首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To elucidate the involvement of protein kinase C (PKC) isoforms in insulin-induced and phorbol ester-induced glucose transport, we expressed several PKC isoforms, conventional PKC-alpha, novel PKC-delta, and atypical PKC isoforms of PKC-lambda and PKC-zeta, and their mutants in 3T3-L1 adipocytes using an adenovirus-mediated gene transduction system. Endogenous expression and the activities of PKC-alpha and PKC-lambda/zeta, but not of PKC-delta, were detected in 3T3-L1 adipocytes. Overexpression of each wild-type PKC isoform induced a large amount of PKC activity in 3T3-L1 adipocytes. Phorbol 12-myristrate 13-acetate (PMA) activated PKC-alpha and exogenous PKC-delta but not atypical PKC-lambda/zeta. Insulin also activated the overexpressed PKC-delta but not PKC-alpha. Expression of the wild-type PKC-alpha or PKC-delta resulted in significant increases in glucose transport activity in the basal and PMA-stimulated states. Dominant-negative PKC-alpha expression, which inhibited the PMA activation of PKC-alpha, decreased in PMA-stimulated glucose transport. Glucose transport activity in the insulin-stimulated state was increased by the expression of PKC-delta but not of PKC-alpha. These findings demonstrate that both conventional and novel PKC isoforms are involved in PMA-stimulated glucose transport and that other novel PKC isoforms could participate in PMA-stimulated and insulin-stimulated glucose transport. Atypical PKC-lambda/zeta was not significantly activated by insulin, and expression of the wild-type, constitutively active, and dominant-negative mutants of atypical PKC did not affect either basal or insulin-stimulated glucose transport. Thus atypical PKC enzymes do not play a major role in insulin-stimulated glucose transport in 3T3-L1 adipocytes.  相似文献   

2.
PKC is known to be activated by pancreatic secretagogues such as CCK and carbachol and to participate along with calcium in amylase release. Four PKC isoforms, alpha, delta, epsilon, and zeta, have been identified in acinar cells, but which isoforms participate in amylase release are unknown. To identify the responsible isoforms, we used translocation assays, chemical inhibitors, and overexpression of individual isoforms and their dominant-negative variants by means of adenoviral vectors. CCK stimulation caused translocation of PKC-alpha, -delta, and -epsilon, but not -zeta from soluble to membrane fraction. CCK-induced amylase release was inhibited approximately 30% by GF109203X, a broad spectrum PKC inhibitor, and by rottlerin, a PKC-delta inhibitor, but not by G?6976, a PKC-alpha inhibitor, at concentrations from 1 to 5 microM. Neither overexpression of wild-type or dominant-negative PKC-alpha affected CCK-induced amylase release. Overexpression of PKC-delta and -epsilon enhanced amylase release, whereas only dominant-negative PKC-delta inhibited amylase release by 25%. PKC-delta overexpression increased amylase release at all concentrations of CCK, but dominant-negative PKC-delta only inhibited the maximal concentration; both similarly affected carbachol and JMV-180-induced amylase release. Overexpression of both PKC-delta and its dominant-negative variant affected the late but not the early phase of amylase release. GF109203X totally blocked the enhancement of amylase release by PKC-delta but had no further effect in the presence of dominant-negative PKC-delta. These results indicate that PKC-delta is the PKC isoform involved with amylase secretion.  相似文献   

