首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The incentive to develop personalised therapy for cancer treatment is driven by the premise that it will increase therapeutic efficacy and reduce toxicity. Understanding the underlying cellular and molecular basis of the disease has been extremely important in the design of these novel therapies; however, identifying new drug targets for personalised therapies remains problematic. This review describes how the biological concept of synthetic lethality has been successfully implemented to identify new therapeutic approaches and targets in models from yeast through to human cells. We also discuss how recent technical advances combined with an increased understanding of the complexity of cellular networks may facilitate therapeutic advances in the future.  相似文献   

2.
3.
Standard cytotoxic agents for treating cancer were developed based on their effectiveness to kill rapidly dividing cells, not on their ability to selectively kill cancer cells and spare normal tissue. Much of contemporary cancer research is aimed at identifying specific molecular features of cancers to directly target tumor cells with the hope of reducing or eliminating unwanted side effects. Targeted therapy for the treatment of cancer can be divided into two main categories: monoclonal antibodies and small molecules. In this Perspective, we review the approach of synthetic lethality to target cancer, specifically renal cell carcinoma. The concept of synthetic lethality is used to describe a genetic interaction of two non-allelic and non-lethal genes that when mutated simultaneously results in cell death. Recently, we identified a compound, STF-62247, that functions in a synthetic lethal manner to the loss of VHL, a mutation found in the majority of renal cell carcinomas.  相似文献   

4.
There is interest in the use of DNA repair inhibitors as sensitizers of classic cytotoxic therapy against cancer. However, there is also risk – theoretical, at least – that such a strategy may increase the side effects of traditional therapies, including but not limited to treatment-related secondary malignancies. Before being brought to clinical application, therefore, important questions remain to be answered regarding how these therapies will be tailored to achieve benefit without concomitantly increasing harm. A potential solution may involve targeting so-called “synthetic lethalities” in tumor DNA repair pathways; taking advantage of defects acquired in DNA repair pathways during tumorigenesis by targeting alternative repair pathways on which the tumor critically depends. Conceivably, as repair pathways are functional in normal tissue, such targeted therapy should be relatively tumor-specific and non-toxic. We review here the rationale for this strategy, describe examples of its application, and outline potential strengths and weaknesses of this approach. For simplicity, a focus will be placed on the repair of double-strand breaks as a model system, but the conceptual framework is generally applicable to many other pathways of DNA repair.  相似文献   

5.
A human cDNA encoding the LIM domain containing 194 amino acid cysteine and glycine rich protein 3 (CSRP3) was identified as a BAX suppressor in yeast and a pro-survival sequence that abrogated copper mediated regulated cell death (RCD). Yeast lacks a CSRP3 orthologue but it has four LIM sequences, namely RGA1, RGA2, LRG1 and PXL1. These are known regulators of stress responses yet their roles in RCD remain unknown. Given that LIMs interact with other LIMs, we ruled out the possibility that overexpressed yeast LIMs alone could prevent RCD and that CSRP3 functions by acting as a dominant regulator of yeast LIMs. Of interest was the discovery that even though yeast cells lacking the LIM encoding PXL1 had no overt growth defect, it was nevertheless supersensitive to the effects of sublethal levels of copper. Heterologous expression of human CSPR3 as well as the pro-survival 14-3-3 sequence corrected this copper supersensitivity. These results show that the pxl1∆-copper synthetic lethality is likely due to the induction of RCD. This differs from the prevailing model in which synthetic lethality occurs because of specific defects generated by the combined loss of two overlapping but non-essential functions.  相似文献   

6.
Genetic oscillators have long held the fascination of experimental and theoretical synthetic biologists alike. From an experimental standpoint, the creation of synthetic gene oscillators represents a yardstick by which our ability to engineer synthetic gene circuits can be measured. For theorists, synthetic gene oscillators are a playground in which to test mathematical models for the dynamics of gene regulation. Historically, mathematical models of synthetic gene circuits have varied greatly. Often, the differences are determined by the level of biological detail included within each model, or which approximation scheme is used. In this review, we examine, in detail, how mathematical models of synthetic gene oscillators are derived and the biological processes that affect the dynamics of gene regulation.  相似文献   

