首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Van der Woude syndrome (VWS) is an autosomal dominant disorder in which affected individuals have one or more of the following manifestations: cleft lip, cleft palate, hypodontia, or paramedian lower-lip pits. VWS is a well-characterized example of a single-gene abnormality that disturbs normal craniofacial morphogenesis. As a first step in identifying genes involved in human development, we used a candidate-gene-and-region approach to look for a linkage to VWS. Six families with 3 or more generations of affected individuals were studied. Evidence for linkage (theta = 0.02, lod score = 9.09) was found between the renin (REN) gene on 1q and VWS. Other linked loci included CR1, D1S58, and D1S53. The genes for laminin B2 (LAMB2), a basement-membrane protein, and for decay-accelerating factor (DAF) were studied as possible candidate genes on 1q. Recombinants between VWS and both LAMB2 and DAF excluded these genes from a causal role in the etiology of VWS for the families studied in this report. Multipoint linkage analysis indicated that the VWS locus was flanked by REN and D1S65 at a lod score of 10.83. This tight linkage with renin and other nearby loci provides a first step in identifying the molecular abnormality underlying this disturbance of human development.  相似文献   

2.
The gene for human apolipoprotein C2 (APOC2), situated on the proximal long arm of chromosome 19, is closely linked to the gene for the most common form of adult muscular dystrophy, myotonic dystrophy (DM). Six APOC2 RFLPs (TaqI, BglI, BanI, BamHI, NcoI, and AvaII) have been identified to date. We have conducted a comprehensive DM linkage study utilizing all six RFLPs and involving 50 families and 372 individuals. The most informative RFLPs are, in descending order, NcoI (lod = 6.64, theta = 0.05), BglI (lod = 6.12, theta = 0.05), AvaII (lod = 6.02, theta = 0.03), BanI (lod = 5.76, theta = 0.04), TaqI (lod = 4.29, theta = 0.06), and BamHI (lod = 1.75, theta = 0.01). A substantial increase in the lod scores over those seen with the individual RFLPs was obtained when the linkage of the entire APOC2 haplotype (composed of the six RFLPs) was studied (lod = 17.87, theta = 0.04). We have observed significant inter-APOC2 RFLP linkage disequilibrium. Consequently, the three most informative RFLPs have been found to be BanI, TaqI, and either BglI, AvaII, or NcoI polymorphisms. We also demonstrate linkage disequilibrium between DM and APOC2 in our French-Canadian population (standardized disequilibrium constant phi = .22, chi 2 = 5.12, df = 1, P less than 0.04). This represents the first evidence of linkage disequilibrium between APOC2 and the DM locus.  相似文献   

3.
Although one large family with hereditary motor and sensory neuropathy (HMSN) type I that showed linkage to the Duffy blood group (FY) on chromosome 1 has previously been reported, we have failed to find evidence for such linkage after examining 14 markers from chromosome 1 in 12 pedigrees. We have excluded linkage between HMSN I and FY up to theta = 0.15 (lod = -3.01) and also between HMSN I and markers flanking FY; amylase (AMY), polymorphic urinary mucin (PUM), serum amyloid protein (APCS), and alpha-spectrin (SPTA). We have excluded HMSN I from 70 cM around this linkage group. Other markers examined were MS1, oncogene L-myc (MYCL), beta-subunit of nerve growth factor (NGFB), oncogene N-ras (NRAS), glucocerebrosidase (GBA), apolipoprotein AII (APOA2), antithrombin III (AT3), renin (REN), and MS32. These cover both the long and the short arms of chromosome 1 in addition to the centromeric region and yielded no evidence of linkage to HMSN I. Two-point lod scores between these markers are also presented. It is possible that there are two or more loci for HMSN I and it will be necessary to obtain significant lod scores from individual families to resolve this issue. This is increasingly possible now that hypervariable genetic markers such as PUM are available.  相似文献   

4.
M F Seldin  G D Kruh 《Genomics》1989,4(2):221-223
A human Abelson related gene (ABLL) cDNA clone was used to detect restriction fragment length polymorphisms (RFLPs) on mouse Southern blots. Abll was mapped to mouse chromosome 1 by analysis of segregation with other distal chromosome 1 genetic polymorphisms by using a panel of DNAs from [(C3H/HeJ-gld/gld x Mus spretus) F1 x C3H/HeJ-gld/gld] interspecific backcross mice. The data indicate the following gene order: (centromere)-CD45-6.5 cM-Lamb-2-1 cM-Abll-2 cM-At-3. The results extend the analysis of a large conserved linkage group spanning nearly 30 cM on distal mouse chromosome 1 syntenic with human chromosome 1q21-32. Within this linkage group similar relative positions have been characterized in both species for C4BP, REN, CD45, LAMB2, ABLL, AT3, APOA2, and SPTA.  相似文献   

