首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The kinetics of the separate processes of Fe2(III)-transferrin binding to the transferrin receptor, transferrin-receptor internalization, iron dissociation from transferrin, iron passage through the membrane, and iron mobilization into the cytoplasm were studied by pulse-chase experiments using rabbit reticulocytes and59Fe,125I-labeled rabbit transferrin. The binding of59Fe-transferrin to transferrin receptors was rapid with an apparent rate constant of 2×105 m –1 sec–1. The rate of internalization of59Fe-transferrin was directly measured at 520±100 molecules of Fe2(III)-transferrin internalized/sec/cell with 250±43 sec needed to internalize the entire complement of reticulocyte transferrin receptors. Subsequent to Fe2(III)-transferrin internalization the flux of59Fe was followed through three compartments: internalized transferrin, membrane, and cytosol.A process preceding iron dissociation from transferrin and a reaction involving membrane-associated iron required 17±2 sec and 34±5 sec, respectively. Apparent rate constants of 0.0075±0.002 sec–1 and 0.0343±0.0118 sec–1 were obtained for iron dissociation from transferrin and iron mobilization into the cytosol, respectively. Iron dissociation from transferrin is the rate-limiting step. An apparent rate constant of 0.0112±0.0025 sec–1 was obtained for processes involving iron transport through the membrane although at least two reactions are likely to be involved. Based on mechanistic considerations, iron transport through the membrane may be attributed to an iron reduction step followed by a translocation step. These data indicate that the uptake of iron in reticulocytes is a sequential process, with steps after the internalization of Fe2(III)-transferrin that are distinct from the handling of transferrin.  相似文献   

2.
Mechanism of transferrin iron uptake by rat reticulocytes was studied using 59Fe- and 125I-labelled rat transferrin. Whereas more than 80% of the reticulocyte-bound 59Fe was located in the cytoplasmic fraction, only 25–30% of 125I-labelled transferrin was found inside the cells. As shown by the presence of acetylcholine esterase, 10–15% of the cytoplasmic 125I-labelled transferrin might have been derived from the contamination of this fraction by the plasma membrane fragments. Electron microscopic autoradiography indicated 26% of the cell-bound 125I-labelled transferrin to be inside the reticulocytes. Both the electron microscopic and biochemical studies showed that the rat reticulocytes endocytosed their plasma membrane independently of transferrin. Sepharose-linked transferrin was found to be capable of delivering 59Fe to the reticulocytes. Our results suggest that penetration of the cell membrane by transferrin is not necessary for the delivery of iron and that, although it might make a contribution to the cellular iron uptake, internalization of transferrin reflects endocytotic activity of the reticulocyte cell membrane.  相似文献   

3.
The effect of lead on cellular iron metabolism has been investigated using human erythroleukemia (K562) cells. When the cells were cultured with 100 m Pb2+ for 48 h, the rate of cellular iron uptake from transferrin decreased to 46% of that in untreated cells. Scatchard analysis of the binding data revealed that this reduction was the result of a decrease in the number of transferrin receptors rather than an alteration in ligand-receptor affinity. The results of immunoprecipitation of transferrin receptors on the cell surface also confirmed the decreased expression of transferrin receptors by lead-treated cells. The down-regulation of transferrin receptors by treatment with lead did not result from a decrease in the total amount of the receptor, as determined by immunoblotting. Moreover, the biosynthesis of the receptor was unaffected by lead treatment. Thus, the down-regulation of surface transferrin receptors in lead-treated cells might be due to a redistribution of receptors rather than an actual loss of receptors from the cell. Using kinetic analysis, it was shown that redistribution of the receptor did not result from the alteration in the rates of transferrin receptor recycling. A comparison of the amounts of transferrin receptor on the cell surface and in the cycling pool revealed that the sequestration of the receptor from normal flow through the cycle might cause down-regulation of the surface receptor.  相似文献   

4.
植物吸收利用铁的机理   总被引:5,自引:1,他引:5  
根据植物铁营养的一些研究进展,论述了植物对铁的吸收和运输机理以及HCO3^-,N、P等因素对铁利用效率的影响。  相似文献   

