首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Asymmetric structure of a three-arm DNA junction   总被引:6,自引:0,他引:6  
We present here experimental evidence that three-arm branched DNA molecules form an asymmetric structure in the presence of Mg2+. Electrophoretic mobility and chemical and enzymatic footprinting experiments on a three-arm branched DNA molecule formed from three 16-mer strands are described. The electrophoretic mobilities of three species of a three-arm junction in which pairs of arms are extended are found to differ in the presence of Mg2+: one combination of elongated arms migrates significantly faster than the other two. This effect is eliminated in the absence of Mg2+, leading us to suggest that the three-arm DNA junction forms an asymmetric structure due to preferential stacking of two of the arms at the junction in the presence of Mg2+. The pattern of self-protection of each 16-mer strand of the core complex exposed to Fe(II).EDTA and DNase I scission is unique, consistent with formation of an asymmetric structure in the presence of Mg2+. We conclude that three-arm junctions resemble four-arm junctions in showing preferential stacking effects at the branch site. Comparison of the scission patterns of linear duplexes and the branched trimer by the reactive probes methidiumpropyl-EDTA.Fe(II) [MPE.Fe(II)] and Cu(I)-[o-phenanthroline]2 [(OP)2CuI] further indicates that the branch point represents a site of enhanced binding for drugs, as it does in the four-arm case. Reaction with diethyl pyrocarbonate (DEPC), a purine-specific probe sensitive to conformation, is enhanced at the branch site, consistent with loosening of base pairing or unpairing at this point.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
DNase I cleavage of branched DNA molecules   总被引:6,自引:0,他引:6  
We report here a potentially useful signature of branched DNA structures. The base 5' to the branch and the five bases flanking the 3' side of the branch site are protected from cleavage by DNase I in both three- and four-arm branched DNA molecules. Our procedure is to measure the cleavage profile for each 5' -labeled strand in a control duplex and compare this with that of the same strand in a branched structure under conditions yielding less than one cut per strand. The resulting cleavage pattern in an immobile four-arm junction is roughly 2-fold symmetric, consistent with the pattern of Fe(II).EDTA-induced cleavage that has been observed previously. In the three-arm junction, the DNase I cleavage pattern is asymmetric, indicating lack of 3-fold symmetry. A variable pattern of protection occurs to the 5' side of the branch in some strands only for both three- and four-arm junctions, extending 2-4 residues 5' to the branch.  相似文献   

3.
Charge dependence of Fe(II)-catalyzed DNA cleavage.   总被引:2,自引:1,他引:1       下载免费PDF全文
M Lu  Q Guo  D J Wink    N R Kallenbach 《Nucleic acids research》1990,18(11):3333-3337
The effect of charge of the Fe(II) reagent used to induce DNA strand cleavage reactions in the presence of a source of reducing equivalents is investigated using two oligonucleotide models. The first consists of the two strands dA20 and dT20, and an equimolar complex between them. The second is a short four-arm branched DNA complex composed of four 16-mer strands. In the former case, cleavage of the 1:1 complex by three reagents with different formal charge, Fe(II).EDTA2-, Fe(II).EDDA and Fe2+, is comparable in rate to that of the individual dT20 and the dA20 strands. While the three reagents show similar cleavage rates for the duplex and single stranded molecules, they give distinctive cutting patterns in the DNA tetramer, consistent with the presence of a site of excess negative charge at the branch point. Scission induced by Fe(II).EDTA2- shows lower reactivity at the branch site relative to duplex controls, whereas Fe(II)2+ shows enhanced reactivity. Formally neutral Fe(II).EDDA shows weak loss of cutting reactivity at the branch. The position of attack by Fe(II)2+ in the branched tetramer is shifted with respect to those of Fe(II).EDTA2- or Fe(II).EDDA; a slower migrating species is also detected in the scission of dA20.dT20 duplex by Fe(II) reaction. These results suggest that the Fe(II)2+ reaction proceeds by a different mechanism from the other agents. The difference in cutting profiles induced by the neutral and negatively charged chelated complexes is consistent with a local electrostatic repulsion of a negatively charged source of radicals, not a positively charged one.  相似文献   

