首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
简要介绍了植物环蛋白的定义、结构特点、研究历史、分布、提取分离方法、化学合成与生物合成、生物活性与生物功能。并主要以从紫花蔓地丁( Viola labridorica) 中分离得到的六个环蛋白之一, cycloviolacin O2 为例介绍通过还原酶解- 质谱与二维核磁共振谱结合鉴定环蛋白结构的研究方法。  相似文献   

2.
The article describes the observation of novel catalytic activities in the alphabeta-hydrolase superfamily apparently unrelated to ester hydrolysis and unexpected biochemical observations relating to the structure and function of the serine catalytic triad in these enzymes. One common feature of these novel activities is the activation of a small diatomic molecule, but via diverse chemistry. Possible mechanisms of catalysis are discussed.  相似文献   

3.
The proton Bohr factor (phi H = alpha log PO2/alpha pH), the carbamate Bohr factor (phi C = alpha log PO2/alpha log PCO2), the total Bohr factor (phi HC = d log PO2/dpH[base excess) and the CO2 buffer factor (d log PCO2/dpH) were determined in the blood of 12 healthy donors over the whole O2 saturation (SO2) range. All three Bohr factors proved to be dependent on SO2, although to a lesser extent than reported in some of the recent literature. At SO2 = 50% and 37 degrees C, we found phi H = -0.428 +/- 0.010 (SE), phi C = 0.054 +/- 0.006, and phi HC = -0.488 +/- 0.007. The values obtained for phi H, phi C, and d log PCO2/dpH were used to calculate phi HC. Calculated and measured values of phi HC proved to be in good agreement. In an additional series of 12 specimens of human blood we determined the influence of PCO2 on phi H and the influence of pH on phi C. At SO2 = 50%, phi H varied from -0.49 +/- 0.009 at PCO2 = 15 Torr to -0.31 +/- 0.010 at PCO2 = 105 Torr and phi C from 0.157 +/- 0.015 at pH = 7.80 to 0.006 +/- 0.009 at pH = 7.00. When on the basis of these data a second-order term is taken into account, a still slightly better agreement between measured and calculated values of phi HC can be attained.  相似文献   

4.
5.
6.
To assess O2 delivery to tissue by a new surface-modified, polyethylene glycol-conjugated human hemoglobin [MP4; Po2 at 50% saturation of hemoglobin (P50); 5.4 mmHg], we studied microcirculatory hemodynamics and O2 release in golden Syrian hamsters hemodiluted with MP4 or polymerized bovine hemoglobin (PolyBvHb; P50 54.2 mmHg). Comparisons were made with the animals' hemodiluted blood with a non-O2 carrying plasma expander with similar solution properties (Dextran-70). Systemic hemodynamics (arterial blood pressure and heart rate) and acid-base parameters were not correlated with microhemodynamics (arteriolar and venular diameter, red blood cell velocity, and flow). Microscopic measurements of Po2 and the O2 equilibrium curves permitted analysis of O2 release in precapillary and capillary vessels by red blood cells and plasma hemoglobin separately. No significant differences between the groups of animals with respect to arteriolar diameter, flow, or flow velocity were observed, but the functional capillary density was significantly higher in the MP4-treated animals (67%) compared with PolyBvHb-treated animals (37%; P < 0.05) or dextran-treated animals (53%). In the PolyBvHb-treated animals, predominant O2 release (both red blood cells and plasma hemoglobin) occurred in precapillary vessels, whereas in MP4 animals most of the O2 was released from both red blood cells and plasma hemoglobin in capillaries. Base excess correlated directly with capillary O2 release but not systemic O2 content or total O2 release. Higher O2 extraction of both red blood cell and plasma hemoglobin in capillaries represents a new mechanism of action of cell-free hemoglobin. High O2 affinity appears to be an important property for cell-free hemoglobin solutions.  相似文献   

7.
The ratio of superoxide production to oxidation of NADPH affected by the NADPH:O2 oxidoreductase of human neutrophils is strongly influenced by pH, NADPH substrate concentration, aging of the enzyme, or its exposure to excess deoxycholate. Freshly prepared enzyme exhibited a Km for NADPH of 52 microM as determined by assaying NADPH oxidase activity, or approximately 33 microM by measurement of superoxide formation. In the range of 100-150 microM NADPH at pH 7.6 and in the presence of 0.06% deoxycholate, the univalent flux of electron equivalents given up by NADPH to O2 was 99%. Following storage of the oxidoreductase overnight on ice, its Km for NADPH rose to 125 microM as determined by monitoring oxidation of NADPH but was unaltered when measured in terms of superoxide production. Concomitantly, its capacity to affect univalent reduction of O2 fell approximately 20-30% under the same assay conditions. Univalent flux rates of less than 40% were observed with exposure of the enzyme to concentrations of deoxycholate in excess of 0.1% or to pH values below 6.0 or above 8.0. The capacity of the enzyme to carry out univalent reduction fell with increasing NADPH concentrations in a manner resembling that previously reported with increasing concentrations of xanthine in the case of xanthine oxidase (Fridovich, I. (1970) J. Biol. Chem. 245, 4053-4057). The reduced form of the neutrophil oxidoreductase, like xanthine oxidase, thus appears to be capable of conducting both 1- and 2-electron transfer steps in reducing O2. Its capacity to affect univalent reduction of O2 depends upon the concentration of electron donor (NADPH) supplied as well as conditions of storage and assay of the native enzyme.  相似文献   