3.
4.
The regulation of the increase in inositol phosphates (IPs) production and intracellular Ca(2+) concentration ([Ca(2+)](i)) by protein kinase C (PKC) was investigated in canine cultured tracheal epithelial cells (TECs). Pretreatment of TECs with phorbol 12-myristate 13-acetate (PMA, 1 microM) for 30 min attenuated the ATP- and UTP-induced IPs formation and Ca(2+) mobilization. The concentrations of PMA that gave half-maximal (EC(50)) inhibition of ATP- and UTP-induced IPs accumulation and an increase in [Ca(2+)](i) were 5-10 and 4-12 nM, respectively. Prior treatment of TECs with staurosporine (1 microM), a PKC inhibitor, partially inhibited the ability of PMA to attenuate ATP- and UTP-induced responses, suggesting that the inhibitory effect of PMA is mediated through the activation of PKC. Furthermore, analysis of cell extracts by Western blotting with antibodies against different PKC isozymes revealed that TECs expressed PKC-alpha, -betaI, -betaII, -gamma, -delta, -epsilon, -theta, and -zeta. With PMA treatment of the cells for various times, translocation of PKC-alpha, -betaI, -betaII, -gamma, -delta, -epsilon, and -theta from the cytosol to the membrane was seen after 5- and 30-min and 2- and 4-h treatment. However, 6-h treatment caused a partial down-regulation of these PKC isozymes. PKC-zeta was not significantly translocated and down-regulated at any of the times tested. In conclusion, these results suggest that activation of PKC may inhibit the phosphoinositide (PI) hydrolysis and consequently attenuate the [Ca(2+)](i) increase or inhibit independently both responses to ATP and UTP. The translocation of PKC-alpha, -betaI, -betaII, -delta, -epsilon, -gamma, and -theta induced by PMA caused an attenuation of ATP- and UTP-induced IPs accumulation and Ca(2+) mobilization in TECs.  相似文献   

5.
We investigated the distribution of protein kinase C (PKC) isoforms in the subcellular fractions (P1, 1,000-g pellet; P2, 10,000-g pellet; P3, 100,000-g pellet; S, 100,000-g supernatant) of rat forebrain after ischemia or reperfusion by immunoblotting. PKC-delta and -epsilon isoforms were predominant in the P2 (synaptosome-rich) fraction, whereas PKC-alpha, -beta, -gamma, -epsilon, and -zeta isoforms were rich in the S (cytosolic) fraction. With time of ischemia (5-30 min), PKC-alpha, -beta, and -gamma translocated to the P2 and P3 fractions, whereas reperfusion for 60 min after 30 min of ischemia reduced PKC-beta activity greatly and PKC-alpha and -gamma activities to a lesser extent. There was no redistribution of PKC-delta, -epsilon, and -zeta after ischemia or reperfusion. A calpain inhibitor, acetylleucylleucylnorleucinal, inhibited the down-regulation of PKC-beta, through intravenous injection. The PKC translocation to the P2 fraction was accompanied by their dephosphorylation, transition of PKC-alpha from dimer to trimer, and the decrease in activity. These data show that PKC-alpha, -beta, and -gamma isoforms translocate chiefly to the synaptosome in ischemic brain in association with the dephosphorylation, multimeric change, and inactivation, followed by the proteolysis of PKC-beta by calpain after postischemic reperfusion.  相似文献   

6.
Polyunsaturated fatty acids influence the aetiology of prostate cancer. Their effects on cellular mechanisms regulating prostate tumorigenesis are unclear. Using prostate cancer cells (LNCaP), we determined effects of n-9-OA, n-6-LA, and n-3-EPA on total PKC and its isoforms in relation to cell proliferation and PSA production. PKC-alpha, delta, gamma, iota, mu, and zeta were present in LNCaP cells; PKC-beta, epsilon, eta, and theta isoforms were not. PKC-alpha was detected only in cytosol; PKC-delta, iota, gamma, and mu were present in cytosol and in membranes. Fatty acids increased cell proliferation, total PKC activity and elicited pro-proliferative effects on specific PKC isoforms (PKC-delta and -iota). EPA and LA increased total PKC activity and reduced membrane-abundance of PKC-delta. OA reduced cytosolic and membrane PKC-delta. Only EPA reduced PKC-gamma membrane abundance. Fatty acids enhanced cytosolic PKC-iota abundance but only EPA and to a lesser extent LA increased its membrane content. Changes in PKC-delta, -iota, and -gamma did not affect PSA production.  相似文献   