4.
K Zieba  T M Chu  D W Kupke  L A Marky 《Biochemistry》1991,30(32):8018-8026
The role of water in the formation of stable duplexes of nucleic acids is being studied by determining the concurrent volume change, heats, and counterion uptake that accompany the duplexation process. The variability of the volume contraction that we have observed in the formation of a variety of homoduplexes suggests that sequence and conformation acutely affect the degree of hydration. We have used a combination of densimetric and calorimetric techniques to measure the change in volume and enthalpy resulting from the mixing of two complementary strands to form (a) fully paired duplexes with 10 or 11 base pairs and (b) bulged decameric duplexes with an extra dA or dT unmatched residue. We also monitored absorbance vs temperature profiles as a function of strand and salt concentration for all four duplexes. Relative to the decamer duplex, insertion of an extra dA.dT base pair to form an undecamer duplex results in a favorable enthalpy of -5.6 kcal/mol that is nearly compensated by an unfavorable entropy term of -5.1 kcal/mol. This enthalpy difference correlates with a differential uptake of water molecules, corresponding to an additional hydration of 16 mol of water molecules/mol of base pair. Relative to the fully paired duplexes, both bulged duplexes are 12-16 degrees C less stable and exhibit marginally larger counterion uptake on forming the duplex. The enthalpy change is slightly lower for the T-bulge duplex and less still for the A-bulge duplex. The volume change results indicate that an unmatched residue increases the amount of coulombic and/or structural hydration. The combined results strongly suggest that the destabilizing forces in bulged duplexes are partially compensated by an increase in hydration levels.  相似文献   

5.
Two Holliday junction analogs, JA and JP, containing identical base-paired arms have been constructed from oligonucleotides. The former is constrained to adopt an antiparallel Sigal-Alberts structure, and the latter a parallel structure, by means of single strand d(T)9 tethers. We evaluate here the free energy difference between JA and JP using two different methods. One is a direct measurement of the ratio of the equilibrium constants for formation of branched structures from intact duplexes using one labeled strand and a competition assay. The second method estimates the difference in stability from the difference in thermal denaturation temperatures of JA and JP, using urea to shift the tm of the complexes. Both methods reveal a small free energy difference between the two complexes: JA is more stable than JP by -1.1(+/- 0.4) kcal (mol junction)-1, at 25 degrees C, 5 mM-Mg2+, from the first method, and by -1.6(+/- 0.3) kcal (mol junction)-1, according to the second. DNase I and the resolvase, endonuclease I from phage T7, cleave JA differently from JP in the vicinity of the branch, indicating that the structures of these two models differ at this site. Diethyl pyrocarbonate also reveals a difference in the major grooves. Comparison of the scission patterns of JA and JP by the reactive chemical probes methidium-propyl-EDTA..Fe(II), [MPE.Fe(II)] and Cu(I)-[o-phenanthroline]2,[(OP)2Cu(I)], indicates that in both cases the branch point is a site of enhanced binding for drugs, as it is in the untethered four-arm junction containing the same core sequence at the branch.  相似文献   

6.
The thermodynamics governing the denaturation of RNA duplexes containing 8 bp and a central tandem mismatch or 10 bp were evaluated using UV absorbance melting curves. Each of the eight tandem mismatches that were examined had one U-U pair adjacent to another noncanonical base pair. They were examined in two different RNA duplex environments, one with the tandem mismatch closed by G.C base pairs and the other with G.C and A.U closing base pairs. The free energy increments (Delta Gdegrees(loop)) of the 2 x 2 loops were positive, and showed relatively small differences between the two closing base pair environments. Assuming temperature-independent enthalpy changes for the transitions, (Delta Gdegrees(loop)) for the 2 x 2 loops varied from 0.9 to 1.9 kcal/mol in 1 M Na(+) at 37 degrees C. Most values were within 0.8 kcal/mol of previously estimated values; however, a few sequences differed by 1.2-2.0 kcal/mol. Single strands employed to form the RNA duplexes exhibited small noncooperative absorbance increases with temperature or transitions indicative of partial self-complementary duplexes. One strand formed a partial self-complementary duplex that was more stable than the tandem mismatch duplexes it formed. Transitions of the RNA duplexes were analyzed using equations that included the coupled equilibrium of self-complementary duplex and non-self-complementary duplex denaturation. The average heat capacity change (DeltaC(p)) associated with the transitions of two RNA duplexes was estimated by plotting DeltaH degrees and DeltaS degrees evaluated at different strand concentrations as a function of T(m) and ln T(m), respectively. The average DeltaC(p) was 70 +/- 5 cal K(-)(1) (mol of base pairs)(-)(1). Consideration of this heat capacity change reduced the free energy of formation at 37 degrees C of the 10 bp control RNA duplexes by 0.3-0.6 kcal/mol, which may increase Delta Gdegrees(loop) values by similar amounts.  相似文献   

