首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Binding of glucose-6-P induces conformational change in rat brain hexokinase (ATP:d-hexose 6-phosphotransferase, EC 2.7.1.1) as indicated by decreased susceptibility to digestion by chymotrypsin and an increased sedimentation coefficient on sucrose density gradients. These effects are competitively reversed by Pi, as are solubilization (of the mitochondrial form of hexokinase) and inhibition by glucose-6-P. Thus, the observed conformational changes are likely to be directly related to the effect of these ligands on catalytic activity and the interaction of the hexokinase with the mitochondrial membrane.Both glucose-6-P and Pi stabilize the enzyme against heat inactivation; this effect, as well as the effect of glucose-6-P on inactivation by chymotrypsin, have been used to estimate the dissociation constants for the complexes of hexokinase with glucose-6-P and Pi; the values are 7–8 μm, and 0.25 mm, respectively.These observations are consistent with a model in which brain hexokinase may exist in two distinct conformations, rapidly and reversibly interconvertible. The effect of glucose-6-P and Pi are explained by highly preferential binding to one or the other of these conformations.  相似文献   

2.
Two mechanisms have been suggested to account for the regulation of brain hexokinase by glucose 6-phosphate. One mechanism places glucose-6-P at an allosteric site, remote from the active site, while the second describes glucose-6-P as a simple product inhibitor of the enzyme, binding at the γ phosphate subsite within the ATP locus of the active site. To distinguish between these possibilities, we have undertaken a study of the back reaction of hexokinase I. Our data indicate that glucose-6-P displays classical Michaelis-Menten kinetics with brain hexokinase. This finding is consistent only with the high-affinity glucose-6-P site on the enzyme being the catalytic site. The dissociation constant, estimated from the initial-rate experiments is approximately 25 μm, a value that agrees well with the inhibition constant for glucose-6-P in the forward direction. These findings are consistent with an earlier model (W. R. Ellison, J. D. Lueck and H. J. Fromm, (1975) J. Biol. Chem.250, 1864–1871), which maintains that glucose-6-P inhibition of brain hexokinase is a manifestation of product inhibition. In a recent paper, Lazo et al. (P. A. Lazo, A. Sols, and J. E. Wilson, (1980) J. Biol. Chem.255, 7548–7551) reported data obtained from binding studies with rat brain hexokinase at an elevated (250 μm) level of glucose-6-P. These authors believe that their results indicate multiple binding of glucose-6-P to the enzyme and interpret the data in terms of a high-affinity allosteric site and a low-affinity catalytic site. Our results are at variance with this interpretation and are consistent only with the high-affinity site for glucose-6-P on brain hexokinase being the active site.  相似文献   

3.
The binding of glucose to bovine brain hexokinase, isozyme I, exhibited one binding site per 100,000 molecular weight. Glucose-6-P binding was examined in the absence and presence of ATP. ATP and glucose-6-P were shown to compete for the same binding site on the enzyme. A model was proposed to account for these findings and the previously reported data that glucose-6-P and Pi exhibit mutually exclusive, non-cooperative binding to the enzyme. The model shows that brain hexokinase exists in two rapidly interconvertible states, either with or without Pi and that glucose-6-P binding to the phosphate associated enzyme form is relatively very poor. This proposal has been tested kinetically and the data appear to support the suggested model.  相似文献   

4.
The subcellular distribution and isozyme pattern of hexokinase in rat lung were studied. Of the total hexokinase activity of lung, one-third was bound to mitochondria and one-third of the mitochondrial activity was in a latent form. The overt-bound mitochondrial hexokinase was specifically solubilized by physiological concentrations of glucose 6-phosphate and ATP. Inorganic phosphate partially prevented the solubilization by glucose 6-phosphate (Glc 6-P), whereas Mg2+ ions promoted rebinding of the solubilized enzyme to mitochondria. Thus, the distribution of hexokinase between soluble and particulate forms in vivo is expected to be controlled by the relative concentrations of Glc 6-P, ATP, Pi, and Mg2+. Study of the isozyme pattern showed that hexokinase types I, II, and III constitute the cell-sap enzyme of lung. The overt and latent hexokinase activities could be separately isolated by successive treatments of mitochondria with Glc 6-P and Triton X-100. The overt-bound activity consisted primarily of hexokinase type I, with a small proportion of type II isozyme. The latent activity, on the other hand, exclusively consisted of type I isozyme. Type I hexokinase, the predominant isozyme in lung, was strongly inhibited by intracellular concentration of Glc 6-P and this inhibition was counteracted by Pi. The bound form of hexokinase exhibited a significantly higher apparent Ki for Glc 6-P inhibition and a lower apparent Km for ATP as compared to the soluble form. Thus, the particulate form of hexokinase is expected to promote glycolysis and may provide a mechanism for the high rate of aerobic glycolysis in lung.  相似文献   

