首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Helicobacter pylori (H pylori) is the main risk factor for gastric cancer (GC). In recent years, many studies have addressed the effects of H pylori itself and of H pylori‐induced chronic inflammation on DNA damage. Unrepaired or inappropriately repaired DNA damage is one possible carcinogenic mechanism. We may conclude that H pylori‐induced DNA damage is one of the carcinogenic mechanisms of GC. In this review, we summarize the interactions between H pylori and DNA damage and the effects of H pylori‐induced DNA damage on GC. Then, focusing on oxidative stress, we introduce the application of antioxidants in GC. At the end of this review, we discuss the outlook for further research on H pylori‐induced DNA damage.  相似文献   

2.
Background. Helicobacter pylori infection leads to an increased risk of developing gastric cancer. The mechanism through which this occurs is not known. We aimed to determine the effect of H. pylori and gastritis on levels of DNA damage in gastric epithelial cells. Methods. Epithelial cells were isolated from antral biopsies from 111 patients. DNA damage was determined using single cell gel electrophoresis and the proportion of cells with damage calculated before and 6 weeks after eradication of H. pylori. Cell suspensions generated by sequential digestions of the same biopsies were assayed to determine the effect of cell position within the gastric pit on DNA damage. Results. DNA damage was significantly higher in normal gastric mucosa than in H. pylori gastritis [median (interquartile range) 65% (58.5–75.8), n = 18 and 21% (11.9–29.8), n = 65, respectively, p < .001]. Intermediate levels were found in reactive gastritis [55.5% (41.3–71.7), n = 13] and H. pylori negative chronic gastritis [50.5% (36.3–60.0), n = 15]. DNA damage rose 6 weeks after successful eradication of H. pylori[to 39.5% (26.3–51.0), p = .007] but was still lower than in normal mucosa. Chronic inflammation was the most important histological factor that determined DNA damage. DNA damage fell with increasing digestion times (r = –.92 and –.88 for normal mucosa and H. pylori gastritis, respectively). Conclusions. Lower levels of DNA damage in cells isolated from H. pylori infected gastric biopsies may be a reflection of increased cell turnover in H. pylori gastritis. The investigation of mature gastric epithelial cells for DNA damage is unlikely to elucidate the mechanisms underlying gastric carcinogenesis.  相似文献   

3.
Helicobacter pylori is known as a key pathogen for chronic gastric and duodenal ulcers. Egg yolk antibody, IgY produced from chicken immunized withH. pylori antigen was tested for the inhibition of growth and adhesion ofH. pylori to gastric epithelial cell, AGS. The colony forming ofH. pylori was repressed by 30% using 1 mg/mL of IgY while that ofE. coli was only 7% with the same amount of IgY, which showed the growth inhibition ofH. pylori was mainly due to the specific interaction between IgY andH. pylori. The inhibition ofH. pylori adhesion to AGS was as high as 90% using 0.5 mg/mL of antibody only. More than 80% ofH. pylori attached to AGS could be detached treating with the same amount of IgY for one and a half hr. However, this effect was severely dependant on theH. pylori strains tested. The strain used for immunization of chicken was very sensitive to the antibody treatment but changing the test strain generally showed a variation in adhesion inhibition between 15 and 80%. Further studies are necessary to employ the egg yolk antibodies for the treatment ofH. pylori in vivo.  相似文献   

