首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anaerobic, syntrophic bacterium Syntrophus aciditrophicus grown in pure culture produced 1.4 ± 0.24 mol of acetate and 0.16 ± 0.02 mol of cyclohexane carboxylate per mole of crotonate metabolized. [U-13C]crotonate was metabolized to [1,2-13C]acetate and [1,2,3,4,5,7-13C]cyclohexane carboxylate. Cultures grown with unlabeled crotonate and [13C]sodium bicarbonate formed [6-13C]cyclohexane carboxylate. Trimethylsilyl (TMS) derivatives of cyclohexane carboxylate, cyclohex-1-ene carboxylate, benzoate, pimelate, glutarate, 3-hydroxybutyrate, and acetoacetate were detected as intermediates by comparison of retention times and mass spectral profiles to authentic standards. With [U-13C]crotonate, the m/z-15 ion of TMS-derivatized glutarate, 3-hydroxybutyrate, and acetoacetate each increased by +4 mass units, and the m/z-15 ion of TMS-derivatized pimelate, cyclohex-1-ene carboxylate, benzoate, and cyclohexane carboxylate each increased by +6 mass units. With [13C]sodium bicarbonate and unlabeled crotonate, the m/z-15 ion of TMS derivatives of glutarate, pimelate, cyclohex-1-ene carboxylate, benzoate, and cyclohexane carboxylate each increased by +1 mass unit, suggesting that carboxylation occurred after the synthesis of a four-carbon intermediate. With [1,2-13C]acetate and unlabeled crotonate, the m/z-15 ion of TMS-derivatized 3-hydroxybutyrate, acetoacetate, and glutarate each increased by +0, +2, and +4 mass units, respectively, and the m/z-15 ion of TMS-derivatized pimelate, cyclohex-1-ene carboxylate, benzoate, cyclohexane carboxylate, and 2-hydroxycyclohexane carboxylate each increased by +0, +2, +4, and +6 mass units. The data are consistent with a pathway for cyclohexane carboxylate formation involving the condensation of two-carbon units derived from crotonate degradation with CO2 addition, rather than the use of the intact four-carbon skeleton of crotonate.  相似文献   

2.
The metabolism of benzoate, cyclohex-1-ene carboxylate, and cyclohexane carboxylate by "Syntrophus aciditrophicus" in cocultures with hydrogen-using microorganisms was studied. Cyclohexane carboxylate, cyclohex-1-ene carboxylate, pimelate, and glutarate (or their coenzyme A [CoA] derivatives) transiently accumulated during growth with benzoate. Identification was based on comparison of retention times and mass spectra of trimethylsilyl derivatives to the retention times and mass spectra of authentic chemical standards. (13)C nuclear magnetic resonance spectroscopy confirmed that cyclohexane carboxylate and cyclohex-1-ene carboxylate were produced from [ring-(13)C(6)]benzoate. None of the metabolites mentioned above was detected in non-substrate-amended or heat-killed controls. Cyclohexane carboxylic acid accumulated to a concentration of 260 microM, accounting for about 18% of the initial benzoate added. This compound was not detected in culture extracts of Rhodopseudomonas palustris grown phototrophically or Thauera aromatica grown under nitrate-reducing conditions. Cocultures of "S. aciditrophicus" and Methanospirillum hungatei readily metabolized cyclohexane carboxylate and cyclohex-1-ene carboxylate at a rate slightly faster than the rate of benzoate metabolism. In addition to cyclohexane carboxylate, pimelate, and glutarate, 2-hydroxycyclohexane carboxylate was detected in trace amounts in cocultures grown with cyclohex-1-ene carboxylate. Cyclohex-1-ene carboxylate, pimelate, and glutarate were detected in cocultures grown with cyclohexane carboxylate at levels similar to those found in benzoate-grown cocultures. Cell extracts of "S. aciditrophicus" grown in a coculture with Desulfovibrio sp. strain G11 with benzoate or in a pure culture with crotonate contained the following enzyme activities: an ATP-dependent benzoyl-CoA ligase, cyclohex-1-ene carboxyl-CoA hydratase, and 2-hydroxycyclohexane carboxyl-CoA dehydrogenase, as well as pimelyl-CoA dehydrogenase, glutaryl-CoA dehydrogenase, and the enzymes required for conversion of crotonyl-CoA to acetate. 2-Ketocyclohexane carboxyl-CoA hydrolase activity was detected in cell extracts of "S. aciditrophicus"-Desulfovibrio sp. strain G11 benzoate-grown cocultures but not in crotonate-grown pure cultures of "S. aciditrophicus". These results are consistent with the hypothesis that ring reduction during syntrophic benzoate metabolism involves a four- or six-electron reduction step and that once cyclohex-1-ene carboxyl-CoA is made, it is metabolized in a manner similar to that in R. palustris.  相似文献   

