首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth-related changes in the mechanical properties of collagen fascicles (approximately 300 microm in diameter) were studied using patellar tendons obtained from skeletally immature 1 and 2 months old and matured 6 months old rabbits. Tensile properties were determined using a specially designed micro-tensile tester. In each age group, there were no significant differences in the properties among cross-sectional locations in the tendon. Tangent modulus and tensile strength significantly increased with age; the rates of their increases between 1 and 2 months were higher than those between 2 and 6 months. The tangent modulus and tensile strength were positively correlated with the body weight of animals. However, growth-related changes in the mechanical properties were different between collagen fascicles and bulk patellar tendons, which may be attributable to such non-collagenous components as ground substances and also to mechanical interactions between collagen fascicles.  相似文献   

2.
In-vitro tissue culture experiments were performed to study the effects of static stress on the mechanical properties of collagen fascicles obtained from the rabbit patellar tendon. After collagen fascicles having the diameter of approximately 300 microm were cultured for 1 and 2 wk under static stress between 0 and 3 MPa, their mechanical properties and crimp morphology were determined using a micro-tensile tester and a light microscope, respectively. The tensile strength and tangent modulus of the fascicles were significantly decreased by culture under no load compared to control fascicles. A statistically significant correlation, which was described by a quadratic curve, was observed between applied stress and tensile strength. The maximum tensile strength (16.7 MPa) was obtained at the applied stress of 1.2 MPa; the strength was within a range of control values. There was a similar correlation between applied stress and tangent modulus, and the modulus was maintained at control level under 1.3 MPa stress. The stress of 1.2 to 1.3 MPa is equivalent to approximately 50 percent of the peak stress developed in the intact rabbit patellar tendon by running. Strain at failure of cultured collagen fascicles was negatively correlated with applied stress, and that at 1.2 to 1.3 MPa stress was almost the same as the control value. Crimp morphology in the fascicles cultured under about 1.2 MPa stress was similar to that in control fascicles. These results indicate that cultured collagen fascicles change the mechanical properties and structure in response to static tensile stress. In addition, their mechanical properties and structure are maintained at control level if the static stress of 50 percent of in-vivo peak stress is applied.  相似文献   

3.
With the aim of studying mechanisms of the remodeling of tendons and ligaments, the effects of stress shielding on the rabbit patellar tendon were studied by performing tensile and stress relaxation tests in the transverse direction. The tangent modulus, tensile strength, and strain at failure of non-treated, control patellar tendons in the transverse direction were 1272 kPa, 370 kPa, and 40.5 percent, respectively, whereas those of the tendons stress-shielded for 1 week were 299 kPa, 108 kPa, and 40.4 percent, respectively. Stress shielding markedly decreased tangent modulus and tensile strength in the transverse direction, and the decreases were larger than those in the longitudinal direction, which were determined in our previous study. For example, tensile strength in the transverse and longitudinal direction decreased to 29 and 50 percent of each control value, respectively, after 1 week stress shielding. In addition, the stress relaxation in the transverse direction of stress-shielded patellar tendons was much larger than that of nontreated, control ones. In contrast to longitudinal tensile tests for the behavior of collagen, transverse tests reflect the contributions of ground substances such as proteoglycans and mechanical interactions between collagen fibers. Ground substances provide lubrication and spacing between fibers, and also confer viscoelastic properties. Therefore, the results obtained from the present study suggest that ground substance matrix, and interfiber and fiber-matrix interactions have important roles in the remodeling response of tendons to stress.  相似文献   

4.
Effects of cyclic stress on the mechanical properties of collagen fascicles were studied by in vitro tissue culture experiments. Collagen fascicles (approximately 300 microns in diameter) obtained from the rabbit patellar tendon were applied cyclic load at 4 Hz for one hour per day during culture period for one or two weeks, and then their mechanical properties were determined using a micro-tensile tester. There was a statistically significant correlation between tensile strength and applied peak stress in the range of 0 to 5 MPa, and the relation was expressed by a quadratic function. The maximum strength (19.4 MPa) was obtained at the applied peak stress of 1.8 MPa. The tensile strength of fascicles were within a range of control values, if they were cultured under peak stresses between 1.1 and 2.6 MPa. Similar results were also observed in the tangent modulus, which was maintained at control level under applied peak stresses between 0.9 and 2.8 MPa. The stress of 0.9 to 1.1 MPa is equivalent to approximately 40% of the in vivo peak stress which is developed in the intact rabbit patellar tendon by running, whereas that of 2.6 to 2.8 MPa corresponds to approximately 120% of the in vivo peak stress. Therefore, the fascicles cultured under applied peak stresses of lower than 40% and higher than 120% of the in vivo peak stress do not keep the original strength and modulus. These results indicate that the mechanical properties of cultured collagen fascicles strongly depend upon the magnitude of the stress applied during culture, which are similar to our previous results observed in stress-shielded and overstressed patellar tendons in vivo.  相似文献   