8.
Cyclomaltooligosaccharides (cyclodextrins, CDs) are cyclic oligomers having six, seven, or eight units of alpha-D-glucose, named as cyclomaltohexaose (alpha-CD), cyclomaltoheptaose (beta-CD) and cyclomaltooctaose (gamma-CD), respectively. The molecule of CD has a cavity in which the interior is hydrophobic relative to its outer surface. The solubility of cyclodextrins in water is unusual, as an irregular trend is observed in the series of the cyclic oligomers of glucose. beta-CD is at least nine times less soluble than the others CDs. This intriguing behavior has been investigated, and some interesting explanations in terms of the effect caused by CD on the water lattice structure have been proposed. In this work a comparative study on the solubility of alpha, beta, and gamma-cyclodextrins was carried out in H2O and D2O and reveals a much lower solubility of the three CDs in D2O. The solid-phase structure of the CDs in equilibrium with the solution is quite similar with both solvents. The results are discussed in terms of the CD molecular structure and the differences in the hydrogen bonds formed between H2O and D2O.  相似文献   

9.
The mechanism of oxidation of NADH by either vanadium(V) or vanadium(IV) was examined in the presence of reducing agents, complexing agents, and hydrogen peroxide. Reducing agents that stimulate the oxidation of NADH by V(V) include: a variety of cysteine analogues, glutathione, beta-mercaptoethanol, dithiothreitol, and ascorbate. Complexing agents which stimulate NADH oxidation by V(V) include cystine, glutathione disulfide, and dehydroascorbate. Vanadium(IV)-dependent systems which oxidize NADH include combinations of V(IV) with cysteine or air alone. Combination of either V(V) or V(IV) with hydrogen peroxide leads to NADH oxidation. Based on kinetic analysis and the use of the diagnostic inhibitors--superoxide dismutase, catalase, albumin, mannitol, ethanol, and anaerobic conditions--we have assigned two major mechanisms of NADH oxidation. One is the previously reported mechanism which involves V(V)-superoxide as the NADH oxidant. This reaction is inhibited by superoxide dismutase and anaerobic conditions but not by catalase or ethanol. This reaction is observed for V(V) in the presence of reducing agents and complexing agents. The second reaction mechanism operates when V(IV) comes in contact with hydrogen peroxide and involves V(III)-superoxide as the NADH oxidant. This reaction is inhibited by catalase (if unligated hydrogen peroxide is an intermediate) and superoxide dismutase but not anaerobic conditions or ethanol. This mechanism is observed for reactions of V(IV) with air or hydrogen peroxide.  相似文献   

10.
Nitric oxide (NO) has been shown to both enhance hydrogen peroxide (H2O2) toxicity and protect cells against H2O2 toxicity. In order to resolve this apparent contradiction, we here studied the effects of NO on H2O2 toxicity in cultured liver endothelial cells over a wide range of NO and H2O2 concentrations. NO was generated by spermine NONOate (SpNO, 0.001–1 mM), H2O2 was generated continuously by glucose/glucose oxidase (GOD, 20–300 U/l), or added as a bolus (200 μM). SpNO concentrations between 0.01 and 0.1 mM provided protection against H2O2-induced cell death. SpNO concentrations >0.1 mM were injurious with low H2O2 concentrations, but protective at high H2O2 concentrations. Protection appeared to be mainly due to inhibition of lipid peroxidation, for which SpNO concentrations as low as 0.01 mM were sufficient. SpNO in high concentration (1 mM) consistently raised H2O2 steady-state levels in line with inhibition of H2O2 degradation. Thus, the overall effect of NO on H2O2 toxicity can be switched within the same cellular model, with protection being predominant at low NO and high H2O2 levels and enhancement being predominant with high NO and low H2O2 levels.  相似文献   

11.
In several experimental techniques D2O rather then H2O is often used as a solvent for proteins. Concerning the influence of the solvent on the stability of the proteins, contradicting results have been reported in literature. In this paper the influence of H2O-D2O solvent substitution on the stability of globular protein structure is determined in a systematic way. The differential scanning calorimetry technique is applied to allow for a thermodynamic analysis of two types of globular proteins: hen's egg lysozyme (LSZ) with relatively strong internal cohesion ("hard" globular protein) and bovine serum albumin (BSA), which is known for its conformational adaptability ("soft" globular protein). Both proteins tend to be more stable in D2O compared to H2O. We explain the increase of protein stability in D2O by the observation that D2O is a poorer solvent for nonpolar amino acids than H2O, implying that the hydrophobic effect is larger in D2O. In case of BSA the transitions between different isomeric forms, at low pH values the Nm and F forms, and at higher pH values Nm and B, were observed by the presence of a supplementary peak in the DSC thermogram. It appears that the pH-range for which the Nm form is the preferred one is wider in D2O than in H2O.  相似文献   