3.
The metabolism of benzoate, cyclohex-1-ene carboxylate, and cyclohexane carboxylate by “Syntrophus aciditrophicus” in cocultures with hydrogen-using microorganisms was studied. Cyclohexane carboxylate, cyclohex-1-ene carboxylate, pimelate, and glutarate (or their coenzyme A [CoA] derivatives) transiently accumulated during growth with benzoate. Identification was based on comparison of retention times and mass spectra of trimethylsilyl derivatives to the retention times and mass spectra of authentic chemical standards. 13C nuclear magnetic resonance spectroscopy confirmed that cyclohexane carboxylate and cyclohex-1-ene carboxylate were produced from [ring-13C6]benzoate. None of the metabolites mentioned above was detected in non-substrate-amended or heat-killed controls. Cyclohexane carboxylic acid accumulated to a concentration of 260 μM, accounting for about 18% of the initial benzoate added. This compound was not detected in culture extracts of Rhodopseudomonas palustris grown phototrophically or Thauera aromatica grown under nitrate-reducing conditions. Cocultures of “S. aciditrophicus” and Methanospirillum hungatei readily metabolized cyclohexane carboxylate and cyclohex-1-ene carboxylate at a rate slightly faster than the rate of benzoate metabolism. In addition to cyclohexane carboxylate, pimelate, and glutarate, 2-hydroxycyclohexane carboxylate was detected in trace amounts in cocultures grown with cyclohex-1-ene carboxylate. Cyclohex-1-ene carboxylate, pimelate, and glutarate were detected in cocultures grown with cyclohexane carboxylate at levels similar to those found in benzoate-grown cocultures. Cell extracts of “S. aciditrophicus” grown in a coculture with Desulfovibrio sp. strain G11 with benzoate or in a pure culture with crotonate contained the following enzyme activities: an ATP-dependent benzoyl-CoA ligase, cyclohex-1-ene carboxyl-CoA hydratase, and 2-hydroxycyclohexane carboxyl-CoA dehydrogenase, as well as pimelyl-CoA dehydrogenase, glutaryl-CoA dehydrogenase, and the enzymes required for conversion of crotonyl-CoA to acetate. 2-Ketocyclohexane carboxyl-CoA hydrolase activity was detected in cell extracts of “S. aciditrophicus”-Desulfovibrio sp. strain G11 benzoate-grown cocultures but not in crotonate-grown pure cultures of “S. aciditrophicus”. These results are consistent with the hypothesis that ring reduction during syntrophic benzoate metabolism involves a four- or six-electron reduction step and that once cyclohex-1-ene carboxyl-CoA is made, it is metabolized in a manner similar to that in R. palustris.  相似文献   

