首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
11C-labeled (+)-trans-2-[[(3R,4S)-4-(4-chlorophenyl)-1-methylpiperidin-3-yl]methylsulfanyl]ethanol ([11C]5) and (+)-trans-2-[[(3R,4S)-4-(4-chlorophenyl)-1-methylpiperidin-3-yl]methylsulfanyl]-1-(piperidin-1-yl)ethanone ([11C]6) were synthesized and evaluated as new imaging agents for the norepinephrine transporter (NET). [11C]5 and [11C]6 display high affinity for the NET in vitro (Ki = 0.94 and 0.68 nM, respectively) and significant selectivity over the dopamine (DAT) and serotonin transporters (SERT). Because of their high affinity and favorable transporter selectivities we speculated that these ligands might serve as useful PET agents for imaging NET in vivo. Contrary to our expectations, both of these ligands provided brain images that were more typical of those shown by agents binding to the DAT.  相似文献   

2.
The effects of side chain modification and chirality in linezolid-like 1,2,4-oxadiazoles have been studied to design new potent antibacterials against Gram-positive multidrug-resistant pathogens. The adopted strategy involved a molecular modelling approach, the synthesis and biological evaluation of new designed compounds, enantiomers separation and absolute configuration assignment. Experimental determination of the antibacterial activity of the designed (S)-1-((3-(4-(3-methyl-1,2,4-oxadiazol-5-yl)phenyl)-oxazolidin-2-one-5-yl)methyl)-3-methylthiourea and (S)-1-((3-(3-fluoro-4-(3-methyl-1,2,4-oxadiazol-5-yl)phenyl)-oxazolidin-2-one-5-yl)methyl)-3-methylthiourea against multidrug resistant linezolid bacterial strains was higher than that of linezolid.  相似文献   

3.
3-Amino-6-(beta-D-ribofuranosyl)imidazo[4,5-c]pyrazole (2) was synthesized via an N-N bond formation strategy by a mononuclear heterocyclic rearrangement (MHR). A series of 5-amino-1-(5-O-tert-butyldimethylsilysilyl-2,3-O-isopropylidene-beta-D-ribofuranosyl)-4-(1,2,4-oxadiazol-3-yl)imidazoles (6a-d), with different substituents at the 5-position of the 1,2,4-oxadiazole, were synthesized from 5-amino-1-(beta-D-ribofuranosyl)imidazole-4-carboxamide (AICA Ribose, 3). It was found that 5-amino-1-(5-O-tert-butyldimethylsilyl-2,3-O-isopropylidene-beta-D-ribofuranosyl)-4-(5-methyl-1,2,4-oxadiazol-3-yl)imidazole (6a) underwent the MHR with sodium hydride in DMF or DMSO to afford the corresponding 3-acetamidoimidazo[4,5-c]pyrazole nucleoside(s) (7b and/or 7a) in good yields. A direct removal of the acetyl group from 3-acetamidoimidazo[4,5-c]pyrazoles under numerous conditions was unsuccessful. Subsequent protecting group manipulations afforded the desired 3-amino-6-(beta-D-ribofuranosyl)imidazo[4,5-c]pyrazole (2) as a 5:5 fused analog of adenosine (1).  相似文献   