5.
Specificity for the glucose-6-P inhibition site of hexokinase   总被引:4,自引:0,他引:4  
Inhibition of the three animal hexokinase isozymes by the following glucose-6-P analogs has been determined: α-glucose-1,6-P2, α- and β-methyl glucose-6-P, α- and β-glucose-6-P, 2-Cl- and 4F-glucose-6-P, 5-deoxyglucose-6-P, glucose-6-sulfate, and δ-gluconolactone-6-P. Although both anomers of glucose-6-P were about equally active inhibitors, the β-methyl derivative was inactive. Generally the α-methyl and α-PO3? derivatives were good inhibitors though weaker than glucose-6-P except in the case of hexokinase II for which α-glucose-1,6-P2 was an excellent inhibitor.  相似文献   

6.
Treatment of brain mitochondria with glucose-6-P releases the hexokinase (ATP: d-hexose 6-phosphotransferase, EC 2.7.1.1), normally associated with the outer mitochondrial membrane, in soluble form. The glucose-6-P solubilized enzyme sediments during sucrose density gradient centrifugation at a rate compatible with a molecular weight of approx. 100,000. In contrast, in agreement with the results of Craven and Basford [Biochim. Biophys. Acta255, 620 (1972)], the enzyme is eluted in the void volume when chromatographed on Sephadex G-200 in 0.3 m mannitol-0.1 mm EDTA, suggesting a molecular weight much greater than 100,000. The resolution of this paradox is found in the observation that glucose-6-P solubilized hexokinase and several other proteins behave anomalously when chromatographed under these conditions; thus, elution in the void volume is not a satisfactory basis for estimating molecular weight.The glucose-6-P solubilized enzyme can be rebound to the mitochondria in the presence of added divalent cation. Phospholipase C treatment of the enzyme greatly hinders this reassociation but has no effect on hexokinase activity, suggesting the involvement of phospholipid in the interaction of the enzyme with the mitochondria. Based on the observation that sedimentation through a sucrose density gradient does not decrease binding ability, it is suggested that the required phospholipid is bound to the enzyme. After purification to homogeneity, however, the enzyme does not contain appreciable lipid (<0.7 mole phospholipid per mole enzyme), nor can it be rebound to mitochondria. Apparently the lipid, required for binding, is dissociated during purification. The potential significance of lipid in determining the intracellular distribution of the enzyme is discussed.  相似文献   

7.
Mammalian hexokinase isoenzymes I and II have been shown to differ qualitatively in response to various modifiers. Although both enzymes are inhibited by glucose 6-phosphate, only isoenzyme II exhibits a slow response to the presence of this inhibitor. Pi decreases the affinity of glucose 6-phosphate for Sarcoma 37 hexokinase I, but has no effect on hexokinase II from the same cell. Pi overcomes all of the inhibition of red cell hexokinase by glucose-6-P and hence the two effectors act competitively. At pH 6.5, catecholamines increase the V of isoenzyme I of Sarcoma 37 and brain in the soluble and mitochondrial forms but do not activate these forms of tumor isoenzyme II. Citrate activates brain and tumor isoenzyme I when they are inhibited by tris(hydroxy-methyl)aminomethylethane sulfonate (TES) and ADP; however, tumor isoenzyme II is not activated.  相似文献   