7.
Endonuclease I is a multipurpose enzyme implicated in the breakdown of host DNA, packaging of phage DNA, and recombination during the lytic cycle of bacteriophage T7. We investigate here some aspects of the substrate requirements for its activity in resolving branched intermediates similar to Holliday junctions (Holliday, R. (1964) Genet. Res. 5, 282-304) that arise in recombination. The enzyme is able to resolve branched substrates containing very short duplex arms: 4 base pairs suffice. It cleaves 5' to the branch, with a distinct preference for the non-crossover strands in Holliday-like model junctions. Ligands that interact strongly with the branch site can inhibit the enzyme, with KI values in the 10-50 microM range.  相似文献   

8.
Previously, we demonstrated the interaction of homologous linear duplexes with formation of four-way DNA structures on the model of five PCR products. We propose that homologous duplex interaction is initiated by the nucleation of several dissociated base pairs of the complementary ends of two fragments with Holliday junction formation, in which cross point migration occurs via spooling of DNA strands from one duplex to the other one, finally resulting in complete resolution into new or previously existing duplexes. To confirm that DNA-DNA interaction involves formation of four-way DNA structures with strand exchange at the cross point, we have demonstrated the strand exchange process between identical duplexes using homologous fragments, harboring either biotin label or (32)P-label. Incubation of the mixture resulted in the addition of (32)P-label to biotin-labeled fragments, and the intensity of (32)P-labeling of biotinylated fragments was dependent upon the incubation duration. DNA-DNA interaction is not based on surface-dependent denaturing, as Triton X-100 does not decrease the formation of complexes between DNA duplexes. The equilibrium concentration of Holliday junctions depends on the sequences of the fragment ends and the incubation temperature. The free energy of Holliday junction formation by the fragments with GC and AT ends differed by 0.6 kcal/mol. Electron microscopic analysis demonstrated that the majority of Holliday junctions harbor the cross point within a 300 base pair region of the fragment ends. This insight into the mechanism of homologous duplex interaction extends our understanding of different DNA rearrangements. Understanding of DNA-DNA interaction is of practical use for better interpretation and optimization of PCR-based analyses.  相似文献   

9.
The thermodynamics of self-assembly of a 14 base pair DNA double helix from complementary strands have been investigated by titration (ITC) and differential scanning (DSC) calorimetry, in conjunction with van't Hoff analysis of UV thermal scans of individual strands. These studies demonstrate that thermodynamic characterization of the temperature-dependent contributions of coupled conformational equilibria in the individual "denatured" strands and in the duplex is essential to understand the origins of duplex stability and to derive stability prediction schemes of general applicability. ITC studies of strand association at 293 K and 120 mM Na+ yield an enthalpy change of -73 +/- 2 kcal (mol of duplex)-1. ITC studies between 282 and 312 K at 20, 50, and 120 mM Na+ show that the enthalpy of duplex formation is only weakly salt concentration-dependent but is very strongly temperature-dependent, decreasing approximately linearly with increasing temperature with a heat capacity change (282-312 K) of -1.3 +/- 0.1 kcal K-1 (mol of duplex)-1. From DSC denaturation studies in 120 mM Na+, we obtain an enthalpy of duplex formation of -120 +/- 5 kcal (mol of duplex)-1 and an estimate of the corresponding heat capacity change of -0.8 +/- 0.4 kcal K-1 (mol of duplex)-1 at the Tm of 339 K. van't Hoff analysis of UV thermal scans on the individual strands indicates that single helix formation is noncooperative with a temperature-independent enthalpy change of -5.5 +/- 0.5 kcal at 120 mM Na+. From these observed enthalpy and heat capacity changes, we obtain the corresponding thermodynamic quantities for two fundamental processes: (i) formation of single helices from disordered strands, involving only intrastrand (vertical) interactions between neighboring bases; and (ii) formation of double helices by association (docking) of single helical strands, involving interstrand (horizontal and vertical) interactions. At 293 K and 120 mM Na+, we calculate that the enthalpy change for association of single helical strands is approximately -64 kcal (mol of duplex)-1 as compared to -210 kcal (mol of duplex)-1 calculated for duplex formation from completely unstructured single strands and to the experimental ITC value of -73 kcal (mol of duplex)-1. The intrinsic heat capacity change for association of single helical strands to form the duplex is found to be small and positive [ approximately 0.1 kcal K-1 (mol of duplex)-1], in agreement with the result of a surface area analysis, which also predicts an undetectably small heat capacity change for single helix formation.  相似文献   