5.
In vitro tissue culture experiments were performed to study the biomechanical response of collagen fascicles to restressing after exposure to non-loaded condition. Collagen fascicles of approximately 300 microm in diameter were aseptically dissected from rabbit patellar tendons. They were cultured under no-load condition for 1 week, and then under a static stress of approximately 1.2 MPa for the subsequent 1 or 2 weeks. After culture, their mechanical properties were determined with a micro-tensile tester, and were compared to those of fascicles cultured under no-load condition and non-cultured, control fascicles. Tangent modulus and tensile strength of the non-loaded fascicles were significantly lower than those of the control fascicles at 1 week and gradually decreased thereafter. However, the modulus and strength were increased by restressing. After 2-week restressing, both parameters were significantly greater than those of the time-matched, non-loaded fascicles, although these values were still significantly lower than those of the control fascicles. That is, the application of stress after exposure to non-loaded condition suppressed the deterioration of the biomechanical properties of fascicles, although it did not improve. These results indicate that a short period of stressing is not sufficient for cultured collagen fascicles to completely recover their mechanical properties, if they are once exposed to no-stress condition even for a short period of time. These are similar to previous results observed in tendons and ligaments inside the body.  相似文献   

6.
The effects of frequency or duration of cyclic stress on the mechanical properties of collagen fascicles were studied by means of in vitro tissue culture experiments. Collagen fascicles of approximately 300 microm in diameter were obtained from rabbit patellar tendons. During culture, cyclic stress having the peak stress of approximately 2 MPa was applied to the fascicles at 1 Hz for 1 hour/day (1 Hz-1 h group), at 1 Hz for 4 hours/day (1 Hz-4 h group), or at 4 Hz for 1 hour/day (4 Hz-1 h group). The frequency of 4 Hz and the duration of 1 hour/day are considered to be similar to those of the in vivo stress applied to fascicles in the intact rabbit patellar tendon. After culture for 1 or 2 weeks, the mechanical properties of the fascicles were determined using a microtensile tester, and were compared to the properties of non-cultured, fresh fascicles (control group) and the fascicles cultured under no load condition (non-loaded group). The tangent modulus and tensile strength of fascicles in the 4 Hz-1 h group were similar to those in the control group; however, the fascicles of the 1 Hz-1 h and 1 Hz-4 h groups had significantly lower values than those of the control group. There was no significant difference in the tensile strength between the 1 Hz-1 h and non-loaded groups, although the strength in the 1 Hz-4 h group was significantly higher than that of the non-loaded group. It was concluded that the frequency and duration of cyclic stress significantly affect the mechanical properties of cultured collagen fascicles. If we apply cyclic stress having the frequency and duration which are experienced in vivo, the biomechanical properties are maintained at control, normal level. Lower frequencies or less cycles of applied force induce adverse effects.  相似文献   

7.
The objectives of this study were to determine the longitudinal and transverse material properties of the human medial collateral ligament (MCL) and to evaluate the ability of three existing constitutive models to describe the material behavior of MCL. Uniaxial test specimens were punched from ten human cadaveric MCLs and tensile tested along and transverse to the collagen fiber direction. Using load and optical strain analysis information, the tangent modulus, tensile strength and ultimate strain were determined. The material coefficients for each constitutive model were determined using nonlinear regression. All specimens failed within the substance of the tissue. Specimens tested along the collagen fiber direction exhibited the typical nonlinear behavior reported for ligaments. This behavior was absent from the stress-strain curves of the transverse specimens. The average tensile strength, ultimate strain, and tangent modulus for the longitudinal specimens was 38.6 +/- 4.8 MPa, 17.1 +/- 1.5 percent, and 332.2 +/- 58.3 MPa, respectively. The average tensile strength, ultimate strain, and tangent modulus for the transverse specimens was 1.7 +/- 0.5 MPa, 11.7 +/- 0.9 percent, and 11.0 +/- 3.6 MPa, respectively. All three constitutive models described the longitudinal behavior of the ligament equally well. However, the ability of the models to describe the transverse behavior of the ligament varied.  相似文献   