7.
The activities of cardiac protein kinase C (PKC) were examined in hemodynamically assessed rats subsequent to myocardial infarction (MI). Both Ca(2+)-dependent and Ca(2+)-independent PKC activities increased significantly in left ventricular (LV) and right ventricular (RV) homogenates at 1, 2, 4, and 8 wk after MI was induced. PKC activities were also increased in both LV and RV cytosolic and particulate fractions from 8-wk infarcted rats. The relative protein contents of PKC-alpha, -beta, -epsilon, and -zeta isozymes were significantly increased in LV homogenate, cytosolic (except PKC-alpha), and particulate fractions from the failing rats. On the other hand, the protein contents of PKC-alpha, -beta, and -epsilon isozymes, unlike the PKC-zeta isozyme, were increased in RV homogenate and cytosolic fractions, whereas the RV particulate fraction showed an increase in the PKC-alpha isozyme only. These changes in the LV and RV PKC activities and protein contents in the 8-wk infarcted animals were partially corrected by treatment with the angiotensin-converting enzyme inhibitor imidapril. No changes in protein kinase A activity and its protein content were seen in the 8-wk infarcted hearts. The results suggest that the increased PKC activity in cardiac dysfunction due to MI may be associated with an increase in the expression of PKC-alpha, -beta, and -epsilon isozymes, and the improvement of heart function in the infarcted animals by imidapril may be due to partial prevention of changes in PKC activity and isozyme contents.  相似文献   

8.
Insulin-like growth factor (IGF)-1 has been implicated in the development of occlusive vascular lesions. Although its role in vascular smooth muscle cell (VSMC) growth and migration are fairly well characterized, anti-apoptotic signals of IGF-1 in human VSMC remain largely unknown. In this study, we examined IGF-1 signals that protect human and rat VSMC from staurosporine (STAU)- and c-myc- induced apoptosis, respectively. Treatment with STAU resulted in apoptotic DNA fragmentation, phosphatidylserine externalization and cell shrinkage, but only occasional VSMC 'blebbing'. STAU-induced death and IGF-1-mediated survival were concentration dependent, while time-lapse video microscopy showed that IGF-1 inhibited c-myc-induced apoptosis by 90%. Pretreatment with mitogen-activated protein kinase/extracellular signal regulated kinase kinase (MEK) inhibitors UO126 and PD098059, or with the phosphatidylinositol 3-kinase (PI3-K) inhibitor wortmannin, reversed IGF-1-mediated human VSMC survival by 25-27% and 66%, respectively. Translocation studies showed that IGF-1 activated protein kinase C (PKC)-epsilon, but not PKC-alpha or PKC-delta, even in the presence of STAU, while pharmacological PKC inhibition (Ro-318220 or Go6976) implicated PKC-zeta or a novel PKC isozyme in IGF-1-mediated survival. Transient expression of activated PKC-epsilon but not activated PKC-zeta decreased myc-induced apoptosis in rat VSMC. In human VSMC, antisense oligodeoxynucleotides to PKC-epsilon partially reversed IGF-1-induced survival. In addition, IGF-1 elicited a mild but sustained activation of extracellular signal regulated kinase (ERK)1/2 in human VSMC that was abolished after 1 h in the presence of STAU. PKC downregulation reversed both IGF-1- and PMA-induced ERK activity, but platelet-derived growth factor (PDGF)-induced activity was unchanged. These results indicate for the first time that IGF-1 can protect human VSMC via multiple signals, including PKC-epsilon, PI3-K and mitogen-activated protein kinase pathways.  相似文献   