10.
Q Guo  M Lu  N R Kallenbach 《Biopolymers》1991,31(4):359-372
Four-arm DNA branched junctions are stable analogues of Holliday recombinational intermediates. A number of four-arm DNA junctions synthesized from oligonucleotides have now been studied. Gel mobility or chemical footprinting experiments on several immobile four-arm junctions indicate that in the presence of Mg2+, they assume a preferred conformation consisting of two helical domains, each formed by stacking a particular pair of arms on each other. We show here that a junction we designate as J1c that has the same chemical composition as one we have previously studied in detail, J1, but is formed from the four strands complementary to those of the latter, exhibits the reverse stacking preference. The pattern of self-protection of the strands of J1c exposed to Fe(II).EDTA-induced scission reveals that twofold symmetry is preserved, but the opposite pair of strands preferentially cross over. Moreover, the Fe(II).EDTA scission profiles of J1c indicate that this junction exhibits a weaker bias as to which strands cross over than is observed in J1. The preference for the dominant species in J1 is 1.3 times greater than in J1c at 4 degrees C and in the presence of 10 mM Mg2+, based on chemical reactivity data. This is confirmed by a cleavage experiment using the resolvase enzyme, endonuclease I, from bacteriophage T7. This difference could reflect either sequence-dependent differences in the equilibrium among isomers, or in the structure of these junctions. Chemical footprinting experiments using the probes MPE.Fe(II) and (OP)2Cu(I) show that the high-affinity ligand binding site in immobile junctions is determined by junction geometry.  相似文献   

11.
Relative stability of parallel- and antiparallel-stranded duplex DNA   总被引:3,自引:0,他引:3  
  相似文献   

12.
The thermal properties and energetics of formation of 10, 12 and 16 bp DNA duplexes, specifically interacting with the HMG box of Sox-5, have been studied by isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC). DSC studies show that the partial heat capacity of these short duplexes increases considerably prior to the cooperative process of strand separation. Direct extrapolation of the pre and post-transition heat capacity functions into the cooperative transition zone suggests that unfolding/dissociation of strands results in no apparent heat capacity increment. In contrast, ITC measurements show that the negative enthalpy of complementary strand association increases in magnitude with temperature rise, implying that strand association proceeds with significant decrease of heat capacity. Furthermore, the ITC-measured enthalpy of strand association is significantly smaller in magnitude than the enthalpy of cooperative unfolding measured by DSC. To resolve this paradox, the heat effects upon heating and cooling of the separate DNA strands have been measured by DSC. This showed that cooling of the strands from 100 degrees C to -10 degrees C proceeds with significant heat release associated with the formation of intra and inter-molecular interactions. When the enthalpy of residual structure in the strands and the temperature dependence of the heat capacity of the duplexes and of their unfolded strands have been taken into account, the ITC and DSC results are brought into agreement. The analysis shows that the considerable increase in heat capacity of the duplexes with temperature rise is due to increasing fluctuations of their structure (e.g. end fraying and twisting) and this effect obscures the heat capacity increment resulting from the cooperative separation of strands, which in fact amounts to 200(+/-40) JK(-1) (mol bp)(-1). Using this heat capacity increment, the averaged standard enthalpy, entropy and Gibbs energy of formation of fully folded duplexes from fully unfolded strands have been determined at 25 degrees C as -33(+/-2) kJ (mol bp)(-1), -93(+/-4) J K(-1) (mol bp)(-1) and -5.0(+/-0.5) kJ (mol bp)(-1), respectively.  相似文献   

