首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The cytokines secreted by pathogen-activated human dendritic cells (DC) are strongly regulated in vitro by histamine, a major component of mast cell granules, ultimately modulating the capacity of the DC to polarize naive T cells. Because DC and mast cells are located in close proximity in peripheral compartments, we hypothesized that mast cell products would influence the maturation of DC and hence the Th balance of an immune response in vivo. In this study, we show that specific mast cell degranulation stimuli, given s.c. in mice with Ag and adjuvant, produce effector T cells that proliferate to Ag but secrete dramatically reduced levels of IFN-gamma and increased amounts of IL-4 compared with control T cells primed in the absence of a mast cell stimulus. Immunization with Ag and adjuvant in the presence of a degranulation stimulus also resulted in the accumulation of DC in the draining lymph nodes that had reduced capacity to induce Ag-specific Th1 cells, in comparison with DC from mice lacking a degranulation stimulus. Therefore, by acting upon DC at sites of inflammation, mast cells play a critical role in determining the polarity of Ag-specific T cell responses in vivo.  相似文献   

3.
To analyze the involvement in allergic reactions of platelets and sphingosine 1-phosphate (Sph-1-P), a lysophospholipid mediator released from activated platelets, the effects of Sph-1-P and a supernatant prepared from activated platelets on mast cell line RBL-2H3 were examined. Sph-1-P strongly inhibited the migration of both non-stimulated and fibronectin-stimulated RBL-2H3 cells, which was reversed by JTE-013, a specific antagonist of G protein-coupled Sph-1-P receptor S1P(2); S1P(2) was confirmed to be expressed in these cells. A similar anti-motility effect of Sph-1-P was observed in a phagokinetic assay. Consistent with these results, treatment of RBL-2H3 cells with Sph-1-P resulted in a rounded cell morphology, which was blocked by JTE-013. Under the present conditions, Sph-1-P failed to induce intracellular Ca(2+) mobilization or histamine degranulation, responses postulated to be elicited by intracellular Sph-1-P. Importantly, the Sph-1-P effect, i.e., the regulation of RBL-2H3 cell motility, was mimicked by the supernatant (both with and without boiling) prepared from activated platelets, and this effect of the supernatant was also blocked by JTE-013. Our results suggest that the motility of mast cells can be regulated by Sph-1-P and also platelets (which release Sph-1-P), via cell surface receptor S1P(2) (not through intracellular Sph-1-P actions, postulated previously in the same cells).  相似文献   

4.
CD4+ Th1 cells produce IFN-gamma, TNF-alpha, and IL-2. These Th1 cytokines play critical roles in both protective immunity and inflammatory responses. In this study we report that sphingosine kinase 1 (SPHK1), but not SPHK2, is highly expressed in DO11.10 Th1 cells. The expression of SPHK1 in Th1 cells requires TCR signaling and new protein synthesis. SPHK1 phosphorylates sphingosine to form sphingosine-1-phosphate. Sphingosine-1-phosphate plays important roles in inhibition of apoptosis, promotion of cell proliferation, cell migration, calcium mobilization, and activation of ERK1/2. When SPHK1 expression was knocked down by SPHK1 short interfering RNA, the production of IL-2, TNF-alpha, and IFN-gamma by Th1 cells in response to TCR stimulation was enhanced. Consistently, overexpression of dominant-negative SPHK1 increased the production of IL-2, TNF-alpha, and IFN-gamma in Th1 cells. Furthermore, overexpression of SPHK1 in Th1 and Th0 cells decreased the expression of IL-2, TNF-alpha, and IFN-gamma. Several chemokines, including Th2 chemokines CCL17 and CCL22, were up-regulated by SPHK1 short interfering RNA and down-regulated by overexpression of SPHK1. We also showed that Th2 cells themselves express CCL17 and CCL22. Finally, we conclude that SPHK1 negatively regulates the inflammatory responses of Th1 cells by inhibiting the production of proinflammatory cytokines and chemokines.  相似文献   

5.