5.
Iron incorporation by bovine spleen apoferritin either with ferrous ammonium sulfate in different buffers or with ferrous ammonium sulfate and phosphate was studied. Iron uptake and iron autoxidation were recorded spectrophotomerically. The buffers [4-(2-hydroxyethyl)-1-piperazinyl]ethanesulphonic acid (Hepes) and tris(hydroxymethyl)aminoethane (Tris) exhibited pH-dependent iron autoxidation, with Tris showing less iron autoxidation than Hepes. An Eadie-Scatchard plot (v/[s] versus v) of the iron uptake rate in Hepes was a curved rather than a straight line, suggesting that there are two iron uptake pathways. On the other hand, the Eadie-Scatchard plots of Tris and of Hepes after the addition of phosphate showed a straight line. Phosphate accelerated the iron uptake rate. The iron loading kinetics of apoferritin in Hepes was dependent on apoferritin concentration. The Km value obtained from iron uptake kinetics was 4.5 M, corresponding to the physiological iron concentration. These results demonstrate that iron loading of apoferritin was accomplished at physiological iron concentrations, which is essential for iron uptake, via two uptake pathways of dependent on iron concentration.  相似文献   

6.
Inhibitory effect of iron on the uptake of lead by erythrocytes.   总被引:1,自引:0,他引:1  
It is well known that more than 90% of the lead found in blood is associated with the erythrocytes. The present in vitro experiments show that the uptake of lead-203 by rabbit erythrocytes is inhibited by the presence of non-radioactive lead or iron or by reduction of the incubation temperature. The inhibitory effect of iron on radioactive lead uptake by erythrocytes is also demonstrable in vivo.When lead-203 is incorporated into erythrocytes in vitro, about 10% of the radioactivity is attached to the membrane and the remainder is found in the cytoplasm associated with hemoglobin and an unidentified low molecular weight intracellular component. In the presence of 25 μg/ml of added iron (Fe+++) the uptake of radioactive lead by erythrocytes is reduced to 21.7±5.1% and membrane binding accounts for approximately 5% of this total. Chromatographic analyses of hemolysates show that the reduction in cytoplasmic labeling is directly related to decreased lead binding to the low molecular weight component, since hemoglobin binding remains unchanged.This work suggests that in addition to the interaction between iron and lead which occurs during the biosynthesis of heme, these metals may directly compete for specific erythrocyte binding sites.  相似文献   

7.
The iron chelators desferrioxamine (DFO), pyridoxal isonicotinoyl hydrazone (PIH), 2,2-bipyridine, diethylenetriamine penta-acetic acid (DTPA) and 1,2 dimethyl-3-hydroxy pyrid-4-one (CP20) were analysed for their ability to change59Fe uptake and release from the brain of 15- and 63-day rats either during or after intravenous injection of59Fe-125I-transferrin. DTPA was the only chelator unable to significantly reduce iron uptake into the brain of 15-day rats. This indicates that iron is not released from transferrin at the luminal surface of brain capillary endothelial cells. CP20 was able to reduce iron uptake in the brain by 85% compared to 28% with DFO. Only CP20 was able to significantly reduce brain iron uptake in 63 day rats. Once59Fe had entered the brain no chelator used was able to mediate its release. All of the chelators except CP20 had similar effects on femur iron uptake as they did on brain uptake, suggesting similar iron uptake mechanisms. It is concluded that during the passage of transferrin-bound iron into the brain the iron is released from transferrin within endothelial cells after endocytosis of transferrin.  相似文献   