8.
Hexokinase isozyme II which loses activity rapidly in the absence of glucose (t12 ~- 10 min) is stabilized in the presence of glucose-6-P, Pi and ADP when glucose is also present but not by kinetically inert analogs. Enzyme inactivated by incubation in the absence of glucose is fully and rapidly recovered (t12~- 10 min) by addition of both glucose and mercaptoethanol, each at 0.1 m. In the presence of 0.1 mm glucose, both glucose-6-P and P, facilitate the reactivation. Reactivation proceeds in two steps both with unfavorable equilibria: a fast reduction followed by a slow renaturation. Native enzyme is much more resistant to irreversible inactivation by trypsin than is enzyme that has lost its activity by incubation in the absence of glucose. The latter form shows no protection from trypsin action by glucose. Streptozotocin-diabetic rats that have lost hexokinase II preferentially in their insulin-sensitive tissues do not contain an activatable form of hexokinase in at least one of these, heart. The greater sensitivity of inactivated hexokinase to denaturation by trypsin suggests that such a “reservoir” form may be destroyed rapidly in vivo. Glucose may be important in determining the steady-state level of hexokinase II by “guiding” the folding of translation product. In this view insulin would act through its effect on glucose permeability.  相似文献   

9.
10.
Hexokinase I (ATP:d-hexose 6-phosphotransferase, EC 2.7.1.1), a key regulatory glycolytic enzyme in certain tissues, is known to be markedly inhibited under physiological conditions. The action of the primary inhibitory effector, glucose-6-P, is reversed by inorganic orthophosphate (Pi). A molecular model for inhibition and deinhibition of hexokinase was recently proposed [Ellison, W. R., Lueck, J. D., and Fromm, H. J. (1975) J. Biol. Chem.250, 1864–1871]. One of the central assumptions of this model is that glucose-6-P is a normal product inhibitor of hexokinase. It has long been suggested that glucose-6-P is an allosteric inhibitor of hexokinase, whereas other sugar-phosphate products such as mannose-6-P are normal product inhibitors. In this report we investigated the kinetic mechanism of hexokinase action with mannose as substrate and mannose-6-P as an inhibitor. The data obtained show that there are no qualitative differences between glucose and mannose as substrates and glucose-6-P and mannose-6-P as inhibitors. Binding experiments indicate that glucose-6-P and mannose-6-P are competitive binding ligands with hexokinase I. Furthermore, the activation pattern observed with Pi and glucose-6-P inhibited hexokinase is also found with the mannose-6-P inhibited phosphotransferase. These findings suggest that the mechanism of inhibition of glucose-6-P and mannose-6-P represents a difference in degree rather than a difference in kind. An explanation of the results in terms of a stereochemical model is presented.  相似文献   

11.
Bovine brain hexokinase enhances the effect of Mn(II) on the longitudinal relaxation rate of water protons. Direct interaction of Mn(II) with the enzyme has been studied using electron spin resonance and proton relaxation rate enhancement methods. The results indicate that brain hexokinase has 1.05 ± 0.13 tight binding sites and 7 ± 2 weak binding sites with a dissociation constant, KD = 25 ± 4 μM and KD = 1050 ± 290 μM, respectively, at pH 8.0, 23 °C. The characteristic enhancement ?b) for hexokinase-Mn(II) complex evaluated from proton relaxation rate enhancement studies, gave ?b = 3.5 ± 0.4 for tight binding sites and an average ?b = 2.3 ± 0.5 per site for weak binding sites at 9 MHZ. The dissociation constant of Mn(II) for tight binding sites on the enzyme exhibits strong temperature dependence. In the low-temperature region (5–12 °C) brain hexokinase probably undergoes a conformational change. Frequency dependence of the normalized relaxation rate for bound water at various temperatures has shown that the number of exchangeable water molecules left in the first coordination sphere of bound Mn(II) is about one at 30 °C and about two at 18 °C. Binding of glucose 6-phosphate to hexokinase results in large-line broadening of the resonances of anomeric protons of the sugar. However, no such effect was observed in the case of glucose binding. These results suggest different modes of interaction of these two sugars to hexokinase. Line broadening of the C-(1) hydrogen resonances of glucose caused by Mn(II) in the presence of hexokinase suggests the proximity of the Mn(II) binding site to that of glucose. A lower limit of 1330 ± 170 s?1 for the rate of dissociation of glucose from enzyme-Mn(II)-glucose complex has been obtained from these studies.  相似文献   