4.
In methanogenic environments, the main fate of benzoate is its oxidization to acetate, H(2) and CO(2) by syntrophic associations of hydrogen-producing benzoate degraders and hydrogen-using methanogens. Here, we report the use of benzoate as an electron acceptor. Pure cultures of S. aciditrophicus simultaneously degraded crotonate and benzoate when both substrates were present. The growth rate was 0.007 h(-1) with crotonate and benzoate present compared with 0.025 h(-1) with crotonate alone. After 8 days of incubation, 4.12 +/- 0.50 mM of cyclohexane carboxylate and 8.40 +/- 0.61 mM of acetate were formed and 4.0 +/- 0.04 mM of benzoate and 4.8 +/- 0.5 mM of crotonate were consumed. The molar growth yield was 22.7 +/- 2.1 g (dry wt) of cells per mol of crotonate compared with about 14.0 +/- 0.1 g (dry wt) of cells per mol of crotonate when S. aciditrophicus was grown with crotonate alone. Cultures grown with [ring-(13)C]-benzoate and unlabelled crotonate initially formed [ring-(13)C]-labelled cyclohexane carboxylate. No (13)C-labelled acetate was detected. In addition to cyclohexane carboxylate, (13)C-labelled cyclohex-1-ene carboxylate was detected as an intermediate. Once almost all of the benzoate was gone, carbon isotopic analyses showed that cyclohexane carboxylate was formed from both labelled and non-labelled metabolites. Glutarate and pimelate were also detected at this time and carbon isotopic analyses showed that each was made from a mixture labelled and non-labelled metabolites. The increase in molar growth yield with crotonate and benzoate and the formation of [ring-(13)C]-cyclohexane carboxylate from [ring-(13)C]-benzoate in the presence of crotonate are consistent with benzoate serving as an electron acceptor.  相似文献   

5.
The anaerobic bacterium Syntrophus aciditrophicus metabolized benzoate in pure culture in the absence of hydrogen-utilizing partners or terminal electron acceptors. The pure culture of S. aciditrophicus produced approximately 0.5 mol of cyclohexane carboxylate and 1.5 mol of acetate per mol of benzoate, while a coculture of S. aciditrophicus with the hydrogen-using methanogen Methanospirillum hungatei produced 3 mol of acetate and 0.75 mol of methane per mol of benzoate. The growth yield of the S. aciditrophicus pure culture was 6.9 g (dry weight) per mol of benzoate metabolized, whereas the growth yield of the S. aciditrophicus-M. hungatei coculture was 11.8 g (dry weight) per mol of benzoate. Cyclohexane carboxylate was metabolized by S. aciditrophicus only in a coculture with a hydrogen user and was not metabolized by S. aciditrophicus pure cultures. Cyclohex-1-ene carboxylate was incompletely degraded by S. aciditrophicus pure cultures until a free energy change (DeltaG') of -9.2 kJ/mol was reached (-4.7 kJ/mol for the hydrogen-producing reaction). Cyclohex-1-ene carboxylate, pimelate, and glutarate transiently accumulated at micromolar levels during growth of an S. aciditrophicus pure culture with benzoate. High hydrogen (10.1 kPa) and acetate (60 mM) levels inhibited benzoate metabolism by S. aciditrophicus pure cultures. These results suggest that benzoate fermentation by S. aciditrophicus in the absence of hydrogen users proceeds via a dismutation reaction in which the reducing equivalents produced during oxidation of one benzoate molecule to acetate and carbon dioxide are used to reduce another benzoate molecule to cyclohexane carboxylate, which is not metabolized further. Benzoate fermentation to acetate, CO(2), and cyclohexane carboxylate is thermodynamically favorable and can proceed at free energy values more positive than -20 kJ/mol, the postulated minimum free energy value for substrate metabolism.  相似文献   