4.
Abstract

The Lewis acid catalyzed ribosylation of 5(4)-cyano-4(5)-(5-methyl-1,2,4-oxadiazol-3-yl)-1H-imidazole (2) with 1-O-acetyl-2,3,5-tri-O-benzoyl-B-D-ribose gave only 4-(5-methyl-1,2,4-oxadiazol-3-yl)-1-(2,3,5-tri-O-benzoy 1-B-D-ribofuranosyl)imidazole-5-carbonitrile (3). Treatment of 3 with methanolic ammonia gave 4-(5-methyl-1,2,4-oxadiazol-3-yl)-1-(6-D-ribofuranosyl)imidazole-5-carbonitrile (4). Treatment of 4 with hydrogen peroxide in ammonia gave -(5-methyl-1,2,4-oxadiazol-3-yl)-1-(B-D-ribofuranosyl)imidazole-5-carboxamide (5). When 5 was treated with sodium hydride in dimthyl-sulfoxide a rearrangement (mononuclear heterocyclic rearrangement, m.h.r.) occurred to give a modest 17% yield of 4-acetamido-1-(B-D ribofuranosyl)imidazo[4,5-d]pyridazin-7-one (6). Treatment of 6 with aqueous ammonia gave4-amino-l-(B-D-ribofuranosyl)imidazo[4,5-d]pyridazin-7-one (1). The synthesis of compound 1 using the m.h.r. for the preparation of a single regioisomer of the imidazo[4,5-d]pyridazin-7-one ring system, has demonstrated the potential of this methodology. Neither compound 5 nor 6 affected the growth or replication of human foreskin fibroblasts (HFF cells) or human cytomegalovirus (HCMV). In contrast, compound 1 inhibited the replication of HCMV (IC50=29 μM) but produced visual cytotoxicity in uninfected HFF cells (IC50=70μM). Compound 1 also inhibited the proliferation of L1210 murine leukemic cells (IC50=25μM), whereas the precursors 4 and 6 did not.  相似文献   

5.
Ester analogs of (+/-)3-(4-(3-(bis(4-fluorophenyl)amino)propyl)piperazin-1-yl)-1-phenylpropan-1-ol were synthesized and evaluated for binding at DAT, SERT, NET, and sigma1 receptors, and compared to GBR 12909 and several known sigma1 receptor ligands. Most of these compounds demonstrated high affinity (K(i)=4.3-51 nM) and selectivity for the DAT among the monoamine transporters. S- and R-1-(4-(3-(bis(4-fluorophenyl)amino)propyl)piperazin-1-yl)-3-phenylpropan-2-ol were also prepared wherein modest enantioselectivity was demonstrated at the DAT. However, no enantioselectivity at sigma1 receptors was observed and most of the ester analogs of the more active S-enantiomer showed comparable binding affinities at both DAT and sigma1 receptors with a maximal 16-fold DAT/sigma1 selectivity.  相似文献   

6.
The 5-HT1B/D receptor agonist sumatriptan has been proposed to treat dyspeptic symptoms, because it facilitates gastric accommodation. It is unknown whether stimulation of 5-HT1B/D receptors is involved. Thus, in four conscious dogs, we compared the effects of sumatriptan alone or combined with N-[4-methoxy-3-(4-methyl-1-piperazinyl) phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)-[1,1-biphenyl]-4-carboxamide hydrocloride (GR-127935), N-[3-[3 (dimethylamino)-ethoxy]-4-methoxyphenyl]-2'-[methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)]-[1,1-biphenyl]-4-carboxamide hydrocloride (SB-216641 hydrochloride), or 3-[4-(4-chloro-phenyl)piperazin-1-yl]-1,1-diphenyl-2-propanol hydrochloride (BRL-15572 hydrochloride) (respectively, nonselective 5-HT1B/D, selective 5-HT1B, and selective 5-HT1D receptor antagonists) on gastric accommodation to isobaric distensions performed with a barostat. An exponential and a linear model were used to fit the pressure-volume relationship. An exponential equation fitted the data better than a linear equation. Sumatriptan (800 nmol/kg iv) induced an immediate gastric relaxation (Deltavolume: 112 +/- 44 ml, P < 0.05). After sumatriptan, the pressure-volume curve was shifted toward significantly higher volumes. This effect was fully reversed by GR-127935 or SB-216641 but not by BRL-15572. In conclusion, 5-HT1B receptors seem to play an important role in modulating gastric accommodation to a distending stimulus. An exponential model for pressure-volume curves fits well with the concept of gastric adaptive relaxation.  相似文献   