12.
The effectiveness of Glc, mannose, 2-deoxyglucose, fructose, galactose, arabinose, and N-acetylglucosamine at protecting rat brain hexokinase (ATP: d-hexose 6-phosphotransferase, EC 2.7.1.1) from inactivation by chymotrypsin, glutaraldehyde, heat, and Ellman's reagent have been compared. The relative effectiveness at protecting against these inactivating agents decreases in the order Glc > mannose > 2-deoxyglucose > fructose, galactose, and arabinose, the last three providing no significant protection at all. The nonphosphorylatable substrate analog, N-acetylglucosamine, provides substantial protection against heat inactivation, but is ineffective against inactivation by the other agents. Similar inactivation studies were conducted using several hexose 6-phosphates. Glc-6-P and 1,5-anhydroglucitol-6-P provided substantial protection while 2-deoxyglucose-6-P, fructose-6-P, mannose-6-P, and galactose-6-P were all relatively ineffective at protecting hexokinase activity. The protective effect of these ligands is taken as an indication of ligand-induced conformational changes in brain hexokinase. The results are interpreted in terms of, and considered to support, a recently proposed model (J. E. Wilson, 1978, Arch. Biochem. Biophys.185, 88–99) in which the suitability of a carbohydrate as a substrate depends directly on its ability to induce specific conformational changes prerequisite for subsequent catalytic events while the inhibitory effectiveness of a hexose 6-phosphate is likewise related to its ability to evoke appropriate conformational change in the enzyme. Synergistic interactions between hexose and hexose-6-P binding sites, first reported for Glc and Glc-6-P by Ellison et al. (1975, J. Biol. Chem.250, 1864–1871), have been confirmed. Thus, although fructose and galactose were themselves quite ineffective at providing protection against inactivation of hexokinase by chymotrypsin or glutaraldehyde, they greatly increased the protection afforded by suboptimal (with respect to degree of protection in the absence of added hexose) levels of Glc-6-P. Conversely, the 6-phosphates of fructose, galactose, mannose, and 2-deoxyglucose, which were themselves ineffective at protecting the enzyme activity, markedly enhanced the protection provided by suboptimal levels of Glc or mannose. Based on the relationship between this enhancement of Glc-dependent protection and the hexose-6-P concentration, the dissociation constants for the complexes of hexokinase with 2-deoxyglucose-6-P and mannose-6-P were estimated to be ?0.5 mm.  相似文献   

13.
A study of the sulfhydryl groups of rat brain hexokinase   总被引:1,自引:0,他引:1  
Rat brain hexokinase (ATP: d-hexose-6-phosphotransferase, EC 2.7.1.1) is rapidly inactivated by reaction with 5,5′-dithiobis-(2-nitrobenzoate). The inactivation follows monophasic first-order kinetics in either the absence of ligands (k = 0.641 min?1 at 25 °C) or in the presence of saturating levels of ATP (free or complexed with Mg2+) or P1; the inactivation rate is slightly increased (k ? 0.7 min ?1) in the presence of ATP or P1. In contrast, glucose and glucose-6-P markedly decrease the inactivation rate; inactivation in the presence of these ligands is biphasic, with two first-order rates (k ? 0.5 min?1 and 0.01 min?1) being distinguishable.The enzyme contains 14 sulfhydryl groups which react with 5,5′-dithiobis-(2-nitrobenzoate); reaction of these groups in the native enzyme is complete after 2 hr at 25 °C, or in approx 5 min with the urea or guanidine-denatured enzyme. In the native enzyme, three classes of sulfhydryl groups are distinguishable and are designated as F-, I-, or S-type based on their fast (k ? 0.7 min?1), intermediate (k ? 0.5-0.7 min?1), or slow (k ? 0.02 min?1 rates of reaction with 5,5′-dithiobis-(2-nitrobenzoate). The correlation of inactivation rates with the rates for reaction of the I-type sulfhydryls indicates that the I-type sulfhydryls include residues necessary for catalytic activity. The F-type residues are clearly not required for activity.The effects of ATP, P1, glucose, and glucose-6-P on the reactivity of the sulfhydryls have been determined. As in the absence of ligands, S-, I-, and F-type sulfhydryls could be distinguished. In the presence of saturating concentrations of these ligands, the F, I, and S classes of sulfhydryls contained respectively: with ATP, 1, 4, and 7 residues; with P1, 1, 3, and 7 residues; with glucose, 1, 2, and 5 residues; with glucose-6-P, 1, 2, and 1 residues. Comparison with rate constants for inactivation in the presence of these ligands again indicated that I-type sulfhydryls were particularly important in maintenance of enzyme activity. The present results indicate considerable similarity between the reactivity of the sulfhydryl residues in rat brain hexokinase and the sulfhydryls of the bovine brain enzyme [V. D. Redkar and U. W. Kenkare (1972), J. Biol. Chem., 247, 7576–7584].  相似文献   