7.
Polo-like kinase 1 (PLK1) is frequently overexpressed in cancer, which correlates with poor prognosis. Therefore, we investigated PLK1 as therapeutic target using rhabdomyosarcoma (RMS) as a model. Here, we identify a novel synthetic lethal interaction of PLK1 inhibitors and microtubule-destabilizing drugs in preclinical RMS models and elucidate the underlying molecular mechanisms of this synergism. PLK1 inhibitors (i.e., BI 2536 and BI 6727) synergistically induce apoptosis together with microtubule-destabilizing drugs (i.e., vincristine (VCR), vinblastine (VBL) and vinorelbine (VNR)) in several RMS cell lines (combination index <0.9) including a patient-derived primary RMS culture. Importantly, PLK1 inhibitors and VCR cooperate to significantly suppress RMS growth in two in vivo models, including a mouse xenograft model, without causing additive toxicity. In addition, no toxicity was observed in non-malignant fibroblast or myoblast cultures. Mechanistically, BI 2536/VCR co-treatment triggers mitotic arrest, which initiates mitochondrial apoptosis by inactivation of antiapoptotic BCL-2 family proteins, followed by BAX/BAK activation, production of reactive oxygen species (ROS) and activation of caspase-dependent or caspase-independent effector pathways. This conclusion is supported by data showing that BI 2536/VCR-induced apoptosis is significantly inhibited by preventing cells to enter mitosis, by overexpression of BCL-2 or a non-degradable MCL-1 mutant, by BAK knockdown, ROS scavengers, caspase inhibition or endonuclease G silencing. This identification of a novel synthetic lethality of PLK1 inhibitors and microtubule-destabilizing drugs has important implications for developing PLK1 inhibitor-based combination treatments.Treatment response critically depends on intact cell death programs in cancer cells. One of the best-characterized forms of programmed cell death is apoptosis.1 Engagement of the extrinsic (death receptor) or the intrinsic (mitochondrial) pathway of apoptosis eventually leads to activation of caspases, a family of enzymes that function as cell death effector molecules.1 Signaling via the mitochondrial pathway of apoptosis is tightly controlled by both antiapoptotic (BCL-2, BCL-XL, MCL-1) and proapoptotic (BAX, BAK) proteins of the BCL-2 family.2 Apoptosis normally eliminates cells with intolerable DNA damage or perturbations in cell cycle progression.3, 4 In cancer cells, however, antiapoptotic proteins are frequently expressed at high levels, contributing to evasion of apoptosis and treatment resistance.2Polo-like kinase 1 (PLK1) is a serine/threonine-specific kinase that is pivotal for progression through mitosis.5 Consistently, high expression of PLK1 correlates with increased proliferative potential and poor prognosis in many tumor entities.5 Thus, PLK1 has emerged as an attractive therapeutic target in oncology. In recent years, several PLK1 inhibitors have been developed, with some agents showing encouraging results in early-phase clinical trials.5 However, little is yet known on whether the antitumor activity of PLK1 inhibitors can be potentiated in rational combination regimens. Recently, overexpression of PLK1 has been documented in human tissue samples of rhabdomyosarcoma (RMS), the most frequent pediatric soft-tissue sarcoma, and was shown to correlate with reduced survival.6, 7, 8 Searching for new synthetic lethal drug interactions, we used RMS as a model to investigate PLK1 inhibitor-based combination therapies in this study.  相似文献   

8.
Recent genomic analyses on the cellular metabolic network show that reaction flux across enzymes are diverse and exhibit power-law behavior in its distribution. While intuition might suggest that the reactions with larger fluxes are more likely to be lethal under the blockade of its catalysing gene products or gene knockouts, we find, by in silico flux analysis, that the lethality rarely has correlations with the flux level owing to the widespread backup pathways innate in the genome-wide metabolism of Escherichia coli. Lethal reactions, of which the deletion generates cascading failure of following reactions up to the biomass reaction, are identified in terms of the Boolean network scheme as well as the flux balance analysis. The avalanche size of a reaction, defined as the number of subsequently blocked reactions after its removal, turns out to be a useful measure of lethality. As a means to elucidate phenotypic robustness to a single deletion, we investigate synthetic lethality in reaction level, where simultaneous deletion of a pair of nonlethal reactions leads to the failure of the biomass reaction. Synthetic lethals identified via flux balance and Boolean scheme are consistently shown to act in parallel pathways, working in such a way that the backup machinery is compromised.  相似文献   