7.
Abstract

Chemical modification of the 4-nitrile group in 5-amino-1-(2,3,5-tri-O-benzyl-β-D-ribofuranosyl)pyrazole-4-carbonitrile (1) afforded 5-amino-4-(5-methyl-1,2,4-oxadiazol-3-yl)-1-(2,3,5-tri-O-benzyl-β-D-ribofuran osyl)pyrazole (3). The methylation of 3, via a three step procedure, gave 5-methylamino-4-(5-methyl-1,2,4-oxadiazol-3-yl)-1-(2,3,5-tri-O-benzyl-β-D-ribofuranosyl)pyrazole (3a). The mononuclear heterocyclic rearrangement (m.h.r) of 3 and 3a, provided a convenient route to the novel azapentalene adenosine analogs 3-amino-6-(β-D-ribofuranosyl)pyrazolo[3,4-c]pyrazole (6) and 3-amino-1-methyl-6-(β-D-ribofuranosyl)pyrazolo[3,4-c]pyrazole (6a), respectively. Compound 6 exhibited no cytotoxicity when screened in vitro against either mouse L1210 leukemic cells or human foreskin fibroblasts. Nor was it active against human cytomegalovirus. Compound 6a was designed and prepared to investigate the possibility that the lack of biological activity of 6 might be due to annular tautomerization limiting the ability of 6 to serve as a substrate for the activating enzyme adenosine kinase. This hypothesis was neither supported nor disproved by the results, as compound 6a was also inactive in both the antiproliferative and antiviral test systems.  相似文献   

8.
Syntheses and structure-activity relationships of a novel class of 2-[3-oxospiro[isobenzofuran-1(3H),1'-cyclohexan]-4'-yl]benzimidazole NPY Y5 receptor antagonists are described. Optimization of the lead compound 2a by incorporating substituents into the 5-position or into both the 5- and 6-positions of the benzimidazole core part led to the identification of 5-(5-methyl-1,2,4-oxadiazol-2-yl)benzimidazole (2r: IC(50)=3.3 nM) and 5-(2-methyltetrazol-5-yl)benzimidazole (2u: IC(50)=5.9 nM), both of which are potent, selective, and orally bioavailable Y5 receptor antagonists.  相似文献   

9.
The 1,3-dipolar cycloaddition of nitrile oxides generated in situ from benzohydroximinoyl chloride and triethylamine to 2-aminopyranopyridine-3-carbonitriles and 2-aminochromene-3-carbonitriles occurred chemoselectively furnishing novel 1,2,4-oxadiazole-pyranopyridine/chromene hybrid heterocycles in moderate yields. In vitro screening of these compounds against Mycobacterium tuberculosis H37Rv (MTB) disclosed that the 1,2,4-oxadiazole-pyranopyridine hybrids display enhanced activity relative to the 1,2,4-oxadiazole-chromene hybrids. Among the compounds screened, 3-[3-(4-chlorophenyl)-1,2,4-oxadiazol-5-yl]-4-(2,4-dichlorophenyl)-8-[(E)-(2,4-dichlorophenyl)-methylidene]-6-methyl-5,6,7,8-tetrahydro-4H-pyrano[3,2-c]pyridin-2-amine (MIC: 0.31 μM) is 1.2, 15.2 and 24.6 times more active than standard antitubercular drugs, viz. isoniazid, ciprofloxacin and ethambutol, respectively.  相似文献   

10.
We discovered a new chemical class of antiproliferative agents, 4-(1,2,4-oxadiazol-5-yl)piperidine-1-carboxamides. SAR-guided optimization of the two distinct terminal fragments yielded a compound with 120 nM potency in an antiproliferative assay. Biological activity profile studies (COMPARE analysis) demonstrated that 4-(1,2,4-oxadiazol-5-yl)piperidine-1-carboxamides act as tubulin inhibitors, and this conclusion was confirmed via biochemical assays with pure tubulin and demonstration of increased numbers of mitotic cells following treatment of a leukemia cell line.  相似文献   

11.

3-Amino-6-(β-D-ribofuranosyl)imidazo[4,5-c]pyrazole (2) was synthesized via an N-N bond formation strategy by a mononuclear heterocyclic rearrangement (MHR). A series of 5-amino-1-(5-O-tert-butyldimethylsilyl-2,3-O-isopropylidene-β-D-ribofuranosyl-4-(1,2,4-oxadiazol-3-yl)imidaz-oles (6a-d), with different substituents at the 5-position of the 1,2,4-oxadiazole, were synthesized from 5-amino-1-(β-D-ribofuranosyl)imidazole-4-carboxamide (AICA Ribose, 3). It was found that 5-amino-1-(5-O-tert-butyldimethylsilyl-2,3-O-isopropylidene-β-D-ribofuranosyl)-4-(5-methyl-1,2,4-oxadiazol-3-yl)imidazole (6a) underwent the MHR with sodium hydride in DMF or DMSO to afford the corresponding 3-acetamidoimidazo[4,5-c]pyrazole nucleoside(s) (7b and/or 7a) in good yields. A direct removal of the acetyl group from 3-acetamidoimidazo[4,5-c]pyrazoles under numerous conditions was unsuccessful. Subsequent protecting group manipulations afforded the desired 3-amino-6-(β-D-ribofuranosyl)imidazo[4,5-c]pyrazole (2) as a 5:5 fused analog of adenosine (1).  相似文献   