9.
Freshly enzymatically isolated pancreatic acini from lactating and weaning Wistar rats were used to investigate the role of protein kinase C (PKC) isoforms during these physiologically relevant pancreatic secretory and growth processes. The combination of immunoblot and immunohistochemical analysis shows that the PKC isoforms alpha, delta, and epsilon are present in pancreatic acini from control, lactating and weaning rats. A vesicular distribution of PKC-alpha, -delta, and -epsilon was detected by immunohistochemical analysis in the pancreatic acini from all the experimental groups. PKC-delta showed the strongest PKC immunoreactivity (PKC-IR). In this vesicular distribution, PKC-IR was located at the apical region of the acinar cells. No differences were observed between control, lactating and weaning rats. However, the immunoblot analysis of pancreatic PKC isoforms during lactation and weaning showed a significant translocation of PKC-delta from the cytosol to the membrane fraction when compared with control animals. Translocation of PKC isoforms (alpha, delta and epsilon) in response to 12-O-tetradecanoyl phorbol 13-acetate (TPA) 1 microM (15 min, 37 degrees C) was comparable in pancreatic acini from control, lactating and weaning rats. In the control group, a significant translocation of all the isoforms (alpha, delta and epsilon) from the cytosol to the membrane was observed. The PKC isoform most translocated by TPA was PKC-delta. In contrast, no statistically significant increase in PKC-delta translocation was detected in pancreatic acini isolated from lactating or weaning rats. These results suggest that the PKC isoforms are already translocated to the surface of the acinar cells from lactating or weaning rats. In addition, they suggest that isoform specific spatial PKC distribution and translocation occur in association with the growth response previously described in the rat exocrine pancreas during lactation and weaning.  相似文献   

10.
Although NF-kappaB plays an important role in pancreatitis, mechanisms underlying its activation remain unclear. We investigated the signaling pathways mediating NF-kappaB activation in pancreatic acinar cells induced by high-dose cholecystokinin-8 (CCK-8), which causes pancreatitis in rodent models, and TNF-alpha, which contributes to inflammatory responses of pancreatitis, especially the role of PKC isoforms. We determined subcellular distribution and kinase activities of PKC isoforms and NF-kappaB activation in dispersed rat pancreatic acini. We applied isoform-specific, cell-permeable peptide inhibitors to assess the role of individual PKC isoforms in NF-kappaB activation. Both CCK-8 and TNF-alpha activated the novel isoforms PKC-delta and -epsilon and the atypical isoform PKC-zeta but not the conventional isoform PKC-alpha. Inhibition of the novel PKC isoforms but not the conventional or the atypical isoform resulted in the prevention of NF-kappaB activation induced by CCK-8 and TNF-alpha. NF-kappaB activation by CCK-8 and TNF-alpha required translocation but not tyrosine phosphorylation of PKC-delta. Activation of PKC-delta, PKC-epsilon, and NF-kappaB with CCK-8 involved both phosphatidylinositol-specific PLC and phosphatidylcholine (PC)-specific PLC, whereas with TNF-alpha they only required PC-specific PLC for activation. Results indicate that CCK-8 and TNF-alpha initiate NF-kappaB activation by different PLC pathways that converge at the novel PKCs (delta and epsilon) to mediate NF-kappaB activation in pancreatic acinar cells. These findings suggest a key role for the novel PKCs in pancreatitis.  相似文献   

11.
The increased accumulation of activated microglia containing amyloid beta protein (Abeta) around senile plaques is a common pathological feature in subjects with Alzheimer's disease (AD). Much less is known, however, of intracellular signal transduction pathways for microglial activation in response to Abeta. We investigated intracellular signaling in response to Abeta stimulation in primary cultured rat microglia. We found that the kinase activity of PKC-delta but not that of PKC-alpha or -epsilon is increased by stimulation of microglia with Abeta, with a striking tyrosine phosphorylation of PKC-delta. In microglia stimulated with Abeta, tyrosine phosphorylation of PKC-delta was evident at the membrane fraction without an overt translocation of PKC-delta. PKC-delta co-immunoprecipitated with MARCKS from microglia stimulated with Abeta. Abeta induced translocation of MARCKS from the membrane fraction to the cytosolic fraction. Immunocytochemical analysis revealed that phosphorylated MARCKS accumulated in the cytoplasm, particularly at the perinuclear region in microglia treated with Abeta. Taken together with our previous observations that Abeta-induced phosphorylation of MARCKS and chemotaxis of microglia are inhibited by either tyrosine kinase or PKC inhibitors, our results provide evidence that Abeta induces phosphorylation and translocation of MARCKS through the tyrosine kinase-PKC-delta signaling pathway in microglia.  相似文献   