4.
A versatile plasmid shuttle vector system was constructed, which is useful for genetic complementation of Helicobacter pylori strains or mutants with cloned genes of homologous or heterologous origin. The individual plasmid vectors consist of the minimal essential genetic elements, including an origin of replication for Escherichia coli, a H. pylori-specific replicon originally identified on a small cryptic H. pylori plasmid, an oriT sequence and a multiple cloning site. Shuttle plasmid pHel2 carries a chloramphenicol resistance cassette (cat GC) and pHel3 contains a kanamycin resistance gene (aphA-3) as the selectable marker; both are functional in E. coli and H. pylori. The shuttle plasmids were introduced into the H. pylori strain P1 by natural transformation. A efficiency of 7.0 × 10−7 and 4.7 × 10−7 transformants per viable recipient was achieved with pHel2 and pHel3, respectively, and both vectors showed stable, autonomous replication in H. pylori. An approximately 100-fold higher H. pylori transformation rate was obtained when the shuttle vectors for transformation were isolated from the homologous H. pylori strain, rather than E. coli, indicating that DNA restriction and modification mechanisms play a crucial role in plasmid transformation. Interestingly, both shuttle vectors could also be mobilized efficiently from E. coli into different H.␣pylori recipients, with pHel2 showing an efficiency of 2.0 × 10−5 transconjugants per viable H. pylori P1 recipient. Thus, DNA restriction seems to be strongly reduced or absent during conjugal transfer. The functional complementation of a recA-deficient H. pylori mutant by the cloned H. pylorirecA + gene, and the expression of the heterologous green fluorescent protein (GFP) in H.␣pylori demonstrate the general usefulness of␣this system, which will significantly facilitate the molecular analysis of H. pylori virulence factors in the future. Received: 22 April 1997 / Accepted: 4 November 1997  相似文献   

5.
Background: Helicobacter pylori colonize the mucus layer that covers the gastric epithelium and can cause gastritis, ulcers, and gastric cancer. Recently, Lactobacillus sp. have also been found to reside in this niche permanently. This study compares adhesive properties and proliferation of co‐isolated lactobacilli and H. pylori in the presence of mucins and investigates possibilities for lactobacilli‐mediated inhibition of H. pylori. Materials and methods: Binding and proliferation of four H. pylori and four Lactobacillus strains, simultaneously isolated after residing in the stomachs of four patients for >4 years, to human gastric mucins were investigated using microtiter‐based methods. Results: The H. pylori strains co‐isolated with lactobacilli exhibited the same mucin binding properties as demonstrated for H. pylori strains previously. In contrast, no binding to mucins was detected with the Lactobacillus strains. Proliferation of mucin‐binding H. pylori strains was stimulated by the presence of mucins, whereas proliferation of non‐binding H. pylori and Lactobacillus strains was unaffected. Associative cultures of co‐isolated H. pylori and Lactobacillus strains showed no inhibition of H. pylori proliferation because of the presence of whole bacteria or supernatant of lactobacilli. Conclusions: The presence of lactobacilli in the stomach did not select for different mucin binding properties of H. pylori, and Lactobacillus sp. did neither compete for binding sites nor inhibit the growth of co‐isolated H. pylori. The effects of human gastric mucins on H. pylori proliferation vary between strains, and the host–bacteria interaction in the mucus niche thus depends on both the H. pylori strain and the microenvironment provided by the host mucins.  相似文献   

6.
The mechanochemical synthesis and characterization of a zinc complex with famotidine is described. The complex was characterized by microanalysis and a number of spectroscopic techniques. The complex was of M:L dihydrate type. Derivatization of famotidine with zinc appears to enhance the activity of the drug by inhibiting the growth of Helicobacter pylori (two reference and 34 clinical isolates). The complex inhibited the growth of H. pylori in an MIC range of 1–8 μg mL?1. The anti-H. pylori activity of the zinc–famotidine complex against antibiotic-resistant strains was nearly comparable to that of antibiotic-susceptible strains. The complex was found to be far less toxic than the parent drug, as demonstrated by its higher LD50 value. In the human urease enzyme inhibition assay the complex exhibited significant inhibition. The new complex appears to be more useful in eradicating both the antibiotic-susceptible and antibiotic-resistant strains of H. pylori.  相似文献   