14.
The kinetics of purified glycogen phosphorylase a from the muscle of the blue crab (Callinectes danae) were studied in the direction of glycogen synthesis, and in the direction of glycogen degradation with Pi or arsenate as substrates. The effects of AMP, UDPG, G-6-P, glucose, and arsenate on the appropriate systems were studied. AMP is an activator of the enzyme. Inhibition by UDPG with respect to Pi changes from noncompetitive to competitive when AMP is added; it changes from noncompetitive to mixed with respect to glycogen when AMP is added. G-6-P is a competitive inhibitor of G-1-P and arsenate. Inhibition by glucose with respect to glycogen changes from noncompetitive to competitive when AMP is added in the direction of glycogen breakdown; it is noncompetitive with respect to Pi. Arsenate is a competitive inhibitor with respect to Pi. The Km for AMP increases in the presence of UDPG, and decreases with increasing concentrations of Pi or glycogen. We propose a model in which the enzyme bears three interacting sites: an active site, an activator (AMP) site, and an inhibitor (glucose) site. The active site has three subsites: one for Pi, one for glycogen, and one for a glucose moiety which may be part of the substrates or inhibitors.  相似文献   

15.
Glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides utilizes either NAD+ or NADP+ as coenzyme. Kinetic studies showed that NAD+ and NADP+ interact with different enzyme forms (Olive, C., Geroch, M. E., and Levy, H. R. (1971) J. Biol. Chem.246, 2047–2057). In the present study the techniques of fluorescence quenching and fluorescence enhancement were used to investigate the interaction between Leuconostoc mesenteroides glucose-6-phosphate dehydrogenase and coenzymes. In addition, kinetic studies were performed to examine interaction between the enzyme and various coenzyme analogs. The maximum quenching of protein fluorescence is 5% for NADP+ and 50% for NAD+. The dissociation constant for NADP+, determined from fluorescence quenching measurements, is 3 μm, which is similar to the previously determined Km of 5.7 μm and Ki of 5 μm. The dissociation constant for NAD+ is 2.5 mm, which is 24 times larger than the previously determined Km of 0.106 mm. Glucose 1-phosphate, a substrate-competitive inhibitor, lowers the dissociation constant and maximum fluorescence quenching for NAD+ but not for NADP+. This suggests that glucose 6-phosphate may act similarly and thus play a role in enabling the enzyme to utilize NAD+ under physiological conditions. When NADPH binds to the enzyme its fluorescence is enhanced 2.3-fold. The enzyme was titrated with NADPH in the absence and presence of NAD+; binding of these two coenzymes is competitive. The dissociation constant for NADPH from these measurements is 24 μm; the previously determined Ki is 37.6 μm. The dissociation constant for NAD′ is 2.8 mm, in satisfactory agreement with the value obtained from protein fluorescence quenching measurements. Various compounds which resemble either the adenosine or the nicotinamide portion of the coenzyme structure are coenzyme-competitive inhibitors; 2′,5′-ADP, the most inhibitory analog tested, gives NADP+-competitive and NAD+-noncompetitive inhibition, consistent with the kinetic mechanism previously proposed. By using pairs of coenzyme-competitive inhibitors it was shown in kinetic studies that the two portions of the NAD+ structure cannot be accommodated on the enzyme simultaneously unies they are covalently linked. Fluorescence studies showed that there are both “buried” and “exposed” tryptophan residues in the enzyme structure.  相似文献   