Background

There is consensus that experimental autoimmune encephalomyelitis (EAE) can be mediated by myelin specific T cells of Th1 as well as of Th17 phenotype, but the contribution of either subset to the pathogenic process has remained controversial. In this report, we compare functional differences and pathogenic potential of “monoclonal” T cell lines that recognize myelin oligodendrocyte glycoprotein (MOG) with the same transgenic TCR but are distinguished by an IFN-γ producing Th1-like and IL-17 producing Th17-like cytokine signature.

Methods and Findings

CD4+ T cell lines were derived from the transgenic mouse strain 2D2, which expresses a TCR recognizing MOG peptide 35–55 in the context of I-Ab. Adoptive transfer of Th1 cells into lymphopenic (Rag2−/−) recipients, predominantly induced “classic” paralytic EAE, whereas Th17 cells mediated “atypical” ataxic EAE in approximately 50% of the recipient animals. Combination of Th1 and Th17 cells potentiated the encephalitogenicity inducing classical EAE exclusively. Th1 and Th17 mediated EAE lesions differed in their composition but not in their localization within the CNS. While Th1 lesions contained IFN-γ, but no IL-17 producing T cells, the T cells in Th17 lesions showed plasticity, substantially converting to IFN-γ producing Th1-like cells. Th1 and Th17 cells differed drastically by their lytic potential. Th1 but not Th17 cells lysed autoantigen presenting astrocytes and fibroblasts in vitro in a contact-dependent manner. In contrast, Th17 cells acquired cytotoxic potential only after antigenic stimulation and conversion to IFN-γ producing Th1 phenotype.

Conclusions

Our data demonstrate that both Th1 and Th17 lineages possess the ability to induce CNS autoimmunity but can function with complementary as well as differential pathogenic mechanisms. We propose that Th17-like cells producing IL-17 are required for the generation of atypical EAE whereas IFN-γ producing Th1 cells induce classical EAE.  相似文献   

6.
In many clinical cases, uveitis develops secondary to an infection. This could result from peripheral activation followed by ocular penetration and reactivation of T cells specific for microbial Ags expressed in the retina. To gain insights into the pathophysiology of uveitis, we developed a new mouse model based on stable retinal expression of influenza virus hemagglutinin (HA) neoantigen by adeno-associated virus-mediated gene transfer. One month thereafter, we adoptively transferred HA-specific T cells, which were activated in vitro or in vivo. Intraocular inflammation was clinically and histologically observed in all animals within 15 days. The ocular infiltrate was composed mostly of macrophages and HA-specific T cells with a proinflammatory cytokine profile. Depletion of CD4(+)CD25(+) regulatory T cells exacerbated the disease, whereas HA-specific CD4(+)CD25(+) T cells given i.v. controlled the disease. This novel model should allow to better study the pathophysiology and therapeutic of uveitis.  相似文献   

7.
8.
Mast cells are effector cells that mediate the allergic response through Ag stimulation of IgE bound to FcεRI. In allergic reactions, cross-linking of the surface receptors for IgE on mast cells results in the synthesis of Th2 cytokines such as IL-4 and IL-13, which are critical for the initiation and progression of the allergic response. Despite the important roles of these cytokines, the signaling mechanism by which Ag stimulation mediates the production of IL-4 and IL-13 in mast cells is not clearly understood. In the present study, we found that Ag-stimulated bone marrow-derived mast cells (BMMCs) highly upregulated the expression of BLT2, a leukotriene B(4) receptor, and that blockade of BLT2 with the specific antagonist LY255283 or small interfering RNA knockdown completely abolished the production of Th2 cytokines. Furthermore, BMMCs overexpressing BLT2 showed significantly enhanced production of Th2 cytokines compared with wild-type BMMCs. Additionally, we found that the generation of Nox1-derived reactive oxygen species occurs downstream of BLT2, thus mediating the synthesis of Th2 cytokines. Taken together, our results suggest that the BLT2-Nox1-reactive oxygen species cascade is a previously unsuspected mediatory signaling mechanism to Th2 cytokine production in Ag-stimulated BMMCs, thus contributing to allergic response.  相似文献   