7.
Background: Triple therapy with amoxicillin, clarithromycin, and a proton‐pump inhibitor is a common therapeutic strategy for the eradication of Helicobacter pylori (H. pylori). However, frequent appearance of clarithromycin‐resistant strains is a therapeutic challenge. While various quinones are known to specifically inhibit the growth of H. pylori, the quinone 1,4‐dihydroxy‐2‐naphthoic acid (DHNA) produced by Propionibacterium has strong stimulating effect on Bifidobacterium. We were interested to see whether DHNA could inhibit the growth of H. pylori in in vitro or in vivo experimental setting. Materials and Methods: The minimum inhibitory concentration (MIC) of DHNA was determined by the agar dilution method. The inhibitory action of DHNA on the respiratory activity was measured by using an oxygen electrode. Germ‐free mice infected with H. pylori were given DHNA in free drinking water containing 100 μg/mL for 7 days. Results: DHNA inhibited H. pylori growth at low MIC values, 1.6–3.2 μg/mL. Likewise, DHNA inhibited clinical isolates of H. pylori, resistant to clarithromycin. However, DHNA did not inhibit other Gram negative or anaerobic bacteria in the normal flora of the human intestine. Both H. pylori cellular respiration and adenosine 5′‐triphosphate (ATP) generation were dose‐dependently inhibited by DHNA. Similarly, the culture filtrates of propionibacterial strains inhibited the growth of H. pylori, and oral administration of DHNA could eradicate H. pylori in the infected germ‐free mice. Conclusions: The bifidogenic growth stimulator DHNA specifically inhibited the growth of H. pylori including clarithromycin‐resistant strains in vitro and its colonization activity in vivo. The bactericidal activity of DHNA was via inhibition of cellular respiration. These actions of DHNA may have clinical relevance in the eradication of H. pylori.  相似文献   

8.
The galE gene product, UDP-galactose 4-epimerase, mediates the incorporation of galactose in extracellular polysaccharide materials such as the O-side chain of lipopolysaccharide (LPS). The O-side chain in H. pylori LPS has been shown to cross-react with Lewis x and/or y blood group antigens, suggesting its potential involvement in H. pylori-linked autoimmune disease. To study its role in H. pylori LPS biosynthesis, the galE gene was cloned, sequenced, and a galE-knockout H. pylori strain was constructed. The H. pylori galE gene encoded a protein of 344 amino acids with a molecular weight of 39K. The LPS profile from the galE-knockout H. pylori strain showed a lower molecular weight than that of the parental strain, indicating the involvement of the galE gene in LPS biosynthesis of H. pylori. Received: 15 December 1997 / Accepted: 10 March 1998  相似文献   

9.
Background & Aims. The acid inhibitory effect of proton pump inhibitors is reported to be greater in the presence than in the absence of an H. pylori infection. This study was undertaken to test the hypothesis that the acid inhibitory effect of omeprazole given twice a day is greater in H. pylori infected healthy volunteers than in the same individuals following eradication because of differences in the pharmacodynamics of omeprazole, greater duodenogastric reflux, the effects of ammonia produced by the H. pylori, or lower gastric juice concentrations of selected cytokines, which may inhibit gastric acid secretion. Materials and Methods. We undertook 24hour pH‐metry in 12 H. pylori‐positive healthy volunteers: (1) when on no omeprazole; (2) when on omeprazole 20 mg bid for 8 days; (3) 2 months after eradication of H. pylori and when on no omeprazole; and (4) after eradication of H. pylori and when on omeprazole 20 mg twice a day. Results. In subjects given omeprazole, eradication of H. pylori reduced pH and percentage pH ≥ 3, as well as increasing the area under the H+ concentration‐time curve. These differences were not due to alterations in (1) gastric juice concentrations of IL‐1α, IL‐8, IL‐13, epidermal growth factor, or bile acids; (2) serum gastrin concentrations; or (3) the pharmacokinetics of omeprazole. There was no change in the difference in the H+ concentration‐time curve ‘without omeprazole’ minus ‘with omeprazole’, when comparing ‘after’ versus ‘before’ eradication of H. pylori. Conclusions. Eradication of H. pylori was not associated with an alteration in the acid inhibitory potency when comparing the difference in gastric acidity ‘with’ versus ‘without’ omeprazole. When the results were expressed by simply taking into account the acid measurements while on omeprazole before versus after eradication of H. pylori, the acid inhibition with omeprazole was greater in the presence than in the absence of a H. pylori infection. The clinical significance of the small difference is not clear.  相似文献   