16.
Summary cAMP dependent protein kinase and cAMP independent synthase kinase incorporated up to two Pi/subunit in rabbit skeletal muscle glycogen synthase I. The first Pi/subunit was incorporated much faster than the second. After incorporation of one Pi/subunit by the CAMP dependent protein kinase, the ratio of independence (RI) was 0.20 and the dissociation constant Kc for Glc-6-P was 0.3 mm, and quite different from the RI of 0.02 and Kc (Glc-6-P) of 1 mM, obtained when one Pi/subunit was incorporated by the cAMP independent synthase kinase. Within the first Pi/subunit, the cAMP dependent protein kinase predominantly phosphorylated in the trypsin sensitive region (60–70%), corresponding to two trichloro-acetic acid soluble tryptic phosphopeptides, termed site-1 and site-2. Site-2 was found to be phosphorylated prior to site-1. CNBr degradation resolved the phosphorylated regions in two phosphopeptides with Mr 28,000 and 10,000.The larger CNBr phosphopeptides were derived from the trypsin sensitive region. Within the first Pi/subunit, synthase kinase almost exclusively phosphorylated in the trypsin insensitive region (80%) corresponding to the smaller CNBr phosphopeptide. However, when two Pi/subunit were incorporated by either the cAMP dependent protein kinase or the synthase kinase the phosphates were almost equally distributed between the trypsin sensitive and insensitive regions and Kc (Glc-6-P) increased to 2 mm, Maximum phosphorylation (2.8–3.3 Pi/subunit and Kc (Glc-6-P) 9–11 mm) was only obtainable when both the cAMP dependent protein kinase and the synthase kinase were present.The phosvitin kinase very slowly incorporated one Pi/subunit.We suggest that within the first P1subunit phosphorylation in the trypsin insensitive region determine the affinity for the allosteric activator, glucose-6-phosphate. Thereafter phosphorylation in the trypsin sensitive region is the major determinant. Purified glycogen-free rabbit skeletal muscle glycogen synthase binds glycogen with lower affinity than polymorphonuclear leukocyte glycogen synthase. Glycogen was found to increase the initial rate of phosphorylation and facilitate the phosphorylation of site-1.Abbreviations cAMP adenosine cyclic 3:5-monophosphate - Glc-6-P glucose-6-phosphate - UDP-Glc uridine 5-diphosphoglucose - EGTA ethylene glycol-bis(-aminoethylether)-N,N-tetraacetic acid - EDTA ethylenediamine tetraacetic acid - CNBr cyanogen bromide - DTT dithiothreitol - SDS sodium dodecyl sulphate - RI ratio of independence  相似文献   