12.
S1P(1) receptor driven lymphopenia has proven utility in the treatment of an array of autoimmune disease states. As a part of our efforts to develop potent and selective S1P(1) receptor agonists, we have identified a novel chemical series of 4-oxo-4-(5-(5-phenyl-1,2,4-oxadiazol-3-yl)indolin-1-yl)butanoic acid S1P(1) receptor agonists.  相似文献   

13.
We previously disclosed the discovery of 4-hydroxy-1-methyl-4-(4-methylphenyl)-3-piperidyl 4-methylphenyl ketone (3) as a novel class of dopamine transporter (DAT) inhibitors and showed that (+/-)-3 has a significant functional antagonism against cocaine in vitro. Our previous preliminary structure-activity relationship study led to identification of a more potent DAT inhibitor [(+/-)-4] but this compound failed to show any significant functional antagonism. To search for more potent analogues than 3 but still displaying significant functional antagonism, further SARs, molecular modeling studies and in vitro pharmacological evaluation of this novel class of DAT inhibitors were performed. Sixteen new analogues were synthesized in racemic form and evaluated as DAT inhibitors. It was found that seven new analogues are reasonably potent DAT inhibitors with K(i) values of 0.041--0.30 and 0.052--0.16 microM in [(3)H]mazindol binding and inhibition of DA reuptake. Chiral isomers of several potent DAT inhibitors were obtained through chiral HPLC separation and evaluated as inhibitors at all the three monoamine transporter sites. In general, the (-)-isomer is more active than the (+)-isomer in inhibition of DA reuptake and all the (-)-isomers are selective inhibitors at the DAT site. Evaluation of cocaine's effect on dopamine uptake in the presence and absence of (+)-3 and (-)-3 showed that (-)-3 is responsible for the functional antagonism obtained with the original lead (+/-)-3. Out of the new compounds synthesized, analogue (+/-)-20, which is 8- and 3-fold more potent than (+/-)-3 in binding and inhibition of DA reuptake, appeared to have improved functional antagonism as compared to (+/-)-3.  相似文献   

14.
Abstract: The K+-evoked overflow of endogenous glutamate from cerebellar synaptosomes was inhibited by serotonin [5-hydroxytryptamine (5-HT); pD2 = 8.95], 8-hydroxy-2-(di- n -propylamino)tetralin (8-OH-DPAT; pD2 = 7.35), and sumatriptan (pD2 = 8.43). These inhibitions were prevented by the selective 5-HT1D receptor antagonist N -[4-methoxy-3-(4-methyl-1-piperazinyl)phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)(1,1-biphenyl)-4-carboxamide (GR-127935). The three agonists tested also inhibited the cyclic GMP (cGMP) response provoked in slices by K+ depolarization; pD2 values were 9.37 (5-HT), 9.00 (8-OH-DPAT), and 8.39 (sumatriptan). When cGMP formation was elevated by directly activating glutamate receptors with NMDA or α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), the inhibition of the cGMP responses displayed the following pattern: 5-HT (pD2 values of 8.68 and 8.72 against NMDA and AMPA, respectively); 8-OH-DPAT (respective pD2 values of 9.15 and 9.00); sumatriptan (0.1 µ M ) was ineffective. The 5-HT1A receptor antagonist ( S )-(+) N-tert -butyl-3-[4-(2-methoxyphenyl)piperazin-1-yl]-2-phenylpropionamide dihydrochloride [(+)-WAY 100135] did not prevent the inhibition of glutamate release by 5-HT but blocked the inhibition by 8-OH-DPAT of the NMDA/AMPA-evoked cGMP responses. It is suggested that presynaptic 5-HT1D receptors mediate inhibition directly of glutamate release and indirectly of the cGMP responses to the released glutamate; on the other hand, activation of (postsynaptic) 5-HT1A receptors causes inhibition of the cGMP responses linked to stimulation of NMDA/AMPA receptors.  相似文献   