6.
The strictly anaerobic Syntrophus aciditrophicus is a fermenting deltaproteobacterium that is able to degrade benzoate or crotonate in the presence and in the absence of a hydrogen-consuming partner. During growth in pure culture, both substrates are dismutated to acetate and cyclohexane carboxylate. In this work, the unknown enzymes involved in the late steps of cyclohexane carboxylate formation were studied. Using enzyme assays monitoring the oxidative direction, a cyclohex-1-ene-1-carboxyl-CoA (Ch1CoA)-forming cyclohexanecarboxyl-CoA (ChCoA) dehydrogenase was purified and characterized from S. aciditrophicus and after heterologous expression of its gene in Escherichia coli. In addition, a cyclohexa-1,5-diene-1-carboxyl-CoA (Ch1,5CoA)-forming Ch1CoA dehydrogenase was characterized after purification of the heterologously expressed gene. Both enzymes had a native molecular mass of 150 kDa and were composed of a single, 40- to 45-kDa subunit; both contained flavin adenine dinucleotide (FAD) as a cofactor. While the ChCoA dehydrogenase was competitively inhibited by Ch1CoA in the oxidative direction, Ch1CoA dehydrogenase further converted the product Ch1,5CoA to benzoyl-CoA. The results obtained suggest that Ch1,5CoA is a common intermediate in benzoate and crotonate fermentation that serves as an electron-accepting substrate for the two consecutively operating acyl-CoA dehydrogenases characterized in this work. In the case of benzoate fermentation, Ch1,5CoA is formed by a class II benzoyl-CoA reductase; in the case of crotonate fermentation, Ch1,5CoA is formed by reversing the reactions of the benzoyl-CoA degradation pathway that are also employed during the oxidative (degradative) branch of benzoate fermentation.  相似文献   

7.
Pseudoketogenesis in the perfused rat heart   总被引:1,自引:0,他引:1  
Ketogenesis is usually measured in vivo by dilution of tracers of (3R)-hydroxybutyrate or acetoacetate. We show that, in perfused working rat hearts, the specific activities of (3R)-hydroxybutyrate and acetoacetate are diluted by isotopic exchanges in the absence of net ketogenesis. We call this process pseudoketogenesis. When hearts are perfused with buffer containing 2.3 mM of [4-3H]- plus [3-14C]acetoacetate, the specific activities of [4-3H] and [3-14C]acetoacetate decrease while C-1 of acetoacetate becomes progressively labeled with 14C. This is explained by the reversibility of reactions catalyzed by mitochondrial 3-oxoacid-CoA transferase and acetoacetyl-CoA thiolase. After activation of labeled acetoacetate, the specific activity of acetoacetyl-CoA is diluted by unlabeled acetoacetyl-CoA derived from endogenous fatty acids or glucose. Acetoacetyl-CoA thiolase partially exchanges 14C between C-1 and C-3 of acetoacetyl-CoA. Finally, 3-oxoacid-CoA transferase liberates weakly labeled acetoacetate which dilutes the specific activity of extracellular acetoacetate. An isotopic exchange in the reverse direction is observed when hearts are perfused with unlabeled acetoacetate plus [1-14C]-, [13-14C]-, or [15-14C]palmitate; here also, acetoacetate becomes labeled on C-1 and C-3. Computations of specific activities of (3R)-hydroxybutyrate, acetoacetate, and acetyl-CoA yield minimal rates of pseudoketogenesis ranging from 19 to 32% of the net uptake of (3R)-hydroxybutyrate plus acetoacetate by the heart.  相似文献   

8.
The anaerobic bacterium Syntrophus aciditrophicus metabolized benzoate in pure culture in the absence of hydrogen-utilizing partners or terminal electron acceptors. The pure culture of S. aciditrophicus produced approximately 0.5 mol of cyclohexane carboxylate and 1.5 mol of acetate per mol of benzoate, while a coculture of S. aciditrophicus with the hydrogen-using methanogen Methanospirillum hungatei produced 3 mol of acetate and 0.75 mol of methane per mol of benzoate. The growth yield of the S. aciditrophicus pure culture was 6.9 g (dry weight) per mol of benzoate metabolized, whereas the growth yield of the S. aciditrophicus-M. hungatei coculture was 11.8 g (dry weight) per mol of benzoate. Cyclohexane carboxylate was metabolized by S. aciditrophicus only in a coculture with a hydrogen user and was not metabolized by S. aciditrophicus pure cultures. Cyclohex-1-ene carboxylate was incompletely degraded by S. aciditrophicus pure cultures until a free energy change (ΔG′) of −9.2 kJ/mol was reached (−4.7 kJ/mol for the hydrogen-producing reaction). Cyclohex-1-ene carboxylate, pimelate, and glutarate transiently accumulated at micromolar levels during growth of an S. aciditrophicus pure culture with benzoate. High hydrogen (10.1 kPa) and acetate (60 mM) levels inhibited benzoate metabolism by S. aciditrophicus pure cultures. These results suggest that benzoate fermentation by S. aciditrophicus in the absence of hydrogen users proceeds via a dismutation reaction in which the reducing equivalents produced during oxidation of one benzoate molecule to acetate and carbon dioxide are used to reduce another benzoate molecule to cyclohexane carboxylate, which is not metabolized further. Benzoate fermentation to acetate, CO2, and cyclohexane carboxylate is thermodynamically favorable and can proceed at free energy values more positive than −20 kJ/mol, the postulated minimum free energy value for substrate metabolism.  相似文献   