9.
Sphingosine-1-phosphate (S1P) is a platelet-derived lipid mediator that activates the endothelial isoform of nitric oxide synthase (eNOS) in endothelial cells. However, the role of S1P in endothelium-dependent vasodilation and the signaling pathways elicited by S1P in intact vessels are largely unknown. We found that S1P induces dose-dependent transient relaxation of isolated pressurized mesenteric arterioles (EC(50) 10 +/- 3 nM); maximal vasodilation (55 +/- 8%) is seen approximately 2 min after S1P addition and returns to baseline by 5 min. S1P promotes comparable responses in arterioles from wild-type but not eNOS(null) mice. S1P-induced vasodilation is abrogated by removal of endothelium or by the addition of the NOS inhibitor N(omega)-monomethyl-l-arginine but is not affected by the cyclooxygenase inhibitor indomethacin, nor by the blockade of K(+) channels by using 4-aminopyridine. S1P-induced vasodilation is attenuated by pertussis toxin, by the phosphoinositide 3-kinase (PI3-kinase) inhibitor wortmannin, and by the calcium chelator BAPTA. With the use of high-sensitivity protein immunoblots in extracts from single pressurized vessels, we found that S1P, but not bradykinin, promotes the phosphorylation of eNOS at Ser(1179). Maximum S1P-induced eNOS Ser(1179) phosphorylation was reached at the time of maximum vasorelaxation, but enzyme phosphorylation persisted for several minutes after vasodilation had resolved. Thus regulatory pathways distinct from eNOS Ser(1179) dephosphorylation serve to terminate agonist-promoted vasorelaxation. Taken together, our findings demonstrate that S1P, an important intercellular mediator of platelet-vessel wall interactions, is a effective arteriolar vasodilator that acts via G protein-dependent, calcium-sensitive, and PI3-kinase-modulated signaling pathways.  相似文献   

10.
11.
Mast cells can play detrimental roles in the pathophysiology and mortality observed in anaphylaxis and other Th2-dominated allergic diseases. In contrast, these cells contribute to protective host defense mechanisms against parasitic worm infections. After IgE/Ag activation, mast cells can produce multiple cytokines that may enhance allergic inflammations, while a similar panel of Th2-related cytokines may support immunological strategies against parasites. Here we report that in primary mouse bone marrow-derived mast cells activated by ionomycin or IgE/Ag, the proinflammatory mediator IL-1 (alpha or beta) up-regulated production of IL-3, IL-5, IL-6, and IL-9 as well as TNF, i.e., cytokines implicated in many inflammatory processes including those associated with allergies and helminthic infections. IL-1 did not induce significant cytokine release in the absence of ionomycin or IgE/Ag, suggesting that Ca-dependent signaling was required. IL-1-mediated enhancement of cytokine expression was confirmed at the mRNA level by Northern blot and/or RT-PCR analysis. Our study reveals a role for IL-1 in the up-regulation of multiple mast cell-derived cytokines. Moreover, we identify mast cells as a novel source of IL-9. These results are of particular importance in the light of recent reports that strongly support a central role of IL-9 in allergic lung inflammation and in host defense against worm infections.  相似文献   

12.
The arrangement of molecules at the interface between T cells and APCs is known as the immunological synapse (IS). We conducted experiments with supported planar bilayers and transfected fibroblast APC to examine the IS formed by polarized Th1 and Th2 cells. Th1 cells formed typical "bull's-eye" IS with a ring of adhesion molecules surrounding MHC/TCR interactions at all Ag concentrations tested, while Th2 cells formed multifocal IS at high concentrations of Ag. At low Ag concentrations, the majority of Th2 cells formed IS with a compact, central accumulation of MHC/TCR, but ICAM-1 was not excluded from the center of the IS. Additionally, CD45 was excluded from the center of the interface between Th1 cells and APC, while CD45 was found at the center of the multifocal IS formed by Th2 cells. Finally, phosphorylated signaling molecules colocalized with MHC/TCR to a greater extent in Th2 IS. Together, our results indicate that the IS formed by Th1 and Th2 cells are distinct in structure, with Th2 cells failing to form bull's-eye IS.  相似文献   

