated from a freshwater sediment sample using this method. Based on their morphology, physiology and comparative analysis of almost complete 16S rRNA gene sequences, all newly isolated strains were identified as members of the genus Magnetospirillum. While five of the isolates were closely related to previously described species (> 99% sequence similarity), two isolates appear to represent a third phylogenetic cluster within the genus Magnetospirillum.  相似文献   

14.
Magnetotactic bacteria are microorganisms that respond to magnetic fields. We studied the surface ultrastructure of uncultured magnetotactic cocci collected from a marine environment by transmission electron microscopy using freeze-fracture and freeze-etching. All bacteria revealed a Gram-negative cell wall. Many bacteria possessed extensive capsular material and a S-layer formed by particles arranged with hexagonal symmetry. No indication of a metal precipitation on the surface of these microorganisms was observed. Numerous membrane vesicles were observed on the surface of the bacteria. Flagella were organized in bundles originated in a depression on the surface of the cells. Occasionally, a close association of the flagella with the magnetosomes that remained attached to the replica was observed. Capsules and S-layers are common structures in magnetotactic cocci from natural sediments and may be involved in inhibition of metal precipitation on the cell surface or indirectly influence magnetotaxis.  相似文献   

15.
Magnetotactic bacteria are characterized by the production of magnetosomes, nanoscale particles of lipid bilayer encapsulated magnetite, that act to orient the bacteria in magnetic fields. These magnetosomes allow magneto-aerotaxis, which is the motion of the bacteria along a magnetic field and toward preferred concentrations of oxygen. Magneto-aerotaxis has been shown to direct the motion of these bacteria downward toward sediments and microaerobic environments favorable for growth. Herein, we compare the magneto-aerotaxis of wild-type, magnetic Magnetospirillum magneticum AMB-1 with a nonmagnetic mutant we have engineered. Using an applied magnetic field and an advancing oxygen gradient, we have quantified the magnetic advantage in magneto-aerotaxis as a more rapid migration to preferred oxygen levels. Magnetic, wild-type cells swimming in an applied magnetic field more quickly migrate away from the advancing oxygen than either wild-type cells in a zero field or the nonmagnetic cells in any field. We find that the responses of the magnetic and mutant strains are well described by a relatively simple analytical model, an analysis of which indicates that the key benefit of magnetotaxis is an enhancement of a bacterium's ability to detect oxygen, not an increase in its average speed moving away from high oxygen concentrations.  相似文献   

16.
Magnetotactic bacteria orient and migrate along geomagnetic field lines. This ability is based on intracellular magnetic structures, the magnetosomes, which comprise nanometer-sized, membrane-bound crystals of the magnetic iron minerals magnetite (Fe3O4) or greigite (Fe3S4). Magnetosome formation is achieved by a mineralization process with biological control over the accumulation of iron and the deposition of the mineral particle with specific size and orientation within a membrane vesicle at specific locations in the cell. This review focuses on the current knowledge about magnetotactic bacteria and will outline aspects of the physiology and molecular biology of the biomineralization process. Potential biotechnological applications of magnetotactic bacteria and their magnetosomes as well as perspectives for further research are discussed. Received: 2 December 1998 / Received revision: 2 March 1999 / Accepted: 5 March 1999  相似文献   

17.
A fraction of magnetotactic bacteria was isolated by magnetic separation from the water and silt samples collected from the Ol’khovka River (Kislovodsk, Russia). A 16S rRNA clone library was obtained from the total DNA of the fraction by PCR amplification and molecular cloning. Phylogenetic analysis of 67 16S rRNA gene sequences of randomly selected clones demonstrated that two phylotypes of magnetotactic bacteria were present in the library: the first phylotype consisted of 42 sequences and the second one included only one sequence. The remaining 24 sequences belonged to non-magnetotactic bacteria. According to the results of phylogenetic analysis, both phylotypes were magnetotactic cocci; the predominant sequences were almost identical to the 16S rRNA sequence of the freshwater coccus TB24 (X81185.1) identified earlier among the magnetotactic bacteria isolated from Lake Chiemsee (Bavaria). The phylotype represented by a single sequence formed a separate branch in the dendrogram, with 97% similarity between its sequence and that of TB24. The discovered phylotypes formed with the sequences of uncultured freshwater magnetotactic cocci a separate branch within the class Alphaproteobacteria and presumably belonged to a separate family within the recently described order Magnetococcales. Despite the fact that phylogenetic analysis of the 16S rRNA clone library did not reveal any phylotypes of magnetotactic spirilla, after the secondary enrichment of the fraction of magnetotactic bacteria using the “race track” technique, a new strain of magnetotactic spirilla, Magnetospirillum SO-1, was isolated. The closest relative of strain SO-1 was the previously described magnetotactic spirillum Magnetospirillum magneticum AMB-1.  相似文献   