8.
The present study investigated the mechanical properties of tendon fascicles from the anterior and posterior human patellar tendon. Collagen fascicles from the anterior and posterior human patellar tendon in healthy young men (mean +/- SD, 29.0 +/- 4.6 yr, n = 6) were tested in a mechanical rig. A stereoscopic microscope equipped with a digital camera recorded elongation. The fascicles were preconditioned five cycles before the failure test based on pilot data on rat tendon fascicle. Human fascicle length increased with repeated cycles (P < 0.05); cycle 5 differed from cycle 1 (P < 0.05), but not cycles 2-4. Peak stress and yield stress were greater for anterior (76.0 +/- 9.5 and 56.6 +/- 10.4 MPa, respectively) than posterior fascicles (38.5 +/- 3.9 and 31.6 +/- 2.9 MPa, respectively), P < 0.05, while yield strain was similar (anterior 6.8 +/- 1.0%, posterior 8.7 +/- 1.4%). Tangent modulus was greater for the anterior (1,231 +/- 188 MPa) than the posterior (583 +/- 122 MPa) fascicles, P < 0.05. In conclusion, tendon fascicles from the anterior portion of the human patellar tendon in young men displayed considerably greater peak and yield stress and tangent modulus compared with the posterior portion of the tendon, indicating region-specific material properties.  相似文献   

9.
Tendons have complex mechanical behaviors that are nonlinear and time dependent. It is widely held that these behaviors are provided by the tissue composition and structure. It is generally thought that type I collagen provides the primary elastic strength to tendon while proteoglycans, such as decorin, play a role in failure and viscoelastic properties. This study sought to quantify such structure-function relationships by comparing tendon mechanical properties between normal mice and mice genetically engineered for altered type I collagen content and absence of decorin. Uniaxial tensile ramp to failure experiments were performed on tail tendon fascicles at two strain rates, 0.5%/s and 50%/s. Mutations in type I collagen led to reduced failure load and stiffness with no changes in failure stress, modulus or strain rate sensitivity. Fascicles without decorin had similar elastic properties to normal fascicles, but reduced strain rate sensitivity. Fascicles from immature mice, with increased decorin content compared to adult fascicles, had inferior elastic properties but higher strain rate sensitivity. These results showed that tendon viscoelasticity is affected by decorin content but not by collagen alterations. This study provides quantitative evidence for structure-function relationships in tendon, including the role of proteoglycan in viscoelasticity.  相似文献   

10.
The purpose of this study was to determine if an association exists between the tensile properties and the collagen fibril diameter distribution in in vitro stress-deprived rat tail tendons. Rat tail tendons were paired into two groups of 21 day stress-deprived and 0 time controls and compared using transmission electron microscopy (n = 6) to measure collagen fibril diameter distribution and density, and mechanical testing (n =6) to determine ultimate stress and tensile modulus. There was a statistically significant decrease in both ultimate tensile strength (control: 17.95+/-3.99 MPa, stress-deprived: 6.79+/-3.91 MPa) and tensile modulus (control: 312.8+/-89.5 MPa, stress-deprived: 176.0+/-52.7 MPa) in the in vitro stress-deprived tendons compared to controls. However, there was no significant difference between control and stress-deprived tendons in the number of fibrils per tendon counted, mean fibril diameter, mean fibril density, or fibril size distribution. The results of this study demonstrate that the decrease in mechanical properties observed in in vitro stress-deprived rat tail tendons is not correlated with the collagen fibril diameter distribution and, therefore, the collagen fibril diameter distribution does not, by itself, dictate the decrease in mechanical properties observed in in vitro stress-deprived rat tail tendons.  相似文献   