13.
Hearing loss is among the most prevalent sensory impairments in humans. Cochlear implantable devices represent the current therapies for hearing loss but have various shortcomings. ERM (ezrin- radixin -moesin) are a family of adaptor proteins that link plasma membrane with actin cytoskeleton, playing a crucial role in cell morphology and in the formation of membrane protrusions. Recently, bioactive sphingolipids have emerged as regulators of ERM proteins. Sphingosine 1-phosphate (S1P) is a pleiotropic sphingolipid which regulates fundamental cellular functions such as proliferation, survival, migration as well as processes such as development and inflammation mainly via ligation to its specific receptors S1PR (S1P1–5). Experimental findings demonstrate a key role for S1P signaling axis in the maintenance of auditory function. Preservation of cellular junctions is a fundamental function both for S1P and ERM proteins, crucial for the maintenance of cochlear integrity. In the present work, S1P was found to activate ERM in a S1P2-dependent manner in murine auditory epithelial progenitors US/VOT-E36. S1P-induced ERM activation potently contributed to actin cytoskeletal remodeling and to the appearance of ionic currents and membrane passive properties changes typical of more differentiated cells. Moreover, PKC and Akt activation was found to mediate S1P-induced ERM phosphorylation. The obtained findings contribute to demonstrate the role of S1P signaling pathway in inner ear biology and to disclose potential innovative therapeutical approaches in the field of hearing loss prevention and treatment.  相似文献   

14.
Proteomic profiling of surface proteins on Th1 and Th2 cells   总被引:2,自引:0,他引:2  
We utilized mass spectrometry to profile cell surface protein differential expression on primary human T helper (Th1 and Th2) cells with the stable isotope labeling by amino acids in cell culture (SILAC) approach. Proteomic and microarray analyses were done concurrently and results were compared for 38 different genes. Although microarray studies displayed wide variability between donors for mRNA expression, these two approaches were shown to be corroborative for most gene products with the exception of a small subset of uncorrelated protein and message levels. The greatest differing Th1 to Th2 ratios were observed for BST2 (bone marrow stromal protein 2) and TRIM (T cell receptor interacting molecule). Both showed greater Th1 expression by proteomic methods, even though mRNA levels were approximately equal for both. To validate this method, we compared protein expression levels of a recently cloned molecule, B and T cell lymphocyte attenuator (BTLA), on Th1 and Th2 cell populations and showed greater protein expression on Th1 cells, which agrees with a previous analysis of higher BTLA mRNA expression in Th1 cells.(1).  相似文献   

15.
Helper T cell subsets have evolved to respond to different pathogens, and upon activation secrete distinct sets of cytokines. The discovery and identification of Th17 cells, which develop via a unique lineage from Th1 and Th2 cells, have provided new insights into aspects of immune regulation and host defense that were previously unclear. A key early signaling event upon Ag recognition is elevation of intracellular free Ca(2+), and cytokine expression can be differentially induced depending on the duration, amplitude, and pattern of Ca(2+) signaling. Th1 and Th2 cells can be distinguished by their Ca(2+) profiles, and we provide in this study the first report regarding Ca(2+) signaling in Th17 cells. Th17 cells have a distinct Ca(2+) signaling profile from Th1 and Th2 cells with intermediate sustained Ca(2+) levels and increased oscillations compared with Th2 cells. Elevated intracellular Ca(2+) has been shown to inhibit T cell motility, and we observed that Th17 cells, like Th1 cells, are less motile than Th2 cells. Analysis of NF-AT nuclear localization revealed that Th1 and Th17 cells have significantly higher levels at later time points compared with Th2 cells. Thus, these findings show that Th17 cells, in addition to their distinct cytokine response from Th1 and Th2 cells, display unique patterns of intracellular Ca(2+) signaling and Th1-like motility behavior and nuclear localization of NF-AT.  相似文献   

16.
The purpose of this review is to discuss the role of mast cells in allergic inflammation. We have focused on inflammation associated with allergic asthma and food allergy. Mast cells are ‘first line of defense’ innate/adaptive immune cells and are widely distributed in tissues in surfaces exposed to the environment. Especially in allergic settings mast cells are extensively studied, as they can be activated to release a wide range of mediators by allergen-IgE specific triggers. In addition, in allergic inflammation mast cells can also be activated non-allergic triggers. Recent studies revealed that mast cells, besides the classical role of pro-inflammatory effector cell, have also emerged as modulators of allergic sensitization and down-regulators of allergic inflammation. Therefore, mast cells can be regarded as ‘Ying Yan’ modulators in allergic responses in intestinal tract and airways. This article is part of a Special Issue entitled: Mast Cells in Inflammation.  相似文献   