8.
Zhang  Xike  Zhang  Fusuo  Mao  Daru 《Plant and Soil》1999,209(2):187-192
Under anaerobic conditions, ferric hydroxide deposits on the surface of rice roots have been shown to affect the uptake of some nutrients. In the present experiment, different amount of this iron plaque were induced on the roots of rice (Oryza sativa L. cv. TZ88-145) by supplying different Fe(OH)3 concentrations in nutrient solutions, and the effect of the iron plaque on phosphorus uptake was investigated. Results showed that 1) iron plaque adsorbed phosphorus from the growth medium, and that the amount of phosphorus adsorbed by the plaque was correlated with the amount of plaque; 2) the phosphorus concentration in the shoot increased by up to 72% after 72 h at concentration of Fe(OH)3 in the nutrient solution from 0 to 30 mg Fe/L, corresponding with amounts of iron plaque from 0.2 to 24.5 mg g-1 (root d. wt); 3) the phosphorus concentration in the shoots of rice with iron plaque was higher than that without iron plaque though the concentration in the shoot decreased when Fe(OH)3 was added at 50 mg Fe/L producing 28.3 mg g-1 (root d. wt) of plaque; and 4) the phosphorus concentrations in Fe-deficient and Fe-sufficient rice plants with iron plaque were the same, although phytosiderophores were released from the Fe-deficient roots. The phytosiderophores evidently did not mobilise phosphorus adsorbed on plaque. The results suggest that iron plaque on rice plant roots might be considered a phosphorus reservoir. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Background. – Under conditions of iron overload non-transferrin-bound iron (NTBI) occurs in the circulation and is mainly cleared by the liver. Beside iron, gallium and aluminum enhance accumulation of NTBI. We try to characterize the mechanism and metal-mediated regulation of NTBI uptake using cultivated primary rat hepatocytes.  相似文献   

10.
Polyacrylamide-gel electrophoresis in urea was used to prepare the four molecular species of transferrin:diferric transferrin, apotransferrin and the two monoferric transferrins with either the C-terminal or the N-terminal metal-binding site occupied. The interaction of these 125I-labelled proteins with rabbit reticulocytes was investigated. At 4 degrees C the average value for the association constant for the binding of transferrin to reticulocytes was found to increase with increasing iron content of the protein. The association constant for apotransferrin binding was 4.6 X 10(6)M-1, for monoferric (C-terminal iron) 2.5 X 10(7)M-1, for monoferric (N-terminal iron) 2.8 X 10(7)M-1 and for diferric transferrin, 1.1 X 10(8)M-1. These differences in the association constants did not affect the processing of the transferrin species by the cells at 37 degrees C. Accessibility of the proteins to extracellular proteinase indicated that the transferrin was internalized by the cells regardless of the iron content of the protein, since in each case 70% was inaccessible. Cycling of the cellular receptors may also occur in the absence of bound transferrin.  相似文献   

11.
Zhang  Xike  Zhang  Fusuo  Mao  Daru 《Plant and Soil》1998,202(1):33-39
This solution culture study examined the effect of the deposition of iron plaque on zinc uptake by Fe-deficient rice plants. Different amounts of iron plaque were induced by adding Fe(OH)3 at 0, 10, 20, 30, and 50 mg Fe/L in the nutrient solution. After 24 h of growth, the amount of iron plaque was correlated positively with the Fe(OH)3 addition to the nutrient solution. Increasing iron plaque up to 12.1 g/kg root dry weight increased zinc concentration in shoots by 42% compared to that at 0.16 g/kg root dry weight. Increasing the amount of iron plaque further decreased zinc concentration. When the amounts of iron plaque reached 24.9 g/kg root dry weight, zinc concentration in shoots was lower than that in shoots without iron plaque, implying that the plaque became a barrier for zinc uptake. While rice plants were pre-cultured in –Fe and +Fe nutrient solution in order to produce the Fe-deficient and Fe-sufficient plants and then Fe(OH)3 was added at 20, 30, and 50 mg Fe/L in nutrient solution, zinc concentrations in shoots of Fe-deficient plants were 54, 48, and 43 mg/kg, respectively, in contrast to 32, 35, and 40 mg/kg zinc in shoots of Fe-sufficient rice plants. Furthermore, Fe(OH)3 addition at 20 mg Fe/L and increasing zinc concentration from 0.065 to 0.65 mg Zn/L in nutrient solution increased zinc uptake more in Fe-deficient plants than in Fe-sufficient plant. The results suggested that root exudates of Fe-deficient plants, especially phytosiderophores, could enhance zinc uptake by rice plants with iron plaque up to a particular amount of Fe.  相似文献   