12.
Four series of borosilicate glasses modified by alkali oxides and doped with Tb3+ and Sm3+ ions were prepared using the conventional melt quenching technique, with the chemical composition 74.5B2O3 + 10SiO2 + 5MgO + R + 0.5(Tb2O3/Sm2O3) [where R = 10(Li2O /Na2O/K2O) for series A and C, and R = 5(Li2O + Na2O/Li2O + K2O/K2O + Na2O) for series B and D]. The X‐ray diffraction (XRD) patterns of all the prepared glasses indicate their amorphous nature. The spectroscopic properties of the prepared glasses were studied by optical absorption analysis, photoluminescence excitation (PLE) and photoluminescence (PL) analysis. A green emission corresponding to the 5D47F5 (543 nm) transition of the Tb3+ ions was registered under excitation at 379 nm for series A and B glasses. The emission spectra of the Sm3+ ions with the series C and D glasses showed strong reddish‐orange emission at 600 nm (4G5/26H7/2) with an excitation wavelength λexci = 404 nm (6H5/24F7/2). Furthermore, the change in the luminescence intensity with the addition of an alkali oxide and combinations of these alkali oxides to borosilicate glasses doped with Tb3+ and Sm3+ ions was studied to optimize the potential alkali‐oxide‐modified borosilicate glass.  相似文献   

13.
14.
Mitochondrial H2O2 formation: relationship with energy conservation   总被引:1,自引:0,他引:1  
  相似文献   

15.
In this study, the effect of Yersinia derivatives on nitric oxide (NO), hydrogen peroxide (H2O2) and tumor necrosis factor-alpha (TNF-alpha) production by murine peritoneal macrophages was investigated. Addition of lipopolysaccharide (LPS) to the macrophage culture resulted in NO production that was dose dependent. On the other hand, bacterial cellular extract (CE) and Yersinia outer proteins (Yops) had no effect on NO production. The possible inhibitory effect of Yops on macrophage cultures stimulated with LPS was investigated. Yops partially inhibited NO production (67.4%) when compared with aminoguanidine. The effects of Yersinia derivatives on H2O2 production by macrophages were similar to those on NO production. LPS was the only derivative that stimulated H2O2 release in a dose-dependent manner. All Yersinia derivatives provoked the production of TNF-alpha, but LPS had the strongest effect, as observed for NO production. CE and Yops stimulated TNF-alpha production to a lesser extent than LPS. The results indicate the possibility that in vivo Yops may aid the evasion of the bacteria from the host defense mechanism by impairing the secretion of NO by macrophages.  相似文献   

16.
17.
18.
19.
Hydrogen peroxide inhibits photosynthetic O2 evolution. It has been shown that H2O2 destroys the function of the oxygen-evolving complex (OEC) in some chloroplast and Photosystem (PS) II preparations causing release of manganese from the OEC. In other preparations, H2O2 did not cause or caused only insignificant release of manganese. In this work, we tested the effect of H2O2 on the photosynthetic electron transfer and the state of OEC manganese in a native system (intact cells of the cyanobacterium Anabaena variabilis). According to EPR spectroscopy data, H2O2 caused an increase in the level of photooxidation of P700, the reaction centers of PS I, and decreased the rate of their subsequent reduction in the dark by a factor larger than four. Combined effect of H2O2, CN-, and EDTA caused more than eight- to ninefold suppression of the dark reduction of P700+. EPR spectroscopy revealed that the content of free (or loosely bound) Mn2+ in washed cyanobacterial cells was ~20% of the total manganese pool. This content remained unchanged upon the addition of CN- and increased to 25-30% after addition of H2O2. The content of the total manganese decreased to 35% after the treatment of the cells with EDTA. The level of the H2O2-induced release of manganese increased after the treatment of the cells with EDTA. Incubation of cells with H2O2 for 2 h had no effect on the absorption spectra of the photosynthetic pigments. More prolonged incubation with H2O2 (20 h) brought about degradation of phycobilins and chlorophyll a and lysis of cells. Thus, H2O2 causes extraction of manganese from cyanobacterial cells, inhibits the OEC activity and photosynthetic electron transfer, and leads to the destruction of the photosynthetic apparatus. H2O2 is unable to serve as a physiological electron donor in photosynthesis.  相似文献   

20.
An overview of structurally characterized alpha-hydroxycarboxylatodioxo- and alpha-hydroxycarboxylatooxoperoxovanadates(V) is presented and the geometric parameters of the V2O2 bridging core are discussed. The first case of a stereospecific formation of oxoperoxovanadates(V) is reported: The crystal structures of the isomeric compounds (NBu4)2[V2O2(O2)2(L-lact)2] x 2H2O and (NBu4)2[V2O2(O2)2(D-lact)(L-lact)] x 2H2O (lact = C3H4O3(2-), the anion of the lactic acid) differ mainly in the arrangement of the V2O2 core and in mutual orientation of the V=O bonds. The complexes with achiral ligands adopt the same structural type as the complexes formed from a racemic mixture of a chiral ligand, while the structure obtained using an enantiopure L,L-hydroxycarboxylate is different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号