5.
We have characterized and genetically mapped new polymorphic DNA markers in the q27-q28 region of the X chromosome. New informative RFLPs have been found for DXS105, DXS115, and DXS152. In particular, heterozygosity at the DXS105 locus has been increased from 25% to 52%. We have shown that DXS105 and DXS152 are contained within a 40-kb region. A multipoint linkage analysis was performed in fragile-X families and in large normal families from the Centre d'Etudes du Polymorphisme Humain (CEPH). This has allowed us to establish the order centromere-DXS144-DXS51-DXS102-F9-DXS105-FRAX A-(F8, DXS15, DXS52, DXS115). DXS102 is close to the hemophilia-B locus (z[theta] = 13.6 at theta = .02) and might thus be used as an alternative probe for diagnosis in Hemophila-B families not informative for intragenic RFLPs. DXS105 is 8% recombination closer to the fragile-X locus than F9 (z[theta] = 14.6 at theta = .08 for the F9-DXS105 linkage) and should thus be a better marker for analysis of fragile-X families. However, the DXS105 locus appears to be still loosely linked to the fragile-X locus in some families. The multipoint estimation for recombination between DXS105 and FRAXA is .16 in our set of data. Our data indicate that the region responsible for the heterogeneity in recombination between F9 and the fragile-X locus is within the DXS105-FRAXA interval.  相似文献   

6.
A large Hutterite kindred was examined for possible linkage between the chromosome 3 markers; cholinesterase (CHE1), transferrin (TF), and alpha-2HS glycoprotein (AHSG). Linkage between TF and AHSG was suggested in males (z = 1.515, theta = 0.08) and between CHE1 and TF(z = 0.661, theta = 0.21). However, linkage between CHE1 and AHSG in males was not established. Based on lods and a nuclear family informative for all three loci a possible chromosomal alignment for the loci is presented.  相似文献   

7.
A genetic linkage map of 27 loci on the short arm of human chromosome 1 has been developed by analysis of the 40 families in the Centre d'Etude du Polymorphisme Humain (CEPH) reference panel. Probes that recognize 14 novel RFLPs at loci designated D1S9-D1S22 were isolated from a flow-sorted chromosome 1 library. A linkage map of chromosome 1p was constructed from the genotypic data at these 14 loci, RFLPs at eight cloned genes (PND, ALPL, FUCA1, SRC2, MYCL, GLUT, TSHB, and NGFB), two previously identified RFLPs (D1S2 and D1S57), two blood group antigens (RH and FY), and the isozyme PGM1. All 27 loci form a continuous linkage group, from FY to PND, of 102 cM in males and 230 cM in females. This map provides a basis for highly informative multipoint mapping studies for most of the short arm of chromosome 1.  相似文献   

8.
A linkage analysis with chromosome 9 markers was performed in 33 families with Friedreich ataxia (FA). Linkage with D9S15, previously established by S. Chamberlain et al. (1988, Nature London 334:248-249) was confirmed in our sample (z(theta) = 6.82 at theta = 0.02) while INFB (interferon-beta gene) shows looser linkage. An additional marker, D9S5, was also shown to be closely linked to FA (z(theta) = 5.77 at theta = 0.00).  相似文献   

9.
Chamberlain et al. have assigned the gene for Friedreich ataxia (FA), a recessive neurodegenerative disorder, to chromosome 9, and have proposed a regional localization in the proximal short arm (9p22-cen), on the basis of linkage to D9S15 and to interferon-beta (IFNB), the latter being localized in 9p22. We confirmed more recently the close linkage to D9S15 in another set of families but found much looser linkage to IFNB. We also reported another closely linked marker, D9S5. Additional families have now been studied, and our updated lod scores are z = 14.30 at theta = .00 for D9S15-FA linkage and z = 6.30 at theta = .00 for D9S5-FA linkage. Together with the recent data of Chamberlain et al., this shows that D9S15 is very likely within 1 cM of the FA locus. We have found very significant linkage disequilibrium (delta Std = .28, chi 2 = 9.71, P less than .01) between FA and the D9S15 MspI RFLP in French families, which further supports the very close proximity of these two loci. No recombination between D9S5 and D9S15 was found in the FA families or Centre d'Etude du Polymorphisme Humain families (z = 9.30 at theta = .00). Thus D9S5, D9S15, and FA define a cluster of tightly linked loci. We have mapped D9S5 by in situ hybridization to 9q13-q21, and, accordingly, we assign the D9S5, D9S15, and FA cluster to the proximal part of chromosome 9 long arm, close to the heterochromatic region.  相似文献   