10.
In this study, we examined the anti-Helicobactor pylori effects of the main protoberberine-type alkaloids in Rhizoma Coptidis. Coptisine exerted varying antibacterial and bactericidal effects against three standard H. pylori strains and eleven clinical isolates, including four drug-resistant strains, with minimum inhibitory concentrations ranging from 25 to 50?μg/mL and minimal bactericidal concentrations ranging from 37.5 to 125?μg/mL. Coptisine’s anti-H. pylori effects derived from specific inhibition of urease in vivo. In vitro, coptisine inactivated urease in a concentration-dependent manner through slow-binding inhibition and involved binding to the urease active site sulfhydryl group. Coptisine inhibition of H. pylori urease (HPU) was mixed type, while inhibition of jack bean urease was non-competitive. Importantly, coptisine also inhibited HPU by binding to its nickel metallocentre. Besides, coptisine interfered with urease maturation by inhibiting activity of prototypical urease accessory protein UreG and formation of UreG dimers and by promoting dissociation of nickel from UreG dimers. These findings demonstrate that coptisine inhibits urease activity by targeting its active site and inhibiting its maturation, thereby effectively inhibiting H. pylori. Coptisine may thus be an effective anti-H. pylori agent.  相似文献   

11.
This study investigated the growth of Helicobacter (H.) pylori in Brucella broth supplemented with either IsoVitaleX (1% vol/vol), hemin (0.1% wt/vol), agar (0.3% wt/vol), or blood agar blocks (1.5% wt/vol agar). IsoVitaleX was found to significantly shorten the lag phase, while hemin inhibited the growth within the first 24 hours but later acted as a growth stimulant. There was a tendency toward stronger growth when blood agar blocks were added to the medium. Subsequent electron microscopic evaluation revealed that cells of H. pylori were attached to blood agar block surfaces. In contrast, the supplementation of Brucella broth with agar did not significantly increase the cell density. When H. pylori was grown in the presence of IsoVitaleX, strongly stainable electron-dense bodies (140–200 nm) were seen in the cytoplasms. Incubation of cultures on rotary shakers at 120 rpm significantly enhanced growth. The addition of glycerol (15% vol/vol) or fetal bovine serum (15% vol/vol) showed good ultrastructural preservation of bacteria with undamaged cell walls and cytoplasmic membranes, and the cytoplasms were ribosome-dense. Cell counts revealed that cultures stored in glycerol or fetal bovine serum had a significantly lower loss in viability when compared with cultures stored without cryopreservatives. Unprotected cells of H. pylori showed on electron micrographs clumping, cell lysis, and flagellar damage. Finally, the survival rates of H. pylori after multiple thawing from storage at −80°C were best in Brucella broth/glycerol, Brucella broth/fetal bovine serum, and Brucella broth without cryopreservative (in descending order). Received: 10 November 1997 / Accepted: 29 January 1998  相似文献   