17.
Various ligands of rat brain hexokinase (ATP:d-hexose 6-phosphotransferase, EC 2.7.1.1) have been found to protect the enzyme against either (or both) chymotryptic digestion or inactivation by glutaraldehyde. Using this protective effect, the Kd for various enzyme-ligand complexes has been estimated: hexokinase-Glc, Kd = 0.24 ± 0.03mM (chymotryptic digestion), Kd = 0.26 ± 0.07mM (glutaraldehyde inactivation); hexokinase-Glc-6- P, Kd = 0.041 ± 0.005m M (glutaraldehyde inactivation); hexokinase-ATP, Kd = 1.01 ± 0.28mM (chymotryptic digestion); hexokinase-ATP-Mg 2+, Kd = 0.07-0.08mM (chymotryptic digestion). Other nucleoside triphosphates (UTP, ITP, GTP, and CTP) were much less effective than ATP at protecting against chymotrypsin. Various hexoses were tested for their ability to protect against glutaraldehyde. Only ?good” substrates (mannose, 2-deoxyglucose) protected; nonsubstrates (galactose, arabinose) and N-acetylglucosamine, a competitive inhibitor of Glc binding, were not effective. Various hexose 6-phosphates were tested for their ability to protect against glutaraldehyde inactivation. Glc-6-P was much more effective than were mannose-6-P, galactose-6-P, or fructose-6-P. It was observed that ?good” substrates (Glc, mannose) increased the effectiveness of Glc-6-P at solubilizing the mitochondrial form of the enzyme; galactose and N-acetylglucosamine had no effect on solubilization by Glc-6-P. These results are taken as an indication of enhanced Glc-6-P binding in the presence of Glc, as previously reported by Ellison et al. (J. Biol. Chem., 250, 1864–1871, 1975). Along with previous studies on ligand-induced conformations and kinetics of this enzyme, these results form the basis for a new model for brain hexokinase. This model specifically takes into account the ligand-induced conformations at various points in the catalytic cycle and specifically accounts for the ability of various hexoses to serve as substrates and hexose 6-phosphates to serve as inhibitors in terms of their ability to induce specific conformations of the enzyme. The properties of the various conformations involved in the model are designated by a four-letter code which facilitates comparison and discussion.  相似文献   

18.
Effects of transformation by Rous sarcoma virus of Schmidt-Ruppin strain on the activities of key enzymes of the glycolytic and the hexose monophosphate shunt pathways in chick-embryo cells were investigated. Activities of hexokinase, phosphofructokinase, pyruvate kinase, lactate dehydrogenase, and glucose-6-P dehydrogenase were increased about twofold in the transformed cells, but that of 6-P-gluconate dehydrogenase remained unaltered. The transformation-mediated increase in the activity of hexokinase was confined entirely to the bound form of the enzyme. Cells infected with a temperature-sensitive mutant (Ts-68) of Schmidt-Ruppin strain of Rous sarcoma virus showed the typical increase in the rate of 2-deoxyglucose uptake and the activities of hexokinase, phosphofructokinase, pyruvate kinase, and glucose-6-P dehydrogenase at the permissive temperature (37 °C), but when the infected cells were grown at the nonpermissive temperature (41 °C), the increases in the sugar uptake and activities of these enzymes were abolished. Unlike the regulatory enzymes, lactate dehydrogenase activity was increased at both the permissive and the nonpermissive temperatures.  相似文献   

19.
Evidence is presented that both myosin and actomyosin in presence of Mg2+ and KCl catalyze an incorporation of 32Pi into ATP. The rate with actomyosin is about 1500 the rate of ATP hydrolysis; the rate with myosin is less than 1100 of that with actomyosin. With myosin, but not with actomyosin, an apparent initial “burst” of 32Pi incorporation into ATP is observed. Actin binding thus promotes ATP dissociation. The data with myosin allow estimation of both the amount of enzyme-bound [32P]-ATP present and the rate constant, k?1, for dissociation of the myosin· ATP. From these results and other data a ?ΔGo for ATP binding to myosin of 12–13 kcal/mole may be estimated, with a much lower ?ΔGo for hydrolysis of enzyme-bound ATP. Protein conformational change accompanying ATP binding appears to be the principal means of capture of energy from the overall reaction of ATP cleavage.  相似文献   

20.
γ-Irradiation of preclimacteric banana resulted in a gradual increase in fructose content, which reached a maximum in 6 days. Although the catabolism of glucose-U-14C was less in irradiated banana, incorporation of label into fructose was high. Initial fructose accumulation in irradiated banana may be due to a shift in glucose utilization from the glycolytic to the pentose phosphate pathway. The ratio of resporatory CO2 from glucose-6-14C and glucose-1-14C was halved in irradiated bananas indicating predominance of the pentose phosphate pathway. The radioactivity of fructose derived from glucose-6-14C was almost twice that from glucose-1-14C in irradiated bananas, whilst in control both fruit the labelled precursors yielded equal amounts. Studies on individual enzymes in these two pathways showed an increase in phosphorylase, phosphoglucomutase, glucose-6-phosphate dehydrogenase and fructose-6-phosphatase and a decrease in hexokinase in irradiated banana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号