9.
Syntrophy is essential for the efficient conversion of organic carbon to methane in natural and constructed environments, but little is known about the enzymes involved in syntrophic carbon and electron flow. Syntrophus aciditrophicus strain SB syntrophically degrades benzoate and cyclohexane-1-carboxylate and catalyses the novel synthesis of benzoate and cyclohexane-1-carboxylate from crotonate. We used proteomic, biochemical and metabolomic approaches to determine what enzymes are used for fatty, aromatic and alicyclic acid degradation versus for benzoate and cyclohexane-1-carboxylate synthesis. Enzymes involved in the metabolism of cyclohex-1,5-diene carboxyl-CoA to acetyl-CoA were in high abundance in S. aciditrophicus cells grown in pure culture on crotonate and in coculture with Methanospirillum hungatei on crotonate, benzoate or cyclohexane-1-carboxylate. Incorporation of 13C-atoms from 1-[13C]-acetate into crotonate, benzoate and cyclohexane-1-carboxylate during growth on these different substrates showed that the pathways are reversible. A protein conduit for syntrophic reverse electron transfer from acyl-CoA intermediates to formate was detected. Ligases and membrane-bound pyrophosphatases make pyrophosphate needed for the synthesis of ATP by an acetyl-CoA synthetase. Syntrophus aciditrophicus, thus, uses a core set of enzymes that operates close to thermodynamic equilibrium to conserve energy in a novel and highly efficient manner.  相似文献   

10.
Cyclohexane carboxylate supported relatively rapid growth (doubling times 7–8 h) of Rhodopseudomonas palustris under oxic or photosynthetic conditions, but did not serve as a substrate for either of the known aromatic CoA ligases. A CoA ligase that thioesterifies cyclohexane carboxylate was partially purified and did not cross react immunologically with the two CoA ligases purified previously from this bacterium. Crude extracts of R. palustris cells grown with a range of aromatic or alicyclic acids contained a dehydrogenase that reacted with cyclohexane carboxyl-CoA or cyclohex-1-ene carboxyl-CoA, using 2,6-dichlorophenolindophenol or ferricenium ion as electron carrier. This activity was not detected in extracts of adipate-, glutamate-, or succinate-grown cells. No oxidation or reduction of nonesterified cyclohexane carboxylate or cyclohexene carbocylate was detected in extracts of cells grown with aromatic or aliphatic substrates, neither aerobically nor anaerobically. A constitutively expressed thioesterase that hydrolyzed cyclohexane carboxyl-CoA and also some alicyclic and aliphatic CoA derivatives was purified and characterized. The enzyme had little or no activity on benzoyl-CoA or 4-hydroxybenzoyl-CoA. The presence of a thioesterase that effectively hydrolyzes cyclohexane carboxyl-CoA suggests that transient production of cyclohexane carboxylate is a physiological response to temporary excess of reductant during metabolism of aromatic compounds. Received: 22 May 1995 / Accepted: 13 September 1995  相似文献   