12.
Background: Anomalous expression of activation‐induced cytidine deaminase (AID) in Helicobacter pylori‐infected gastric epithelial cells has been postulated as one of the key mechanisms in the development of gastric cancer. AID is overexpressed in the cells through nuclear factor (NF)‐κB activation by H. pylori and hence, inhibition of NF‐κB pathway can downregulate the expression of AID. Curcumin, a spice‐derived polyphenol, is known for its anti‐inflammatory activity via NF‐κB inhibition. Therefore, it was hypothesized that curcumin might suppress AID overexpression via NF‐κB inhibitory activity in H. pylori‐infected gastric epithelial cells. Materials and Methods: MKN‐28 or MKN‐45 cells and H. pylori strain 193C isolated from gastric cancer patient were used for co‐culture experiments. Cells were pretreated with or without nonbactericidal concentrations of curcumin. Apoptosis was determined by DNA fragmentation assay. Enzyme‐linked immunosorbent assay was performed to evaluate the anti‐adhesion activity of curcumin. Real‐time polymerase chain reaction was employed to evaluate the expression of AID mRNA. Immunoblot assay was performed for the analysis of AID, NF‐κB, inhibitors of NF‐κB (IκB), and IκB kinase (IKK) complex regulation with or without curcumin. Results: The adhesion of H. pylori to gastric epithelial cells was not inhibited by curcumin pretreatment at nonbactericidal concentrations (≤10 μmol/L). Pretreatment with nonbactericidal concentration of curcumin downregulated the expression of AID induced by H. pylori. Similarly, NF‐κB activation inhibitor (SN‐50) and proteasome inhibitor (MG‐132) also downregulated the mRNA expression of AID. Moreover, curcumin (≤10 μmol/L) has suppressed H. pylori‐induced NF‐κB activation via inhibition of IKK activation and IκB degradation. Conclusion: Nonbactericidal concentrations of curcumin downregulated H. pylori‐induced AID expression in gastric epithelial cells, probably via the inhibition of NF‐κB pathway. Hence, curcumin can be considered as a potential chemopreventive candidate against H. pylori‐related gastric carcinogenesis.  相似文献   

13.
Background. Cyclooxygenase (COX)‐2 induced by Helicobacter pylori is thought to enhance gastric carcinogenesis by affecting the maintenance of epithelial homeostasis. Materials and Methods. Gastric biopsies from 160 subjects, 97 with nonulcer dyspepsia (47 H. pylori negative, 50 H. pylori positive) and 63 with gastric cancer were examined immunohistochemically for COX‐2 expression, cell proliferation and apoptotic indices. Results. COX‐2 expression in corpus was significantly higher in H. pylori positive than in negative non‐ulcer dyspepsia (NUD) (p < .05). Regardless of site, gastric cancer subjects had higher COX‐2 expression in both antrum and corpus compared with H. pylori negative and positive NUD (p < .005). Proliferation was higher in cancer and H. pylori positive than in negative NUD (p < .0001). Moreover, cancer had enhanced proliferation than H. pylori positive NUD in corpus greater (p = .0454) and antrum lesser (p = .0215) curvatures. Apoptosis was higher in H. pylori positive than in negative NUD (p < .05). However, both had a higher index than the cancer subjects (p < .0001). Apoptosis : proliferation ratio was higher in corpus of H. pylori negative than in positive NUD in greater (p = .0122) and lesser (p = .0009) curvatures. However, both had a higher A:P ratio than cancer cases (p = .0001). A negative correlation between COX‐2 expression and A:P ratio was found in corpus greater (r = –.176, p= .0437) and lesser (r = –.188, p= .0312) curvatures. Conclusion. The expression of COX‐2 is associated with disruption in gastric epithelial kinetics and hence may play a role in gastric carcinogenesis.  相似文献   

14.
Aims: To explore the preventative potential of muscadine grape skin (MGS) and the single flavonoid, quercetin, as an alternative means for ameliorating Helicobacter pylori infection and/or the H. pylori‐induced inflammatory response in mice. Methods and Results: The antimicrobial and anti‐inflammatory properties of MGS and quercetin, a major phenolic constituent, were evaluated against H. pylori in vitro and in vivo. The antimicrobial activity of quercetin was evaluated against 11 H. pylori strains in vitro with inhibition of all strains at 128–64 μg ml?1. In vivo studies showed a moderate reduction in H. pylori counts following treatment with 5 and 10% MGS or quercetin (25 mg kg?1 body weight) in addition to significantly reduced inflammatory cytokines (TNF‐α, IL‐1β and IFN‐γ) when compared with untreated mice. Conclusions: MGS and quercetin did not significantly reduce H. pylori growth in a mouse model. However, these products were effective in regulating the inflammatory response to H. pylori infection. Significance and Impact of the Study: Our results suggest that H. pylori infection may be reduced or prevented via the consumption of fruits rich in certain phenolic compounds (e.g. quercetin) such as muscadine grapes.  相似文献   