9.
Synthetic lethals are to pairs of non‐essential genes whose simultaneous deletion prohibits growth. One can extend the concept of synthetic lethality by considering gene groups of increasing size where only the simultaneous elimination of all genes is lethal, whereas individual gene deletions are not. We developed optimization‐based procedures for the exhaustive and targeted enumeration of multi‐gene (and by extension multi‐reaction) lethals for genome‐scale metabolic models. Specifically, these approaches are applied to iAF1260, the latest model of Escherichia coli, leading to the complete identification of all double and triple gene and reaction synthetic lethals as well as the targeted identification of quadruples and some higher‐order ones. Graph representations of these synthetic lethals reveal a variety of motifs ranging from hub‐like to highly connected subgraphs providing a birds‐eye view of the avenues available for redirecting metabolism and uncovering complex patterns of gene utilization and interdependence. The procedure also enables the use of falsely predicted synthetic lethals for metabolic model curation. By analyzing the functional classifications of the genes involved in synthetic lethals, we reveal surprising connections within and across clusters of orthologous group functional classifications.  相似文献   

10.
11.
Recently, we demonstrated the feasibility of a chemical synthetic lethality screen in cultured human cells. We now demonstrate the principles for a genetic synthetic lethality screen. The technology employs both an immortalized human cell line deficient in the gene of interest, which is complemented by an episomal survival plasmid expressing the wild-type cDNA for the gene of interest, and the use of a novel GFP-based double-label fluorescence system. Dominant negative genetic suppressor elements (GSEs) are selected from an episomal library expressing short truncated sense and antisense cDNAs for a gene likely to be synthetic lethal with the gene of interest. Expression of these GSEs prevents spontaneous loss of the GFP-marked episomal survival plasmid, thus allowing FACS enrichment for cells retaining the survival plasmid (and the GSEs). The dominant negative nature of the GSEs was validated by the decreased resident enzymatic activity present in cells harboring the GSEs. Also, cells mutated in the gene of interest exhibit reduced survival upon GSE expression. The identification of synthetic lethal genes described here can shed light on functional genetic interactions between genes involved in normal cell metabolism and in disease.  相似文献   

12.
Marie E. Maradeo 《FEBS letters》2010,584(18):4037-4040
Ctf7/Eco1-dependent acetylation of Smc3 is essential for sister chromatid cohesion. Here, we use epitope tag-induced lethality in cells diminished for Ctf7/Eco1 activity to map cohesin architecture in vivo. Tagging either Smc1 or Mcd1/Scc1, but not Scc3/Irr1, appears to abolish access to Smc3 in ctf7/eco1 mutant cells, suggesting that Smc1 and Smc3 head domains are in direct contact with each other and also with Mcd1/Scc1. Thus, cohesin complexes may be much more compact than commonly portrayed. We further demonstrate that mutation in ELG1 or RFC5 anti-establishment genes suppress tag-induced lethality, consistent with the notion that the replication fork regulates Ctf7/Eco1.  相似文献   

13.
14.
Synthetic lethality is the synthesis of mutations leading to cell death. Tumor-specific synthetic lethality has been targeted in research to improve cancer therapy. With the advances of techniques in molecular biology, such as RNAi and CRISPR/Cas9 gene editing, efforts have been made to systematically identify synthetic lethal interactions, especially for frequently mutated genes in cancers. However, elucidating the mechanism of synthetic lethality remains a challenge because of the complexity of its influencing conditions. In this study, we proposed a new computational method to identify critical functional features that can accurately predict synthetic lethal interactions. This method incorporates several machine learning algorithms and encodes protein-coding genes by an enrichment system derived from gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways to represent their functional features. We built a random forest-based prediction engine by using 2120 selected features and obtained a Matthews correlation coefficient of 0.532. We examined the top 15 features and found that most of them have potential roles in synthetic lethality according to previous studies. These results demonstrate the ability of our proposed method to predict synthetic lethal interactions and provide a basis for further characterization of these particular genetic combinations.  相似文献   

15.
《Molecular cell》2021,81(15):3128-3144.e7
  1. Download : Download high-res image (203KB)
  2. Download : Download full-size image
  相似文献   