17.
Regulatory T cells (Treg) have recently been identified as playing a central role in the immune response to allergens and during allergen-specific immunotherapy. We have extended our previous mathematical model describing the nonlinear dynamics of Th1-Th2 regulation by including Treg cells and their major cytokines. We hypothesize that immunotherapy mainly acts on the T cell level and that the decisive process can be regarded as a dynamical phenomenon. The model consists of nonlinear differential equations which describe the proliferation and mutual suppression of different T cell subsets. The old version of the model was based upon the Th1-Th2 paradigm and is successful in describing the “Th1-Th2 switch” which was considered to be the decisive event during specific immunotherapy. In recent years, however, the Th1-Th2 paradigm has been questioned and therefore, we have investigated a modified model in order to account for the influence of a regulatory T cell type. We examined the extended model by means of numerical simulations and analytical methods. As the modified model is more complex, we had to develop new methods to portray its characteristics. The concept of stable manifolds of fixed points of a stroboscobic map turned out to be especially important. We found that when including regulatory T cells, our model can describe the events in allergen-specific immunotherapy more accurately. Our results suggest that the decisive effect of immunotherapy, the increased proliferation of Treg and suppression of Th2 cells, crucially depends on the administration of high dose injections in short intervals right before the maintenance phase sets in. Empirical protocols could therefore be improved by optimizing this step of therapy.  相似文献   

18.
19.
Reactive oxygen species including H2O2 lead vascular endothelial cells (EC) to undergo apoptosis. Sphingosine 1-phosphate (S1P) is a platelet-derived sphingolipid mediator that elicits various EC responses. We aimed to explore whether and how S1P modulates EC apoptosis induced by H2O2. Treatment of cultured bovine aortic EC (BAEC) with H2O2 (750 μM for 6 h) led to DNA fragmentation (ELISA), DNA nick formation (TUNEL staining), and cleavage of caspase-3, key features of EC apoptosis. These responses elicited by H2O2 were alike markedly attenuated by pretreatment with S1P (1 μM, 30 min). H2O2 induced robust phosphorylation of both p38 and JNK MAP kinases. However, pretreatment with S1P decreased phosphorylation of only p38 MAP kinase, but not that of JNK; conversely, an inhibitor of p38 MAP kinase, but not that of JNK, attenuated H2O2-induced caspase-3 activation. Thus S1P attenuates H2O2-induced apoptosis of cultured BAEC, involving p38 MAP kinase.  相似文献   

20.
Th1 and Th2 effector CD4+ T cells orchestrate distinct counterregulatory biological responses. To deliver effective tissue Th1- and Th2-type responses, Th1 and Th2 cell recruitment into tissue must be differentially regulated. We show that tissue-derived STAT1 controls the trafficking of adoptively transferred, Ag-specific, wild-type Th1 cells into the lung. Trafficking of Th1 and Th2 cells is differentially regulated as STAT6, which regulates Th2 cell trafficking, had no effect on the trafficking of Th1 cells and STAT1 deficiency did not alter Th2 cell trafficking. We demonstrate that STAT1 control of Th1 cell trafficking is not mediated through T-bet. STAT1 controls the recruitment of Th1 cells through the induction of CXCL9, CXCL10, CXCL11, and CXCL16, whose expression levels in the lung were markedly decreased in STAT1-/- mice. CXCL10 replacement partially restored Th1 cell trafficking in STAT1-deficient mice in vivo, and deficiency in CXCR3, the receptor for CXCL9, CXCL10, and CXCL11, impaired the trafficking of adoptively transferred Th1 cells in wild-type mice. Our work identifies that STAT1 in peripheral tissue regulates the homing of Ag-specific Th1 cells through the induction of a distinct subset of chemokines and establishes that Th1 and Th2 cell trafficking is differentially controlled in vivo by STAT1 and STAT6, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号