15.
Background. Helicobacter pylori is the main cause of gastritis and a primary carcinogen. The aim of this study was to assess oxidative damage in mucosal compartments of gastric mucosa in H. pylori positive and negative atrophic and nonatrophic gastritis. Materials and methods. Five groups of 10 patients each were identified according to H. pylori positive or negative chronic atrophic (Hp‐CAG and CAG, respectively) and nonatrophic gastritis (Hp‐CG and CG, respectively), and H. pylori negative normal mucosa (controls). Oxidative damage was evaluated by nitrotyrosine immunohistochemistry in the whole mucosa and in each compartment at baseline and at 2 and 12 months after eradication. Types of intestinal metaplasia were classified by histochemistry. Results. Total nitrotyrosine levels appeared significantly higher in H. pylori positive than in negative patients, and in Hp‐CAG than in Hp‐CG (p < .001); no differences were found between H. pylori negative gastritis and normal mucosa. Nitrotyrosine were found in foveolae and intestinal metaplasia only in Hp‐CAG. At 12 months after H. pylori eradication, total nitrotyrosine levels showed a trend toward a decrease in Hp‐CG and decreased significantly in Hp‐CAG (p = .002), disappearing from the foveolae (p = .002), but remaining unchanged in intestinal metaplasia. Type I and II of intestinal metaplasia were present with the same prevalence in Hp‐CAG and CAG, and did not change after H. pylori eradication. Conclusions. Oxidative damage of the gastric mucosa increases from Hp‐CG to Hp‐CAG, involving the foveolae and intestinal metaplasia. H. pylori eradication induces a complete healing of foveolae but not of intestinal metaplasia, reducing the overall oxidative damage in the mucosa.  相似文献   

16.
Introduction: Alaska Native children have high Helicobacter pylori infection and iron deficiency prevalences, and their average height‐for‐age is lower than US reference populations. During a clinical trial to determine the impact of H. pylori treatment on iron deficiency, we evaluated the effects of H. pylori infection and treatment on growth. Materials and Methods: We measured height and weight for children aged 7–11 years in western Alaska using village‐based measuring devices. H. pylori infection was determined by urea breath test and iron deficiency using serum ferritin. Children with H. pylori infection and iron deficiency entered the treatment phase and received iron alone or iron plus triple therapy for H. pylori. Follow‐up evaluations occurred at 2, 8, and 14 months. We evaluated the association between baseline H. pylori infection and growth; among children in the treatment phase, we also assessed the effect of H. pylori resolution on growth. Results: At baseline, 566 (87.1%) of 650 children were infected with H. pylori. Neither height and weight, nor body mass index differed by H. pylori infection status. Of 189 children in the treatment phase, 20 (10.6%) were uninfected at all three follow‐up periods, and 54 (28.6%) were uninfected for one or two periods. Compared with continuously infected children, children in these two groups had little evidence of improvements in any of the measured growth outcomes. Conclusions: H. pylori infection is not related to growth among Alaska Native children aged 7–11 years. Growth deficiency should not be considered an indication for H. pylori therapy.  相似文献   