16.
The hereditary forms of breast cancer identified by BRCA1 and BRCA2 genes have a defect in homologous DNA repair and demonstrate a dependence on alternate DNA repair processes by base excision repair, which requires poly(ADP-ribose) polymerase 1 (PARP-1). siRNA and deletion mutations demonstrate that interference with PARP-1 function results in enhanced cell death when the malignancy has a defect in homologous recombination. These findings resulted in a plethora of agents in clinical trials that interfere with DNA repair, and these agents offer the potential of being more selective in their effects than classic chemotherapeutic drugs. An electronic search of the National Library of Medicine for published articles written in English used the terms "PARP inhibitors" and "breast cancer" to find prospective, retrospective and review articles. Additional searches were done for articles dealing with mechanism of action. A total of 152 articles dealing with breast cancer and PARP inhibition were identified. PARP inhibition not only affects nonhomologous repair, but also has several other nongenomic functions. Mutational resistance to these agents was seen in preclinical studies. To date, PARP-1 inhibitors were shown to enhance cytotoxic effects of some chemotherapy agents. This new class of agents may offer more therapeutic specificity by exploiting a DNA repair defect seen in some human tumors with initial clinical trials demonstrating antitumor activity. Although PARP inhibitors may offer a therapeutic option for selected malignancies, the long-term effects of these agents have not yet been defined.  相似文献   

17.
Metformin is currently a strong candidate anti-tumor agent in multiple cancers. However, its anti-tumor effectiveness varies among different cancers or subpopulations, potentially due to tumor heterogeneity. It thus remains unclear which hepatocellular carcinoma (HCC) patient subpopulation(s) can benefit from metformin treatment. Here, through a genome-wide CRISPR-Cas9-based knockout screen, we find that DOCK1 levels determine the anti-tumor effects of metformin and that DOCK1 is a synthetic lethal target of metformin in HCC. Mechanistically, metformin promotes DOCK1 phosphorylation, which activates RAC1 to facilitate cell survival, leading to metformin resistance. The DOCK1-selective inhibitor, TBOPP, potentiates anti-tumor activity by metformin in vitro in liver cancer cell lines and patient-derived HCC organoids, and in vivo in xenografted liver cancer cells and immunocompetent mouse liver cancer models. Notably, metformin improves overall survival of HCC patients with low DOCK1 levels but not among patients with high DOCK1 expression. This study shows that metformin effectiveness depends on DOCK1 levels and that combining metformin with DOCK1 inhibition may provide a promising personalized therapeutic strategy for metformin-resistant HCC patients.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13238-022-00906-6.  相似文献   

18.
19.
Einav Y  Agami R  Canaani D 《FEBS letters》2005,579(1):199-202
Previously, we demonstrated the establishment of synthetic lethality screening in cultured somatic human cells, or mouse embryo fibroblasts (MEFs), for chemicals or mutant genes synergistically lethal with a mutated gene of interest. Here, we show in MEFs that the usage of RNA interference-based genetic suppressor elements encoding short hairpin RNAs (shRNAs) enables for genetic synthetic lethality screening at a frequency much higher than that achieved before with short truncated sense and antisense RNAs. These findings open up the possibility of using in mammalian cells genome-wide shRNA libraries for genetic synthetic lethality screening at the multi-gene level.  相似文献   

20.
Timely and faithful duplication of the entire genome depends on completion of replication. Replication forks frequently encounter obstacles that may cause genotoxic fork stalling. Nevertheless, failure to complete replication rarely occurs under normal conditions, which is attributed to an intricate network of proteins that serves to stabilize, repair and restart stalled forks. Indeed, many of the components in this network are encoded by tumour suppressor genes, and their loss of function by mutation or deletion generates genomic instability, a hallmark of cancer. Paradoxically, the same fork‐protective network also confers resistance of cancer cells to chemotherapeutic drugs that induce high‐level replication stress. Here, we review the mechanisms and major pathways rescuing stalled replication forks, with a focus on fork stabilization preventing fork collapse. A coherent understanding of how cells protect their replication forks will not only provide insight into how cells maintain genome stability, but also unravel potential therapeutic targets for cancers refractory to conventional chemotherapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号