15.
A series of new 1,3-dipropyl-8-(1-heteroarylmethyl-1H-pyrazol-4-yl)-xanthine derivatives as A(2B)-AdoR antagonists have been synthesized and evaluated for their binding affinities for the A(2B), A(1), A(2A), and A(3)-AdoRs. 8-(1-((3-phenyl-1,2,4-oxadiazol-5-yl)methyl)-1H-pyrazol-4-yl)-1,3-dipropyl-1H-purine-2,6(3H,7H)-dione (4) displayed high affinity (K(i)=1 nM) and selectivity for the A(2B)-AdoR versus A(1), A(2A), and A(3)-AdoRs (A(1)/A(2B), A(2A)/A(2B), and A(3)/A(2B) selectivity ratios of 370, 1100, and 480, respectively). The synthesis and SAR of this novel class of compounds are presented herein.  相似文献   

16.
A series of 2beta-[3'-(substituted benzyl)isoxazol-5-yl]- and 2beta-[3'-methyl-4'-(substituted phenyl)isoxazol-5-yl]-3beta-(substituted phenyl)tropanes were prepared and evaluated for affinities at dopamine, serotonin, and norepinephrine transporters using competitive radioligand binding assays. The 2beta-[3'-(substituted benzyl)isoxazol-5-yl]-3beta-(substituted phenyl)tropanes (3a-h) showed high binding affinities for the dopamine transporter (DAT). The IC(50) values ranged from 5.9 to 22nM. On the other hand, the 2beta-[3'-methyl-4'-(substituted phenyl)isoxazol-5-yl]-3beta-(substituted phenyl)tropanes (4a-h), with IC(50) values ranging from 65 to 173nM, were approximately 3- to 25-fold less potent than the corresponding 2beta-[3'-(substituted benzyl)isoxazol]tropanes. All tested compounds were selective for the DAT relative to the norepinephrine transporter (NET) and serotonin transporter (5-HTT). 3Beta-(4-Methylphenyl)-2beta-[3'-(4-fluorobenzyl)isoxazol-5-yl]tropane (3b) with IC(50) of 5.9nM at the DAT and K(i)s of 454 and 113nM at the NET and 5-HTT, respectively, was the most potent and DAT-selective analog. Molecular modeling studies suggested that the rigid conformation of the isoxazole side chain in 4a-h might play an important role on their low DAT binding affinities.  相似文献   

17.
In our effort to further understand interaction of novel pyran derivatives with monoamine transporters, we have designed, synthesized, and biologically characterized side-chain-extended derivatives of our earlier developed cis- and trans-(6-benzhydryl-tetrahydro-pyran-3-yl)-benzylamine derivatives. Both 3- and 6-position extensions were explored. All synthesized derivatives were tested for their affinities for the dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter (NET) in the brain by measuring their potency in inhibiting the uptake of [(3)H]DA, [(3)H]5-HT, and [(3)H]NE, respectively. Compounds were also tested for their binding affinity at the DAT by their ability to inhibit binding of [(3)H]WIN 35, 428. The results indicated that extension at the 3-position resulted in loss of activity compared to the original compound I. On the other hand, extension at the 6-position resulted in improvement of activity in the compound cis-12 by 2-fold over the parent compound I indicating favorable interaction. In addition, two glycoside derivatives were designed, synthesized, and biologically characterized. The glycosidic trans-isomer 24 exhibited highest potency for the NET in the current series of compounds.  相似文献   