11.
The anaerobic metabolism of crotonate, benzoate, and cyclohexane carboxylate by Syntrophus aciditrophicus grown syntrophically with Methanospirillum hungatei provides a model to study syntrophic cooperation. Recent studies revealed that S. aciditrophicus contains Re-citrate synthase but lacks the common Si-citrate synthase. To establish whether the Re-citrate synthase is involved in glutamate synthesis via the oxidative branch of the Krebs cycle, we have used [1-13C]acetate and [1-14C]acetate as well as [13C]bicarbonate as additional carbon sources during axenic growth of S. aciditrophicus on crotonate. Our analyses showed that labeled carbons were detected in at least 14 amino acids, indicating the global utilization of acetate and bicarbonate. The labeling patterns of alanine and aspartate verified that pyruvate and oxaloacetate were synthesized by consecutive carboxylations of acetyl coenzyme A (acetyl-CoA). The isotopomer profile and 13C nuclear magnetic resonance (NMR) spectroscopy of the obtained [13C]glutamate, as well as decarboxylation of [14C]glutamate, revealed that this amino acid was synthesized by two pathways. Unexpectedly, only the minor route used Re-citrate synthase (30 to 40%), whereas the majority of glutamate was synthesized via the reductive carboxylation of succinate. This symmetrical intermediate could have been formed from two acetates via hydration of crotonyl-CoA to 4-hydroxybutyryl-CoA. 4-Hydroxybutyrate was detected in the medium of S. aciditrophicus when grown on crotonate, but an active hydratase could not be measured in cell extracts, and the annotated 4-hydroxybutyryl-CoA dehydratase (SYN_02445) lacks key amino acids needed to catalyze the hydration of crotonyl-CoA. Besides Clostridium kluyveri, this study reveals the second example of a microbial species to employ two pathways for glutamate synthesis.  相似文献   

12.
JH imple and reliable method for the determination of ketone body turnover in vivo using a primed, continuous infusion of [3,4-13C2]acetoacetate is described. Mole percent enrichment of beta-[13C2]hydroxybutyrate and [13C2]acetoacetate is determined by gas chromatography/mass spectrometry using electron-impact ionization and selected ion monitoring. Ketone body flux data are provided from preliminary dog experiments. The method is readily applicable to the study of ketone body metabolism in both laboratory animals and humans.  相似文献   

13.
Fatty Acid Oxidation and Ketogenesis by Astrocytes in Primary Culture   总被引:3,自引:2,他引:1  
The oxidation of the fatty acids octanoate and palmitate to CO2 and the ketone bodies acetoacetate and D-(-)-3-hydroxybutyrate was examined in astrocytes that were prepared from cortex of 2-day-old rat brain and grown in primary culture to confluence. Accumulation of acetoacetate (by mass) in the culture medium of astrocytes incubated with octanoate (0.3-0.5 mM) was 50-90 nmol C2 units h-1 mg of protein-1. A similar rate was obtained using radiolabeled tracer methodology with [1-14C]octanoate as labeled substrate. The results from the radiolabeled tracer studies using [1-14C]- and [7-14C]octanoate and [1-14C]-, [13-14C]-, and [15-14C]palmitate indicated that a substantial proportion of the omega-terminal four-carbon unit of these fatty acids bypassed the beta-ketothiolase step of the beta-oxidation pathway and the 3-hydroxy-3-methylglutaryl (HMG)-CoA cycle of the classic ketogenic pathway. The [14C]acetoacetate formed from the 1-14C-labeled fatty acids, obligated to pass through the acetyl-CoA pool, contained 50% of the label at carbon 3 and 50% at carbon 1. By contrast, the [14C]acetoacetate formed from (omega-1)-labeled fatty acids contained 90% of the label at carbon 3 and 10% at carbon 1, whereas that formed from the (omega-3)-labeled fatty acid contained 20% of the label at carbon 3 and 80% at carbon 1. These results indicate that acetoacetate is primarily formed either by the action of 3-oxo-acid-CoA transferase (EC 2.8.3.5) or acetoacetyl-CoA deacylase (EC 3.1.2.11) or both on acetoacetyl-CoA and not by the action of the mitochondrial HMG-CoA cycle involving HMG-CoA lyase (EC 4.1.3.4), which was readily detected, and HMG-CoA synthase (EC 4.1.3.5), which was barely measurable.  相似文献   