12.
Studies on the effect of 1-anilino-8-naphthalene sulfonate on uptake of transferrin and iron by rabbit reticulocytes show that the inhibitory action of ANS is localized at the membrane level. The intravesicular pH and cellular ATP level were not affected by this anionic probe. ANS shifted the transition temperature and reduced the enthalpy changes of iron uptake by rabbit reticulocytes. These suggested that the drug reduced the membrane fluidity. Hence, ANS disturbed the physicochemical environment of the receptor for transferrin resulting in the perturbation of receptor-mediated endocytosis.  相似文献   

13.
Roots from cuttings of grapevine rootstocks V. Berlandieri × V. rupestris 140 Ru, V. Berlandieri × V. riparia SO4, V. riparia × V. rupestris 101–14 and a V. vinifera cultivar (Pinot blanc), with a decreasing degree of chlorosis resistance, were excised and tested to quantify physiological and morphological parameters, as follows: 59Fe uptake from an FeEDTA solution; reducing capacity; root diameter and root hair occurrence.The most significant findings are that: a) 59Fe uptake and FeEDTA reduction decreased from the most chlorosis resistant rootstock (140 Ru) to the most susceptible one (101–14) and to Pinot blanc; b) 59Fe uptake and reducing capacity were closely related; c) iron uptake and reduction were closely related to the root diameter and root hair occurrence, within the rootstocks.  相似文献   

14.
15.
The effect of monoclonal antibodies to the human transferrin receptor on transferrin and iron uptake by rat and rabbit reticulocytes has been examined. The antibodies used were as follows: T58/1.4, B3/25.4, 42/6.3, T56/14.3.1, and 43/31. The effects were the same, irrespective of the antibody. Transferrin and iron uptake were stimulated in both rat and rabbit reticulocytes. The stimulation was not due to an increase in the number or affinity of the receptors, but rather to an increase in the rate of turnover of the receptors. Electron microscopy suggested that the antibody acted by facilitating the formation of coated pits containing the transferrin-receptor complex.  相似文献   

16.
Zou  C.  Shen  J.  Zhang  F.  Guo  S.  Rengel  Z.  Tang  C. 《Plant and Soil》2001,235(2):143-149
Comparative studies on the effect of nitrogen (N) form on iron (Fe) uptake and distribution in maize (Zea mays L. cv Yellow 417) were carried out through three related experiments with different pretreatments. Experiment 1: plants were precultured in nutrient solution with 1.0×10–4 M FeEDTA for 6 d and then exposed to NO3–N or NH4–N solution with 1.0×10–4 M FeEDTA or without for 7 d. Experiment 2: plants were precultured with 59FeEDTA for 6 d and were then transferred to the solution with different N forms, and 0 and 1.0×10–4 M FeEDTA for 8 d. Experiment 3: half of roots were supplied with 59FeEDTA for 5 d and then cut off, with further culturing in treatment concentrations for 7 d. In comparison to the NH4-fed plants, young leaves of the NO3-fed plants showed severe chlorosis under Fe deficiency. Nitrate supply caused Fe accumulation in roots, while NH4–N supply resulted in a higher Fe concentration in young leaves and a lower Fe concentration in roots. HCl-extractable (active) Fe was a good indicator reflecting Fe nutrition status in maize plants. Compared with NO3-fed plants, a higher proportion of 59Fe was observed in young leaves of the Fe-deficient plants fed with NH4–N. Ammonium supply greatly improved 59Fe retranslocation from primary leaves and stem to young leaves. Under Fe deficiency, about 25% of Fe in primary leaves of the NH4-fed plants was mobilized and retranslocated to young leaves. Exogenous Fe supply decreased the efficiency of such 59Fe retranslocation. The results suggest that Fe can be remobilized from old to young tissues in maize plants but the remobilization depends on the form of N supply as well as supply of exogenous Fe.  相似文献   