18.
In our effort to delineate novel pharmacophoric configuration of bioisosteric pyran versions of cis-(6-benzhydryl-piperidin-3-yl)-benzylamine derivatives in interacting with the monoamine transporter, further structure-activity relationship study was carried out. Both cis and trans 2,4- and 3,6-disubstituted derivatives were synthesized to determine the positional importance of N-substitution on affinity for monoamine transporters, that is the dopamine transporter (DAT), the serotonin transporter (SERT), and the norepinephrine transporter (NET) in rat brain. For that purpose, the potency of compounds was determined in competing for the binding of [(3)H]WIN 35,428, [(3)H]citalopram, and [(3)H]nisoxetine, respectively. Selected compounds were also evaluated for their activity in inhibiting the uptake of [(3)H]DA by DAT. Our binding results demonstrated potency in 3,6-disubstituted derivatives while 2,4-disubstituted derivatives failed to exhibit any appreciable binding affinity. Further structural exploration of the exocyclic N-atom in 3,6-disubstituted derivatives produced compounds potent at both DAT and NET. Compounds 16h and 16o with hydroxyl and amino groups in the phenyl moiety of the benzyl group produced the highest activity for the NET. In this regard, compound 16e with a methoxy substituent produced weak affinity at NET, which upon conversion into a hydroxyl functionality as in 16h produced potent affinity for the NET. Various indole derivatives displayed different interactions; the 5-substituted indole derivative 16n exerted potent affinity for NET, confirming the bioisosteric equivalence between this indole moiety and the phenyl-4-hydroxy group in 16h.  相似文献   

19.
Several novel 1-substituted-phenyl beta-carbolines bearing the 2-substituted-1,3,4-oxadiazol-5-yl and 5-substituted-1,2,4-triazol-3-yl groups at C-3 were synthesized and evaluated for their in vitro anticancer activity. The assay results pointed thirteen compounds with growth inhibition effect (GI(50)<100 microM) for all eight different types of human cancer cell lines tested. The beta-carbolines 7a and 7h, bearing the 3-(2-metylthio-1,3,4-oxadiazol-5-yl) group, displayed high selectivity and potent anticancer activity against ovarian cell line with GI(50) values lying in the nanomolar concentration range (GI(50)=10 nM for both compounds). The 1-(N,N-dimethylaminophenyl)-3-(5-thioxo-1,2,4-triazol-3-yl) beta-carboline (8g) was the most active compound, showing particular effectiveness on lung (GI(50)=0.06 microM), ovarian and renal cell lines. The potent anticancer activity presented for synthesized compounds 7a, 7h, and 8g, together with their easiness of synthesis, makes these compounds promising anticancer agents.  相似文献   

20.
《Life sciences》1996,58(12):PL231-PL239
We have synthesized several derivatives of dl-threo-methylphenidate (Ritalin) bearing substituents on the phenyl ring. IC50 values for binding of these compounds to rat brain monoamine transporters were assessed using [3H]WIN 35,428 (striatal membranes, dopamine transporters, DAT), [3H]nisoxetine (frontal cortex membranes, norepinephrine transporters, NET) and [3H]paroxetine (brain stem membranes, 5HT transporters, 5HTT). Affinities (1/Ki) decreased in the order: DAT > NET ⪢ 5HTT. Substitution at the para position of dl-threo-methylphenidate generally led to retained or increased affinity for the dopamine transporter (bromo > iodo > methoxy > hydroxy). Substitution at the meta position also increased affinity for the DAT (m-bromo > methylphenidate; m-iodo-p-hydroxy > p-hydroxy). Substitution at the ortho position with bromine considerably decreased affinity. Similar IC50 values for binding of o-bromomethylphenidate to the dopamine transporter were measured at 0, 22 and 37 degrees. N-Methylation of the piperidine ring of methylphenidate also considerably reduced affinity. The dl-erythro isomer of obromomethylphenidate did not bind to the DAT (IC50 > 50,000 nM). Affinities at the dopamine and norepinephrine transporters for substituted methylphenidate derivatives were well correlated (r2 = 0.90). Abilities of several methylphenidate derivatives to inhibit [3H]dopamine uptake in striatal synaptosomes corresponded well with inhibition of [3H]WIN 35, 428 binding. None of the compounds examined exhibited significant affinity to dopamine D1 or D2 receptors (IC50 > 500 or 5,000 nM, respectively), as assessed by inhibition of binding of [3H]SCH 23390 or [123I]epidepride, respectively, to striatal membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号