17.
The purpose of the present study was to design mucoadhesive gliadin nanoparticles (GNP) containing amoxicillin and to evaluate their effectiveness in eradicating Helicobacter pylori. GNP-bearing amoxicillin (AGNP) was prepared by desolvation method. The effect of process variables such as gliadin concentration and initial drug loading on particle size, shape, percent payload, percent entrapment efficiency, in vitro release profile, and mucoadhesive property of GNP was assessed. Rhodamine isothiocyanate-entrapped GNP formulations were prepared to evaluate their in vivo gastric mucoadhesive property in albino rats. With increasing gliadin concentration, the mucoadhesive property of GNP increased. Typically, the maximum amount of nanoparticles remaining was 82±4%, which represented a stronger mucoadhesive propensity and specificity of GNP toward the stomach. In vitro antimicrobial activity of AGNP was evaluated by growth inhibition studies on an isolated H pylori strain. The time required for complete eradication was higher in AGNP than in amoxicillin because of the controlled drug delivery of amoxicillin from AGNP. In vivo clearance of H pylori following oral administration of AGNP to infected Mongolian gerbils was examined. Amoxicillin and AGNP both showed anti-H pylori effects in this experimental model of infection, but the required dose for complete eradication was less in AGNP than in amoxicillin. In conclusion, AGNP eradicated H pylori from the gastrointestinal tract more effectively than amoxicillin because of the prolonged gastrointestinal residence time attributed to mucoadhesion. A dosage form containing mucoadhesive nanoparticles bearing a potential antibiotic should be useful for the complete eradication of H pylori.  相似文献   

18.
Background: Given that members of Helicobacteraceae family colonize the intestinal mucus layer, it has been hypothesized that they may play a role in Crohn’s disease. This study investigated the presence of Helicobacteraceae DNA in biopsies collected from children with Crohn’s disease and controls. Materials and Methods: The presence of Helicobacteraceae DNA was investigated in intestinal biopsies collected from 179 children undergoing colonoscopy (Crohn’s disease n = 77, controls n = 102) using a Helicobacteraceae‐specific PCR. Results: Members of the Helicobacteraceae were detected in 32/77 children with Crohn’s disease (41.5%) and 23/102 controls (22.5%). Statistical analysis showed the prevalence of Helicobacteraceae detected in patients to be significantly higher than that in controls (p = .0062). Analysis of non‐pylori Helicobacteraceae showed that their prevalence was also significantly higher in patients than in controls (p = .04). Helicobacter pylori was detected in 14.0% of the biopsies across all groups. Given that all children tested were negative for gastric H. pylori, this was a surprising finding. Phylogenetic analysis of H. pylori sequences detected in the biopsies showed that the H. pylori strains identified in the patients did not group with gastric H. pylori included in the analysis, but rather with other H. pylori strains detected in the intestine, gall bladder, and liver. Conclusions:  The higher prevalence of Helicobacteraceae DNA in Crohn’s disease patients would suggest that members of this family may be involved in this disease. In addition, phylogenetic analysis of H. pylori strains showed that extragastric sequences clustered together, indicating that different H. pylori strains may adapt to colonize extragastric niches.  相似文献   

19.
Helicobacter pylori (H. pylori) is a highly successful human pathogen that colonizes stomach in around 50% of the global population. The colonization of bacterium induces an inflammatory response and a substantial rise in the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), mostly derived from host neutrophils and gastric epithelial cells, which play a crucial role in combating bacterial infections. However, H. pylori has developed various strategies to quench the deleterious effects of ROS, including the production of antioxidant enzymes, antioxidant proteins as well as blocking the generation of oxidants. The host's inability to eliminate H. pylori infection results in persistent ROS production. Notably, excessive ROS can disrupt the intracellular signal transduction and biological processes of the host, incurring chronic inflammation and cellular damage, such as DNA damage, lipid peroxidation, and protein oxidation. Markedly, the sustained inflammatory response and oxidative stress during H. pylori infection are major risk factor for gastric carcinogenesis. In this context, we summarize the literature on H. pylori infection-induced ROS production, the strategies used by H. pylori to counteract the host response, and subsequent host damage and gastric carcinogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号