12.
PKC-delta is important in cell growth, apoptosis, and secretion. Recent studies show its stability is regulated by tyrosine phosphorylation (TYR-P), which can be stimulated by a number of agents. Many of these stimuli also activate phospholipase C (PLC) cascades and little is known about the relationship between these cascades and PKC-delta TYR-P. Cholecystokinin (CCK) stimulates PKCs but it is unknown if it causes PKC-delta TYR-P and if so, the relationship between these cascades is unknown. In rat pancreatic acini, CCK-8 stimulated rapid PKC-delta TYR-P by activation of the low affinity CCK(A) receptor state. TPA had a similar effect. BAPTA did not decrease CCK-stimulated PKC-delta TYR-P but instead, increased it. A23187 did not stimulate PKC-delta TYR-P. Wortmannin and LY 294002 did not alter CCK-stimulated PKC-delta TYR-P. GF 109203X, at low concentrations, increased PKC-delta TYR-P stimulated by CCK or TPA and at higher concentrations, inhibited it. The cPKC inhibitors, G? 6976 and safingol, caused a similar increase in TPA- and CCK-stimulated PKC-delta TYR-P. These results demonstrate that CCK(A) receptor activation causes PKC-delta TYR-P through activation of only one of its two receptor affinity states. This PKC-delta TYR-P is not directly influenced by changes in [Ca(2+)](i); however, the resultant activation of PKC-alpha has an inhibitory effect. Therefore, CCK activates both stimulatory and inhibitory PKC cascades regulating PKC-delta TYR-P and, hence, likely plays an important role in regulating PKC-delta degradation and cellular abundance.  相似文献   

13.
Stretch-induced expression of vascular endothelial growth factor (VEGF) is thought to be important in mediating the exacerbation of diabetic retinopathy by systemic hypertension. However, the mechanisms underlying stretch-induced VEGF expression are not fully understood. We present novel findings demonstrating that stretch-induced VEGF expression in retinal capillary pericytes is mediated by phosphatidylinositol (PI) 3-kinase and protein kinase C (PKC)-zeta but is not mediated by ERK1/2, classical/novel isoforms of PKC, Akt, or Ras despite their activation by stretch. Cardiac profile cyclic stretch at 60 cpm increased VEGF mRNA expression in a time- and magnitude-dependent manner without altering mRNA stability. Stretch increased ERK1/2 phosphorylation, PI 3-kinase activity, Akt phosphorylation, and PKC-zeta activity. Signaling pathways were explored using inhibitors of PKC, MEK1/2, and PI 3-kinase; adenovirus-mediated overexpression of ERK, PKC-alpha, PKC-delta, PKC-zeta, and Akt; and dominant negative (DN) mutants of ERK, PKC-zeta, Ras, PI 3-kinase and Akt. Although stretch activated ERK1/2 through a Ras- and PKC classical/novel isoform-dependent pathway, these pathways were not responsible for stretch-induced VEGF expression. Overexpression of DN ERK and Ras had no effect on VEGF expression in these cells. In contrast, DN PI 3-kinase as well as pharmacologic inhibitors of PI 3-kinase blocked stretch-induced VEGF expression. Although stretch-induced PI 3-kinase activation increased both Akt phosphorylation and activity of PKC-zeta, VEGF expression was dependent on PKC-zeta but not Akt. In addition, PKC-zeta did not mediate stretch-induced ERK1/2 activation. These results suggest that stretch-induced expression of VEGF involves a novel mechanism dependent upon PI 3-kinase-mediated activation of PKC-zeta that is independent of stretch-induced activation of ERK1/2, classical/novel PKC isoforms, Ras, or Akt. This mechanism may play a role in the well documented association of concomitant hypertension with clinical exacerbation of neovascularization and vascular permeability.  相似文献   