10.
Previous investigators have reported loose linkage in both sexes for phosphoglycolate phosphatase (PGP) and haptoglobin alpha (HPA). We present results of linkage studies between PGP and HPA in two data sets, one from Houston and the other an update of an earlier report from Los Angeles. Using quadratic interpolation to estimate the male (theta m) and female (theta f) recombination values from bivariate lod tables, we found for the Houston data that theta m = 0.43 and theta f = 0.03 at the maximum lod score of z = 2.23. For the Los Angeles series, we found that theta m = 0.31, theta f = 0.48, and z = 0.27. We invoke heterogeneity in the recombination value in different families as an explanation of our findings. We also recommend that bivariate lod tables should always be generated, even though not reported. This is because the usual assumption of theta m = theta f (and, rarely, theta f = 1.8 theta f) under which lod scores are computed may be invalid in many cases.  相似文献   

11.
Van der Woude syndrome (VWS) is an autosomal dominant disorder associated with one or more of the following features: clefting of the primary or secondary palate, hypodontia or lower lip pits. It has been estimated to account for 2% of all cases of cleft lip and palate. VWS is one of the rare disorders in which clefting of the primary and secondary palate may be seen to segregate as components associated with the same gene. Because of its autosomal dominant inheritance, VWS is readily accessable to linkage analysis as a preliminary step in the identification of the molecular abnormality underlying the clefting effect in the primary and secondary palate. A reported linkage between REN and VWS has promoted us to use pHRnX3.6 (REN) and several markers surrounding REN for a linkage analysis in a large Swiss family. In a second step, linkage analysis was performed to study restriction fragment length polymorphisms for the candidate gene TGFB2 and other loci recently mapped to the candidate region 1q32–1q41. Evidence for linkage ( = 0.00, lod score = 3.01) between REN and VWS could be confirmed in this pedigree. TGFB2 demonstrated recombination with the disease locus and is unlikely to be causative in VWS. The results of a multipoint linkage analysis showed that VWS was flanked by D1S65 and TGFB2 at a maximum location score of 20.3.  相似文献   

12.
Two distinct loci have been proposed for aniridia; AN1 for autosomal dominant aniridia on chromosome 2p and AN2 for the aniridia in the WAGR contiguous gene syndrome on chromosome 11p13. In this report, the kindred segregating for autosomal dominant aniridia, which suggested linkage to acid phosphatase-1 (ACP1) and led to the assignment of the AN1 locus on chromosome 2p, has been updated and expanded. Linkage analysis between the aniridia phenotype and ACP1 does not support the original linkage results, excluding linkage up to theta = 0.17 with Z = -2. Tests for linkage to other chromosome 2p markers. APOB, D2S71, D2S5, and D2S1, also excluded linkage to aniridia. Markers that have been isolated from the chromosome 11p13 region were then analyzed in this aniridia family. Two RFLPs at the D11S323 locus give significant evidence for linkage. The PvuII polymorphism detected by probe p5S1.6 detects no recombinants, with a maximum lod score of Z = 6.97 at theta = 0.00. The HaeIII polymorphism detected by the probe p5BE1.2 gives a maximum lod score of Z = 2.57 at theta = 0.00. Locus D11S325 gives a lod score of Z = 1.53 at theta = 0.00. These data suggest that a locus for aniridia (AN1) on chromosome 2p has been misassigned and that this autosomal dominant aniridia family is segregating for an aniridia mutation linked to markers in the 11p13 region.  相似文献   