13.
DNA replication, recombination, and repair can result in formation of diverse branched DNA structures. Many large DNA viruses are known to encode DNA branch nucleases, but several of the expected activities have not previously been found among poxvirus enzymes. Vaccinia encodes an enzyme, A22 resolvase, which is known to be active on four-stranded DNA junctions (Holliday junctions) or Holliday junction-like structures containing three of the four strands. Here we report that A22 resolvase in fact has a much wider substrate specificity than previously appreciated. A22 resolvase cleaves Y-junctions, single-stranded DNA flaps, transitions from double strands to unpaired single strands ("splayed duplexes"), and DNA bulges in vitro. We also report site-directed mutagenesis studies of candidate active site residues. The results identify the likely active site and support a model in which a single active site is responsible for cleavage on Holliday junctions and splayed duplexes. Lastly, we describe possible roles for the A22 resolvase DNA-branch nuclease activity in DNA replication and repair.  相似文献   

14.
K B Hall  L W McLaughlin 《Biochemistry》1991,30(44):10606-10613
Four pentamers with the general sequence 5'CU(T)GU(T)G/5'CACAG have been prepared by chemical synthesis in order to generate duplex structures with common sequences. The four duplexes studied include the DNA.DNA duplex (5'dCACAG/5'dCTGTG) and the RNA.RNA duplex (5'rCUGUG/5'rCACAG) as well as the two corresponding DNA.RNA heteroduplexes (5'rCUGUG/5'dCACAG and 5'CACAG/5'dCTGTG). The measured entropy, enthalpy, and free energy changes upon melting are reported for each pentamer and compared to the predicted values where possible. Results show that the two DNA.RNA heteroduplexes are destabilized (delta G degrees 25 = -4.2 +/- 0.4 kcal/mol) relative to either the DNA.DNA duplex (delta G degrees 25 = -4.8 +/- 0.5 kcal/mol) or the RNA.RNA duplex (delta G degrees 25 = -5.8 +/- 0.6 kcal/mol). Circular dichroism spectra indicate that the RNA and the two heteroduplexes adopt an A-form conformation, while the DNA conformation is B-form. Imino proton NMR spectra also show that the heteroduplex structures resemble the RNA.RNA duplex.  相似文献   

15.
As part of an overall program to characterize the impact of mutagenic lesions on the physiochemical properties of DNA, we report here the results of a comparative spectroscopic study on pairs of DNA duplexes both with and without an exocyclic guanine lesion. Specifically, we have studied a family of four 13-mer duplexes of the form d(CGCATGYGTACGC).d(GCGTACZCATGCG) in which Y is either the normal deoxyguanosine residue (G) or the exocyclic guanine adduct 1,N2-propanodeoxyguanosine (X), while Z is either deoxycytosine (C) or deoxyadenosine (A). Thus, the four duplexes studied, which can be designated by the identity of their central Y.Z base pair, are a Watson-Crick duplex (GC), a duplex with a central mismatch (GA), and two duplexes with exocyclic guanine lesions (X), that differ only by the base opposite the lesion (XC and XA). The data derived from our spectroscopic measurements on these four duplexes have allowed us to evaluate the influence of the exocyclic guanine lesion, as well as the base opposite the lesion, on the conformation, thermal stability, and melting energetics of the host DNA duplex. To be specific, our circular dichroism (CD) spectra show that the exocyclic guanine lesion induces alterations in the duplex structure, while our temperature-dependent optical measurements reveal that these lesion-induced structural alterations reduce the thermal stability, the transition enthalpy, and the transition free energy of the duplex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Sen A  Nielsen PE 《Biophysical journal》2006,90(4):1329-1337
PNA.DNA duplexes are significantly stabilized by purine nucleobases in the PNA strand. To elucidate and understand the effect of switching the backbone in a nucleic acid duplex, we now report a thermodynamics study along with a solution conformations study of two purine/pyrimidine strand asymmetric duplexes and a strand symmetrical control by comparing the behavior of all four possible PNA/DNA combinations. In essence, we are comparing an identical basepair stack connected by either an aminoethyl glycine PNA or a deoxyribose DNA backbone. We show that the PNA.DNA duplexes containing purine-rich PNA strands are stabilized with regard to the thermal melting temperature and free energy as well as enthalpy (and concomitantly relatively less entropically disfavored). Based on our data, we find it unlikely that differences in counterion binding (identical ionic-strength dependence was observed), hydration (identical and insignificant water release was observed), or single-strand conformation can be responsible for the difference in duplex stability. The only consistent difference observed between the purine-rich PNA versus the pyrimidine-rich PNA in isosequential PNA.DNA duplexes is the significant increase in both binding enthalpy and entropy for the PNA.DNA duplexes containing pyrimidine-rich PNA in organic solvent, which would indicate that these duplexes are relatively enthalpically disfavored in water. Although our results so far do not allow us to identify the origin of the different stabilities of homopurine/homopyrimidine PNA.DNA duplexes, the evidence does point to a significant structural component, which involves enthalpic contributions both within the duplex structure and also from bound water molecules.  相似文献   