11.
We previously found that interleukin (IL)-1beta is over-expressed in the fibroblasts of the stress-shielded patellar tendon using a stress-shielding model [Uchida, H., Tohyama, H., Nagashima, K., Ohba, Y., Matsumoto, H., Toyama, Y., Yasuda, K., 2005. Stress deprivation simultaneously induces over-expression of interleukin-1beta, tumor necrosis factor-alpha, and transforming growth factor-beta in fibroblasts and mechanical deterioration of the tissue in the patellar tendon. Journal of Biomechanics 38(4), 791-798.]. Therefore, IL-1beta may play a role in tendon deterioration in response to stress deprivation. This study was conducted to clarify the effects of local administration of interleukin-1 receptor antagonist (IL-1ra) on the mechanical properties of the stress-shielded patellar tendon as well as the tendon fascicles harvested from it. Twenty-six mature rabbits were equally divided into Groups IL-1ra and PBS after the right patellar tendon underwent the stress-shielding treatment, which completely released the patellar tendon from tension by stretching the flexible wire installed between the patella and the tibial tubercle. In Group IL-1ra, IL-1ra was injected between the patellar tendon and the infra-patellar fat pad. In Group PBS, phosphate-buffered saline was injected in the same manner as IL-1ra. All rabbits were evaluated at 3 weeks after the stress-shielding procedure. The tangent modulus and the tensile strength of the patellar tendons were significantly greater in Group IL-1ra than in Group PBS, while there was no significant difference in the strain at failure between Groups IL-1ra and PBS. Concerning the mechanical properties of the fascicles harvested from the patellar tendon, however, we could not detect any significant differences in the tangent modulus, tensile strength, or strain at failure between Groups IL-1ra and PBS. The present study suggested that IL-1 plays an important role in the deterioration of the mechanical properties of the patellar tendon in response to stress shielding and that IL-1 does not affect the fascicles themselves.  相似文献   

12.
Stress wave velocities in bovine patellar tendon.   总被引:1,自引:0,他引:1  
The velocity of longitudinal stress waves in an elastic body is given by the square root of the ratio of its elastic modulus to its density. In tendinous and ligamentous tissue, the elastic modulus increases with strain and with strain rate. Therefore, it was postulated that stress wave velocity would also increase with increasing strain and strain rate. The purpose of this study was to determine the velocity of stress waves in tendinous tissue as a function of strain and to compare these values to those predicted using the elastic modulus derived from quasi-static testing. Five bovine patellar tendons were harvested and potted as bone-tendon-bone specimens. Quasi-static mechanical properties were determined in tension at a deformation rate of 100 mm/s. Impact loading was employed to determine wave velocity at various strain levels, achieved by preloading the tendon. Following impact, there was a measurable delay in force transmission across the specimen and this delay decreased with increasing tendon strain. The wave velocities at tendon strains of 0.0075, 0.015, and 0.0225 were determined to be 260 +/- 52 m/s, 360 +/- 71 m/s, and 461 +/- 94 m/s, respectively. These velocities were significantly (p < 0.01) faster than those predicted using elastic moduli derived from the quasi-static tests by 52, 45, and 41 percent, respectively. This study has documented that stress wave velocity in patellar tendon increases with increasing strain and is underestimated with a modulus estimated from quasi-static testing.  相似文献   

13.
A tissue-cultured tendon matrix infiltrated with cultured fibroblasts can be regarded as an ideal tissue-engineered tendon model. To clarify the role of TGF-beta in a tissue-cultured tendon matrix during ex vivo cellular infiltration, the present ex vivo study was conducted to test the following hypothesis that antibody neutralization of TGF-beta enhances weakening of the collagen fascicles of the patellar tendon matrix in response to ex vivo fibroblast infiltration. In skeletally mature female rabbits, fibroblasts were isolated from the right patellar tendons using an explant culture technique, and the left patellar tendons underwent multiple freeze/thaw treatment with liquid nitrogen to obtain an acellular tendon matrix. Each acellular tendon was placed in a collagen gel containing cultured fibroblasts and then incubated with or without anti-TGF-beta1 antibody for 6 weeks. We found that antibody neutralization of TGF-beta enhanced the decrease in the tensile strength and tensile modulus of the collagen fascicles of the patellar tendon matrix in response to ex vivo fibroblast infiltration. The present study indicates a possibility that TGF-beta may have a role in suppressing the material deterioration of the fascicles in the tendon during ex vivo cellular infiltration.  相似文献   