18.
Strain MC-1 is a marine, microaerophilic, magnetite-producing, magnetotactic coccus phylogenetically affiliated with the alpha-Proteobacteria. Strain MC-1 grew chemolithotrophically with sulfide and thiosulfate as electron donors with HCO3-/CO2 as the sole carbon source. Experiments with cells grown microaerobically in liquid with thiosulfate and H14CO3-/14CO2 showed that all cell carbon was derived from H14CO3-/14CO2 and therefore that MC-1 is capable of chemolithoautotrophy. Cell extracts did not exhibit ribulose-1,5-bisphosphate carboxylase-oxygenase (RubisCO) activity, nor were RubisCO genes found in the draft genome of MC-1. Thus, unlike other chemolithoautotrophic, magnetotactic bacteria, strain MC-1 does not appear to utilize the Calvin-Benson-Bassham cycle for autotrophy. Cell extracts did not exhibit carbon monoxide dehydrogenase activity, indicating that the acetyl-coenzyme A pathway also does not function in strain MC-1. The 13C content of whole cells of MC-1 relative to the 13C content of the inorganic carbon source (Deltadelta13C) was -11.4 per thousand. Cellular fatty acids showed enrichment of 13C relative to whole cells. Strain MC-1 cell extracts showed activities for several key enzymes of the reverse (reductive) tricarboxylic acid (rTCA) cycle including fumarate reductase, pyruvate:acceptor oxidoreductase and 2-oxoglutarate:acceptor oxidoreductase. Although ATP citrate lyase (another key enzyme of the rTCA cycle) activity was not detected in strain MC-1 using commonly used assays, cell extracts did cleave citrate, and the reaction was dependent upon the presence of ATP and coenzyme A. Thus, we infer the presence of an ATP-dependent citrate-cleaving mechanism. These results are consistent with the operation of the rTCA cycle in MC-1. Strain MC-1 appears to be the first known representative of the alpha-Proteobacteria to use the rTCA cycle for autotrophy.  相似文献   

19.
Magnetotactic bacteria synthesize magnetosomes, which cause them to orient and migrate along magnetic field lines. The analysis of magnetotaxis and magnetosome biomineralization at the molecular level has been hindered by the unavailability of genetic methods, namely the lack of a means to introduce directed gene-specific mutations. Here we report a method for knockout mutagenesis by homologous recombination in Magnetospirillum gryphiswaldense. Multiple flagellin genes, which are unlinked in the genome, were identified in M. gryphiswaldense. The targeted disruption of the flagellin gene flaA was shown to eliminate flagella formation, motility, and magnetotaxis. The techniques described in this paper will make it possible to take full advantage of the forthcoming genome sequences of M. gryphiswaldense and other magnetotactic bacteria.  相似文献   

20.
Bacteria developed many different ways to orient themselves in the environment. Magnetoreception with following motility along Earth's magnetic field lines and photoreception with subsequent positive or negative phototaxis allow bacteria to optimally position themselves for survival and growth. Some bacteria show both magnetotactic and photoresponsive behaviour and additionally live in a multicellular organism adding another layer of complexity. A novel study by Qian and colleagues visualized different species of multicellular magnetotactic bacteria and shed light on their reproductive as well as photoresponsive behaviour. This study paves the way towards understanding the evolutionary advantage of multicellular lifestyle of prokaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号