17.
The ability of the filamentous fungus Verticillium marquandii for Zn2+ and Pb2+ uptake from aqueous solution was studied. The 24-h-old living mycelium bound Zn2+ and Pb2+ (206.2 and 324.5 mg/g dry weight, respectively) effectively, in contrast to a very low Zn2+ uptake by autoclaved mycelium (20.2 mg/g). The most effective results were noted when the metals were introduced as acetates and incubated with mycelium for 24 h in case of Zn2+ while Pb2+ achieved the maximum level of metal binding after as early as 3 h. The cell wall was the main site of effective Zn2+ and Pb2+ binding by V. marquandii mycelium (91.0–93.6% of metals were located in cell wall after 24 h of exposure). The metabolic inhibitors: antimycin A and sodium azide had a strong limitation effect on Zn2+ uptake by a 24-h-old living mycelium, whereas Pb2+ binding did not decrease to a large extent. The freshly obtained protoplasts accumulated Zn2+ and Pb2+ on a low level in comparison with cells at different stages of cell wall regeneration. The use of regenerating protoplasts showed that resynthesis of cell wall was necessary for high binding of Zn2+, whereas Pb2+ uptake on the significant level took place during cell wall regeneration. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Iron uptake by rabbit reticulocytes was inhibited by spermine in a concentration-dependent manner. Examination of the single-cycle endocytosis of 125I-transferrin showed that a graded reduction in the rate of exocytosis of transferrin was related to increasing extracellular spermine concentrations. This reduction could affect the recycling of transferrin receptors and resulted in the loss of membrane binding sites in spermine-treated cells. As large vacuoles were observed in cells treated with spermine, the endotubular function of these cells was probably affected. Spermine also enhanced the binding affinity of transferrin to membrane receptors. The mechanism for this enhancement was not clear.  相似文献   

19.
A study has been made on the effect of primary leaves on iron (Fe) distribution in the shoot. Bean (Phaseolus vulgaris L.) seedlings were precultured in nutrient solution with 8×10-5 M FeEDTA for 4 days, and then grown further with either 8×10-5 M FeEDTA (+Fe) or without Fe supply (-Fe) for another 5 days. Thereafter, both +Fe and -Fe plants were treated in three different ways: undisturbed; one primary leaf removed; or one primary leaf shaded, starting two hours before supply 59FeEDTA to the roots. The +Fe plants were supplied with 8×10-5 M 59FeEDTA, and the -Fe plants with only 1×10-6 M 59FeEDTA. After 1 to 8 hour uptake periods, plants were harvested and 59Fe in different organs was determined. Removal or shading of one primary leaf did not affect 59Fe uptake by roots and 59Fe translocation to the shoot in +Fe plants. In the -Fe plants, however, removal of one primary leaf decreased 59Fe uptake by roots, whereas shading of one primary leaf had no effect on 59Fe uptake but slightly enhanced 59Fe translocation from roots to the shoot. The quantity of 59Fe in primary leaves was positively correlated with quantity of 59Fe in the stem in the -Fepplants, but not in the +Fe plants. In both, the +Fe and -Fe plants, the quantity of 59Fe in the shoot apex was positively correlated with 59Fe in primary leaves. The results suggest that irrespective of the Fe nutritional status of plants, the source of Fe for the shoot apex is Fe retranslocated from primary leaves.  相似文献   

20.
根表铁氧化物胶膜对水稻吸收Zn的影响   总被引:17,自引:1,他引:17  
采用营养液培养方法研究了水稻根表形成的铁氧化物胶膜对水稻吸收Zn的影响.结果表明,在有Fe2+的嫌气环境中,由于根际氧化作用水稻根表会形成红色的铁氧化物胶膜,根表的铁氧化物胶膜影响水稻对Zn的吸收.铁膜数量较少时,由于对Zn的富集作用有限,其对水稻Zn的吸收虽有促进作用,但不明显.随着根表铁膜数量的增加,这种促进作用也相应增加,并且在铁膜数量增加到一定值时,对水稻吸收Zn的促进作用达到最大.而后,随着铁膜数量的进一步增加,铁膜反而阻碍水稻对Zn的吸收,成为水稻吸收Zn的障碍层.在此过程中,水稻的根分泌物,特别是其中的植物铁载体对覆有铁膜水稻根系吸收Zn有促进作用.这种促进作用随铁膜数量的增加而逐渐减弱.因此,根表铁氧化物胶膜对水稻吸收Zn并不总是起促进作用,其作用的方向和程度取决于铁膜的数量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号