17.
Effect of sequence on the structure of three-arm DNA junctions   总被引:4,自引:0,他引:4  
M Lu  Q Guo  N R Kallenbach 《Biochemistry》1991,30(24):5815-5820
We have investigated the geometry of a number of three-arm branched DNA molecules by measuring the relative electrophoretic mobilities of analogues of each junction in which one pair of arms is extended. In general, the mobilities of three species of three-arm junctions in which the duplex arms are extended pairwise differ in the presence of Mg2+. This effect is eliminated by the absence of Mg2+ or by an increase in temperature, leading us to conclude that the three-arm DNA junctions are not 3-fold symmetric, because of either preferential stacking or asymmetric kinking of the arms at the branch that occurs in the presence of Mg2+. The geometry of the junction is governed by the base sequence at the branch and 1 bp removed from the branch. The pairwise elongated analogues of junctions that contain identical base pairs at the branch or 1 bp from the branch show mobility differences; when both positions have the same sequence no mobility differences are detected even in the presence of Mg2+. Formation of a branch in three-arm DNA junctions can be seen to produce a strain or deformation that propagates about one turn of the helix from the branch, leading thymines in this region to become hyperreactive to osmium tetraoxide. Surprisingly, the effect is independent of the presence or absence of metal cations. The structure of the three-arm junction is thus quite different in character from that of four-arm junctions both in the presence and absence of high concentrations of metal cations.  相似文献   

18.
19.
Branched DNA structures interact with drugs differently from unbranched control duplexes of similar sequence. A specific interaction between the reagent (methidiumpropyl-EDTA).Fe(II) [MPE.Fe(II)] and a branched DNA molecule formed from 16-mer oligonucleotide strands has been reported [Guo, Q., Seeman, N. C., & Kallenbach, N. R. (1989) Biochemistry 28, 2355-2359]. The structure of the branched molecule is thought to be made up of two double-helical stacking domains with an overall twofold symmetry across the branch site. The MPE-Fe(II) interaction occurs predominantly at or adjacent to the branch site and is eliminated by a second intercalator, propidium iodide. Further studies on the nature and properties of this site are presented here. Comparison of the patterns of scission of linear duplex and branched tetramer by EDTA.Fe(II), MPE.Fe(II), and Cu(I)-(o-phenanthroline)2 [(OP)2Cu(I)] provides a higher resolution picture of the site of enhanced binding. In particular, the sensitive footprinting afforded by (OP)2Cu(I) allows us to localize the major site of preferential interaction with propidium precisely to the branch point itself, with a roughly twofold symmetric pattern of cuts resulting. In detail, the differential pattern with respect to each duplex control is distinct for each arm of the junction. Excess propidium results in apparent reversal of the crossover isomer of the junction, indicating a possible additional avenue for the action of drugs in biological systems--effects on the products of recombination.  相似文献   

20.
High-sensitivity scanning calorimetry has been employed to study the reversible thermal unfolding of the lysozyme of T4 bacteriophage and of its mutant form Arg 96----His in the pH range 1.80-2.84. The values for t1/2, the temperature of half-denaturation, in degrees Celsius and for the enthalpy of unfolding in kilocalories per mole are given by (standard deviations in parentheses) wild type t1/2 = 9.63 + 14.41 pH (+/- 0.58) delta Hcal = 5.97 + 2.33t (+/- 4.20) mutant form t1/2 = -19.84 + 21.31 pH (+/- 0.51) delta Hcal = -8.58 + 2.66t (+/- 4.48) At any temperature within the range -20 to 60 degrees C, the free energy of unfolding of the mutant form is more negative than that of the wild type by 3-5 kcal mol-1, indicating an apparent destabilization resulting from the arginine to histidine replacement. The ratio of the van't Hoff enthalpy to the calorimetric enthalpy deviates from unity, the value expected for a simple two-state process, by +/- 0.2 depending on the pH. It thus appears that the nature of the unfolding of T4 lysozyme varies with pH in unknown manner. This complication does not invalidate the values reported here for the temperature of half-completion of unfolding, the calorimetric enthalpy, the heat capacity change, or the free energy of unfolding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号