13.
Confirmation of linkage in von Hippel-Lindau disease   总被引:3,自引:0,他引:3  
Von Hippel-Lindau (VHL) disease was initially reported to be linked to the RAF1 oncogene (3p25). We have ascertained and sampled two large multigenerational VHL families for linkage studies, in order to confirm the localization of the VHL gene as a prelude to fine mapping studies. The probes used in the analysis were p627 (RAF1) and pHeA12 (thyroid hormone receptor B) (3p24.1-3p22). VHL was analyzed as an autosomal dominant trait with age-dependent penetrance. The maximum lod score combining both families was z(theta) = 2.16 at theta = 0.0 for RAF1 and z(theta) = 2.20 at theta = 0.05 for thyroid hormone receptor B. Multipoint analysis using the RAF1 and thyroid hormone receptor B loci resulted in a peak lod score of 3.1 confirming linkage of VHL to this region of chromosome 3. However, the position of VHL relative to the two loci could not be established with certainty.  相似文献   

14.
Heterogeneity in X-linked recessive Charcot-Marie-Tooth neuropathy.   总被引:3,自引:0,他引:3       下载免费PDF全文
Three families presenting with X-linked recessive Charcot-Marie-Tooth neuropathies (CMT) were studied both clinically and genetically. The disease phenotype in family 1 was typical of CMT type 1, except for an infantile onset; two of five affected individuals were mentally retarded, and obligate-carrier females were unaffected. Families 2 and 3 showed distal atrophy with weakness, juvenile onset, and normal intelligence. Motor-nerve conduction velocities were significantly slowed, and electromyography data were consistent with denervation in affected CMT males in all three families. Thirty X-linked RFLPs were tested for linkage studies against the CMT disease loci. Family 1 showed tight linkage (recombination fraction [theta] = 0) to Xp22.2 markers DXS16, DXS143, and DXS43, with peak lod scores of 1.75, 1.78, and 2.04, respectively. A maximum lod score of 3.48 at DXS16 (theta = 0) was obtained by multipoint linkage analysis of the map DXS143-DXS16-DXS43. In families 2 and 3 there was suggestion of tight linkage (theta = 0) to Xq26 markers DXS86, DXS144, and DXS105, with peak lod scores of 2.29, 1.33, and 2.32, respectively. The combined maximum multipoint lod score of 1.81 at DXS144 (theta = 0) for these two families occurred in the map DXS10-DXS144-DXS51-DXS105-DXS15-DXS52++ +. A joint homogeneity analysis including both regions (Xp22.2 and Xq26-28) provided evidence against homogeneity (chi 2 = 9.12, P less than .005). No linkage to Xp11.12-q22 markers was observed, as was reported for X-linked dominant CMT and the Cowchock CMT variant. Also, the chromosomes 1 and 17 CMT loci were excluded by pairwise linkage analysis in all three families.  相似文献   

15.
Severe anemia is a lethal complication of Plasmodium falciparum malaria, particularly in children. Recent studies in children with severe P. falciparum anemia have demonstrated elevated levels of E-bound Abs, reduced E-associated complement receptor 1 (CR1) and decay-accelerating factor (DAF), and pronounced splenic enlargement, suggesting a mechanism for E loss involving Abs, complement, and phagocytosis. Motivated by these reports, we have developed an in vitro model in which human E with Abs and complement bound to CR1, DAF, or glycophorin A are incubated with model human macrophages (the THP-1 cell line). Previous work has demonstrated that immune complex (IC) substrates bound to E CR1, either by an Ab or via C3b, are transferred to macrophages with loss of CR1. In this study, we report that IC bound to DAF or glycophorin A by an Ab linkage are also transferred to macrophages. DAF is lost from the E during the transfer of DAF-bound IC, but the transfer of CR1-bound IC does not lead to a significant loss of DAF. Using glycophorin A-bound IC, we observe competition between transfer of IC and phagocytosis of the E: a fraction (相似文献   

16.
Linkage localization of X-linked Charcot-Marie-Tooth disease.   总被引:7,自引:3,他引:4  
Charcot-Marie-Tooth disease (CMT), also known as hereditary motor and sensory neuropathy, is a heterogeneous group of slowly progressive, degenerative disorders of peripheral nerve. X-linked CMT (CMTX) (McKusick 302800), a subdivision of type I, or demyelinating, CMT is an X-linked dominant condition with variable penetrance. Previous linkage analysis using RFLPs demonstrated linkage to markers on the proximal long and short arms of the X chromosome, with the more likely localization on the proximal long arm of the X chromosome. Available variable simple-sequence repeats (VSSRs) broaden the possibilities for linkage analysis. This paper presents new linkage data and recombination analysis derived from work with four VSSR markers--AR, PGKP1, DXS453, and DXYS1X--in addition to analysis using RFLP markers described elsewhere. These studies localize the CMTX gene to the proximal Xq segment between PGKP1 (Xq11.2-12) and DXS72 (Xq21.1), with a combined maximum multipoint lod score of 15.3 at DXS453 (theta = 0).  相似文献   