14.
Moraxella sp. isolated from soil grows anaerobically on benzoate by nitrate respiration; nitrate or nitrite are obligatory electron acceptors, being reduced to molecular N2 during the catabolism of the substrate. This bacterium also grows aerobically on benzoate. 2. Aerobically, benzoate is metabolized by ortho cleavage of catechol followed by the beta-oxoadipate pathway. 3. Cells of Moraxella grown anaerobically on benzoate are devoid of ortho and meta cleavage enzymes; cyclohexanecarboxylate and 2-hydroxycyclohexanecarboxylate were detected in the anaerobic culture fluid. 4. [ring-U-14C]Benzoate, incubated anaerobically with cells in nitrate-phosphate buffer, gave rise to labelled 2-hydroxycyclohexanecarboxylate and adipate. When [carboxy-14C]benzoate was used, 2-hydroxycyclohexanecarboxylate was radioactive but the adipate was not labelled. A decarboxylation reaction intervenes at some stage between these two metabolites. 5. The anaerobic metabolism of benzoate by Moraxella sp. through nitrate respiration takes place by the reductive pathway (Dutton & Evans, 1969). Hydrogenation of the aromatic ring probably occurs via cyclohexa-2,5-dienecarboxylate and cyclohex-1-enecarboxylate to give cyclohexanecarboxylate. The biochemistry of this reductive process remains unclear. 6. CoA thiol esterification of cyclohexanecarboxylate followed by beta-oxidation via the unsaturated and hydroxy esters, would afford 2-oxocyclohexanecarboxylate. Subsequent events in the Moraxella culture differ from those occurring with Rhodopseudomonas palustris; decarboxylation precedes hydrolytic cleavage of the alicyclic ring to produce adipate in the former, whereas in the latter the keto ester undergoes direct hydrolytic fission to pimelate.  相似文献   

15.
Primary cultures of astrocytes and neurons derived from neonatal and embryonic mouse cerebral cortex, respectively, were incubated with [3-14C]acetoacetate or [2-14C]glucose. The utilization of glucose and acetoacetate, the production of lactate, D-3-hydroxybutyrate, and 14CO2, and the incorporation of 14C and of 3H from 3H2O into lipids and lipid fractions were measured. Both cell types used acetoacetate as an energy substrate and as a lipid precursor; lactate was the major product of glucose metabolism. About 60% of the acetoacetate that was utilized by neurons was oxidized to CO2, whereas this was only approximately 20% in the case of cultured astrocytes. This indicates that the rate at which 14C-labeled Krebs cycle intermediates exchange with pools of unlabeled intermediates is much higher in astrocytes than in neurons. Acetoacetate is a better precursor for the synthesis of fatty acids and cholesterol than glucose, presumably because it can be used directly in the cytosol for these processes; preferential incorporation into cholesterol was not observed in these in vitro systems. We conclude that ketone bodies can be metabolized both by the glial cells and by the neuronal cells of developing mouse brain.  相似文献   

16.
Effects of Ketone Bodies on Astrocyte Amino Acid Metabolism   总被引:5,自引:1,他引:4  
Abstract: The effects of acetoacetate and 3-hydroxybutyrate on glial amino acid metabolism were studied in primary cultures of astrocytes. The exchange of nitrogen among amino acids was measured with 15N as a metabolic probe and gas chromatography-mass spectrometry as a tool with which to quantify isotope abundance. Addition of either acetoacetate or 3-hydroxybutyrate (5 m M ) to the incubation medium did not alter the initial rate of appearance of [15N]glutamate in the glia, but it did inhibit transamination of glutamate to [15N]aspartate. Addition of acetoacetate also inhibited formation of [2-15N]glutamine, but 3-hydroxybutyrate had a stimulatory effect. The presence in the medium of sodium acetate (5 m M ) was also associated with diminished production of [15N]aspartate and [2-15N]glutamine with [15N]glutamate as precursor. Studies with [2-15N]glutamine as precursor indicated that treatment of the astrocytes with ketone bodies did not alter flux through the glutaminase pathway. Nor did the presence of the ketone bodies reduce significantly the flux of nitrogen from [15N]GABA to [2-15N]glutamine when the former species served as a metabolic tracer. The concentration of internal citrate increased in the presence of acetoacetate, 3-hydroxybutyrate, and acetate. Studies with purified sheep brain glutamine synthetase showed that citrate inhibited this enzyme. These findings are considered in terms of the known anticonvulsant effect of a ketogenic diet.  相似文献   