14.
Portions of the patellar tendon (PT) are currently used for autogenous and allogeneic reconstruction of a torn or damaged anterior cruciate ligament (ACL). Age-related changes in the mechanical properties of the PT may influence its use in this reconstruction procedure. Age-dependent changes in the PT were determined in the dog, which is often used to experimentally study this reconstruction. Tensile failure experiments were performed at 100% s-1 on patella-patellar tendon-tibia preparations from dogs aged 0.5-15 yr. The contents of collagen soluble and insoluble in pepsin were also measured at each age. Fifty-nine percent (16/27) of the preparations failed by avulsion at the patella, but neither the failure load nor the mode of failure were a function of age. Failure load and energy were higher for tendon substance failures compared to avulsions of bone from the patella. While a positive, linear correlation was measured between tensile modulus of the PT and age, the slope of regression was not significantly different from zero. The content of total collagen in the PT decreased significantly with age. The content of collagen insoluble in pepsin, however, increased with age and positively correlated with tensile modulus of the tendon. These results are different from those reported for the canine CCL, by others, which degenerates with age. Age-related changes in the mechanical properties of the canine PT are qualitatively similar to earlier, limited data on human patellar tendons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Effects of the overstressing induced by the harvest of grafts from the patellar tendon on the mechanical properties and morphometry of remaining tendon were studied using a rabbit model. The width of the patellar tendon was reduced by one-fourth or one-half equally removing the medial and lateral portions; by this surgery, the cross-sectional area was decreased by 25 or 50 percent from the original area. After all the rabbits were allowed unrestricted activities in cages for 3 to 12 weeks, their patellar tendons were harvested for mechanical and histological studies. The one-fourth removal induced no significant changes in the mechanical properties, but significantly increased the cross-sectional area. In the case of one-half removal, tensile strength and tangent modulus did not change in some tendons, although the cross-sectional area increased significantly. In the other central half tendons, mechanical strength decreased markedly, while the cross-sectional area increased; hypercellular areas and breakage of collagen bundles were observed in these tendons. These results indicate that the patellar tendon has an ability of functionally adapting to overstressing by changing the cross-sectional area, while keeping the mechanical properties unchanged, if the extent of overstressing is less than 30 percent.  相似文献   

16.
Tendons are strong hierarchical structures, but how tensile forces are transmitted between different levels remains incompletely understood. Collagen fibrils are thought to be primary determinants of whole tendon properties, and therefore we hypothesized that the whole human patellar tendon and its distinct collagen fibrils would display similar mechanical properties. Human patellar tendons (n = 5) were mechanically tested in vivo by ultrasonography. Biopsies were obtained from each tendon, and individual collagen fibrils were dissected and tested mechanically by atomic force microscopy. The Young's modulus was 2.0 ± 0.5 GPa, and the toe region reached 3.3 ± 1.9% strain in whole patellar tendons. Based on dry cross-sectional area, the Young's modulus of isolated collagen fibrils was 2.8 ± 0.3 GPa, and the toe region reached 0.86 ± 0.08% strain. The measured fibril modulus was insufficient to account for the modulus of the tendon in vivo when fibril content in the tendon was accounted for. Thus, our original hypothesis was not supported, although the in vitro fibril modulus corresponded well with reported in vitro tendon values. This correspondence together with the fibril modulus not being greater than that of tendon supports that fibrillar rather than interfibrillar properties govern the subfailure tendon response, making the fibrillar level a meaningful target of intervention. The lower modulus found in vitro suggests a possible adverse effect of removing the tissue from its natural environment. In addition to the primary work comparing the two hierarchical levels, we also verified the existence of viscoelastic behavior in isolated human collagen fibrils.  相似文献   

17.
The human facet joint capsule is one of the structures in the lumbar spine that constrains motions of vertebrae during global spine loading (e.g., physiological flexion). Computational models of the spine have not been able to include accurate nonlinear and viscoelastic material properties, as they have not previously been measured. Capsules were tested using a uniaxial ramp-hold protocol or a haversine displacement protocol using a commercially available materials testing device. Plane strain was measured optically. Capsules were tested both parallel and perpendicular to the dominant orientation of the collagen fibers in the capsules. Viscoelastic material properties were determined. Parallel to the dominant orientation of the collagen fibers, the complex modulus of elasticity was E*=1.63MPa, with a storage modulus of E'=1.25MPa and a loss modulus of: E" =0.39MPa. The mean stress relaxation rates for static and dynamic loading were best fit with first-order polynomials: B(epsilon) = 0.1110epsilon-0.0733 and B(epsilon)= -0.1249epsilon + 0.0190, respectively. Perpendicular to the collagen fiber orientation, the viscous and elastic secant moduli were 1.81 and 1.00 MPa, respectively. The mean stress relaxation rate for static loading was best fit with a first-order polynomial: B (epsilon) = -0.04epsilon - 0.06. Capsule strength parallel and perpendicular to collagen fiber orientation was 1.90 and 0.95 MPa, respectively, and extensibility was 0.65 and 0.60, respectively. Poisson's ratio parallel and perpendicular to fiber orientation was 0.299 and 0.488, respectively. The elasticity moduli were nonlinear and anisotropic, and capsule strength was larger aligned parallel to the collagen fibers. The phase lag between stress and strain increased with haversine frequency, but the storage modulus remained large relative to the complex modulus. The stress relaxation rate was strain dependent parallel to the collagen fibers, but was strain independent perpendicularly.  相似文献   