17.
X-linked hypohidrotic ectodermal dysplasia (H.E.D.) is a disorder of abnormal morphogenesis of ectodermal structures and is of unknown pathogenesis. Neither relatively accurate carrier detection nor prenatal diagnosis has been available. Previous localization of the disorder by linkage analysis utilizing restriction-fragment polymorphisms, by our group and others, has placed the disorder in the general pericentromeric region. We have extended our previous study by analyzing 36 families by means of 10 DNA probes at nine marker loci and have localized the disorder to the region Xq11-Xq21.1, probably Xq12-Xq13. Three loci--DXS159 (theta = .01, z = 14.84), PGK1 (theta = .02, z = 13.44), and DXS72 (theta = .02, z = 11.38)--show very close linkage to the disorder, while five other pericentromeric loci (DXS146, DXS14, DXYS1, DXYS2, and DXS3) display significant but looser linkage. Analysis of the linkage data yields no significant evidence for nonallelic heterogeneity for the X-linked form of the disorder. Both multipoint analysis and examination of multiply informative meioses with known phase establish that the locus for H.E.D. is flanked on one side by the proximal long arm loci DXYS1, DXYS2, and DXS3 and on the other side by the short arm loci DXS146 and DXS14. Multipoint mapping could not resolve the order of H.E.D. and the three tightly linked loci. This order can be inferred from published data on physical mapping of marker loci in the pericentromeric region, which have utilized somatic cell hybrid lines established from a female with severe manifestations of H.E.D., and an X/9 translocation (breakpoint Xq13.1). If one assumes that the breakpoint of the translocation is within the locus for H.E.D. and that there has not been a rearrangement in the hybrid line, then DXS159 would be proximal to the disorder and PGK1 and DXS72 would be distal to the disorder. Both accurate carrier detection and prenatal diagnosis are now feasible in a majority of families at risk for the disorder.  相似文献   

18.
Epidermolysis bullosa simplex (EBS) is a dominantly inherited genodermatosis characterized by intraepidermal blister formation. Recent reports have suggested that EBS mutations may relate to keratin abnormalities. In this study, we conducted RFLP analyses to test the hypothesis that EBS is linked to one of the keratin gene clusters on chromosome 12 or chromosome 17. Although these keratin gene loci are not defined by RFLPs, several mapped RFLPs in the same chromosomal regions could be tested for linkage. A large EBS family with 14 affected and 12 unaffected individuals in three generations was analyzed for RFLP inheritance. Within this family there was no evidence for linkage of the EBS mutation to markers on chromosome 17q. However, there was evidence for close linkage to D12S17 located on chromosome 12q, with a maximum LOD score of 5.55 at theta = 0. Mapping of this mutation to chromosome 12 defines an EBS locus distinct from both EBS1 (Ogna) and EBS2 (Koebner), which are on chromosomes 8 and 1, respectively. Further mapping will determine whether this EBS locus on chromosome 12 resides within the keratin gene cluster at 12q11-q13.  相似文献   

19.
A linkage map of distal mouse chromosome 1 was constructed by restriction fragment length polymorphism analysis of DNAs from seven sets of recombinant inbred (RI) strains. The data obtained with seven probes on Southern hybridization combined with data from previous studies suggest the gene order Cfh, Pep-3/Ren-1,2, Ly-5, Lamb-2, At-3, Apoa-2/Ly-17,Spna-1. These results confirm and extend analyses of a large linkage group which includes genes present on a 20-30 cM span of mouse chromosome 1 and those localized to human chromosome 1q21-32. Moreover, the data indicate similar relative positions of human and mouse complement receptor-related genes REN, CD45, LAMB2, AT3, APOA2, and SPTA. These results suggest that mouse gene analyses may help in detailed mapping of human genes within such a syntenic group.  相似文献   

20.
Two of the human fibrillar collagen genes, proa1(III) (COL3A1) and proa2(V) (COL5A2), map to the same region of the long arm of chromosome 2. To establish the genetic distance between the two loci, we analyzed the segregation of COL3A1 and COL5A2 RFLPs in five families informative for the two loci specific markers. We found that the maximum lod score was 9.33 at a recombination frequency of theta = 0.00. The data therefore provide strong evidence for tight linkage between two evolutionarily related fibrillar collagen genes on the 2q14----2q32 segment of chromosome 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号