17.
18.
β-Hydroxybutyrate as a Precursor to the Acetyl Moiety of Acetylcholine   总被引:3,自引:3,他引:0  
Abstract— Rat brain cortex slices were incubated with 10 mm -glucose and trace amounts of [6-3H]glucose and [3-14C]β-hydroxybutyrate. The effects of (-)-hydroxycitrate, an inhibitor of ATP-citrate lyase; methylmalonate, an inhibitor of β-hydroxybutyrate dehydrogenase; and increasing concentrations of unlabeled acetoacetate were examined. The incorporation of label into lactate, citrate, malate, and acetylcholine (ACh) was measured and 3H:14C ratios calculated. Incorporation of [14C]β-hydroxybutyrate into lactate was limited because of the low activity of gluconeogenic enzymes in brain, whereas incorporation of 14C label into Krebs cycle intermediates and ACh was higher than in previous experiments with [3H-,14C]-glucose. (–)-Hydroxycitrate (5.0 mM) reduced incorporation of [3H]glucose and [14C]β-hydroxybutyrate into ACh. In contrast, slices incubated with methylmalonate (1 mm ) showed a decrease in 14C incorporation without appreciably affecting glucose metabolism. The effects of high concentrations of methylmalonate were nonselective and yielded a generalized decrease in metabolism. Acetoacetate (1 mm ) also produced a decreased 14C incorporation into ACh and its precursors. At 10 mm , acetoacetate reduced 3H and 14C incorporation into ACh without substantially affecting total ACh content. From the results, it is suggested that in adult rats β-hydroxybutyrate can contribute to the acetyl moiety of ACh, possibly via the citrate cleavage pathway, though it is quantitatively less important than glucose and pyruvate. This contribution of ketone bodies could become significant should their concentration become abnormally high or glucose metabolism be reduced.  相似文献   

19.
The utilization of millimolar concentrations of [2-14C]acetone and the production of acetone from acetoacetate were studied in perfused livers from 48-h starved rats. We devised a procedure for determining, in a perfused liver system, the first-order rate constant for the decarboxylation of acetoacetate (0.29 +/- 0.09 h-1, S.E., n = 8). After perfusion of livers with [2-14C]acetone, labeled acetate was isolated from the perfusion medium and characterized as [1-14C]acetate. No radioactivity was found in lactate or 3-hydroxybutyrate. After 90 min of perfusion with [2-14C]acetone, the specific activity of acetate was 30 +/- 4% (n = 13) of the initial specific activity of acetone. We conclude that, in perfused livers from 2-day starved rats, acetone metabolism occurs for the most part via free acetate.  相似文献   

20.
Tumors of peripheral tissues contain low levels of succinyl CoA-acetoacetate CoA transferase activity which is not induced in vitro by prolonged cultivation in 2.5 mM DL-3-hydroxybutyrate. Although this enzyme is considered to be the main agent controlling the extent to which ketone bodies serve as metabolic substrates such tumors metabolize D(-)-3-hydroxy[3(14)C]butyrate to 14CO2. Also addition of 3-hydroxybutyrate and/or acetoacetate reduces the amount of 14CO2 produced from D-[U-14C] glucose suggesting a common metabolic intermediate. These observations can be accounted for by the presence of acetoacetyl-CoA synthetase, an enzyme which is able to synthesize acetoacetyl-CoA directly from acetoacetate, ATP and coenzyme A. This is the first demonstration of this enzyme in tumor tissue. The rate of metabolism of acetoacetate by this enzyme is sufficient to account for the production of CO2 from 3-hydroxybutyrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号