18.
Lateral force transmission between human tendon fascicles.   总被引:2,自引:0,他引:2  
Whether adjacent collagen fascicles transmit force in parallel is unknown. The purpose of the present study was to examine the magnitude of lateral force transmission between adjacent collagen fascicles from the human patellar and Achilles tendon. From each sample two adjacent strands of fascicles (phi 300-530 mum) enclosed in a fascicular membrane were dissected. The specimen was deformed to approximately 3% strain in three independent load-displacement cycles in a small-scale tensile testing device. Cycle 1: the fascicles and the fascicular membrane were intact. Cycle 2: one fascicle was transversally cut while the other fascicle and the fascicular membrane were kept intact. Cycle 3: both fascicles were cut in opposite ends while the fascicular membrane was left intact. A decline in peak force of 45% and 55% from cycle 1 to cycle 2, and 93% and 92% from cycle 2 to cycle 3 was observed in the patellar and Achilles tendon fascicles, respectively. A decline in stiffness of 39% and 60% from cycle 1 to cycle 2, and of 93% and 100% from cycle 2 to cycle 3 was observed in the patellar and Achilles tendon fascicles, respectively. The present data demonstrate that lateral force transmission between adjacent collagen fascicles in human tendons is small or negligible, suggesting that tendon fascicles largely act as independent structures and that force transmission principally takes place within the individual fascicles.  相似文献   

19.
Nanofibrous biocomposite scaffolds of type I collagen and nanohydroxyapatite (nanoHA) of varying compositions (wt %) were prepared by electrostatic cospinning. The scaffolds were characterized for structure and morphology by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques. The scaffolds have a porous nanofibrous morphology with random fibers in the range of 500-700 nm diameters, depending on the composition. FT-IR and XRD showed the presence of nanoHA in the fibers. The surface roughness and diameter of the fibers increased with the presence of nanoHA in biocomposite fiber as evident from AFM images. Tensile testing and nanoindendation were used for the mechanical characterization. The pure collagen fibrous matrix (without nanoHA) showed a tensile strength of 1.68 +/- 0.10 MPa and a modulus of 6.21 +/- 0.8 MPa with a strain to failure value of 55 +/- 10%. As the nanoHA content in the randomly oriented collagen nanofibers increased to 10%, the ultimate strength increased to 5 +/- 0.5 MPa and the modulus increased to 230 +/- 30 MPa. The increase in tensile modulus may be attributed to an increase in rigidity over the pure polymer when the hydroxyapatite is added and/or the resulting strong adhesion between the two materials. The vapor phase chemical crosslinking of collagens using glutaraldehyde further increased the mechanical properties as evident from nanoindentation results. A combination of nanofibrous collagen and nanohydroxyapatite that mimics the nanoscale features of the extra cellular matrix could be promising for application as scaffolds for hard tissue regeneration, especially in low or nonload bearing areas.  相似文献   

20.
The microstructural volume fractions, orientations, and interactions among components vary widely for different ligament types. If these variations are understood, however, it is conceivable to develop a general ligament model that is based on microstructural properties. This paper presents a part of a much larger effort needed to develop such a model. Viscoelastic and failure properties of porcine posterior longitudinal ligament (PLL) collagen fascicles were determined. A series of subfailure and failure tests were performed at fast and slow strain rates on isolated collagen fascicles from porcine lumbar spine PLLs. A finite strain quasi-linear viscoelastic model was used to fit the fascicle experimental data. There was a significant strain rate effect in fascicle failure strain (P < 0.05), but not in failure force or failure stress. The corresponding average fast-rate and slow-rate failure strains were 0.098 ± 0.062 and 0.209 ± 0.081. The average failure force for combined fast and slow rates was 2.25 ± 1.17 N. The viscoelastic and failure properties in this paper were used to develop a microstructural ligament failure model that will be published in a subsequent paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号