14.
The kinin peptides are released during inflammation and are amongst the most potent known mediators of vasodilatation, pain, and oedema. A role in the modulation or induction of healthy breast tissue growth has been postulated for tissue kallikrein present in human milk. Moreover, tissue kallikrein was found in malignant human breast tissue and bradykinin (BK) stimulates the proliferation of immortalised breast cancer cells. Aim of the present article was to investigate whether BK also exerts mitogenic activity in normal breast epithelial cells and partially characterise the signalling machinery involved. Results show that BK increased up to 2-fold the 24 h proliferation of breast epithelial cells in primary culture, and that the BK B2 receptor (not B1) inhibitor alone fully blocked the BK response. Intracellular effects of B2 stimulation were the following: (a) the increase of free intracellular Ca(2+) concentration by a mechanism dependent upon the phospholipase C (PLC) activity; (b) the cytosol-to-membrane translocation of conventional (PKC)-alpha and -beta isozymes, novel PKC-delta, -epsilon, and -eta isozymes; (c) the phosphorylation of the extracellular-regulated kinase 1 and 2 (ERK1/2); and (d) the stimulation of the expression of c-Fos protein. EGF, a well known stimulator of cell proliferation, regulated the proliferative response in human epithelial breast cells to the same extent of BK. The effects of BK on proliferation, ERK1/2 phosphorylation, and c-Fos expression were abolished by GF109203X, which inhibits PKC-delta isozyme. Conversely, G?6976, an inhibitor of PKC-alpha and -beta isozymes, and the 18-h treatment of cells with PMA, that led to the complete down-regulation of PKC-alpha, -beta, -epsilon, and -eta, but not of PKC-delta, did not have any effect, thereby indicating that the PKC-delta mediates the mitogenic signalling of BK. Phosphoinositide 3-kinase (PI3K), tyrosine kinase of the epidermal growth factor receptor (EGFR), and mitogen activated protein kinase kinases (MEK) inhibitors were also tested. The results suggest that EGFR, PI3K, and ERK are required for the proliferative effects of BK. In addition, the BK induced cytosol-to-membrane translocation of PKC-delta was blocked by PI3K inhibition, suggesting that PI3K is upstream to PKC-delta. In conclusion, BK has mitogenic actions in cultured human epithelial breast cells; the activation of PKC-delta through B2 receptor acts in concert with ERK and PI3K pathways to induce cell proliferation.  相似文献   

15.
16.
The expression of the different protein kinase C (PKC) isozymes in mouse thymocytes was studied to determine if there is a correlation between isozyme expression and thymocyte phenotype. Expression of PKC isozymes in thymocyte subsets (distinguished by the CD4 or CD8 Ag) was determined by message amplification phenotyping. The expression of mRNA for PKC-alpha, -beta, -epsilon, and -zeta, but not -gamma or -delta isozymes, was detected in all of the unstimulated thymocyte subpopulations analyzed. Thus no differences in the pattern of PKC isozyme expression were found that could be correlated with thymocyte phenotype. However, it was noted that the levels of PKC mRNA expression were affected by different stimuli in unfractionated thymocytes. Whereas mRNA levels of PKC-alpha and -beta were down-regulated by PMA and ionomycin treatment, no significant changes were seen in the levels of PKC-epsilon mRNA with these agents. PKC-epsilon mRNA decreased in thymocytes exposed to Con A similar to what has been reported for PKC-epsilon protein. PKC-zeta mRNA was also down-regulated by PMA or ionomycin, and the combination of both compounds caused a more rapid and drastic effect. Finally, PKC-delta mRNA expression was induced transiently in thymocytes only after exposure to PMA or Con A, and this induction was inhibited by ionomycin treatment. These results indicate that message levels of specific isoforms of PKC are uniquely regulated and suggest an additional level of control of PKC activity in activated lymphocytes.  相似文献   

17.
The rapid, non-genomic actions of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] have been well described, however, the role of the nuclear vitamin D receptor (VDR) in this pathway remains unclear. To address this question, we used VDR(+/+) and VDR(-/-) osteoblasts isolated from wild-type and VDR null mice to study the increase in intracellular calcium ([Ca(2+)](i)) and activation of protein kinase C (PKC) induced by 1,25(OH)(2)D(3). Within 1 min of 1,25(OH)(2)D(3) (100 nM) treatment, an increase of 58 and 53 nM in [Ca(2+)](i) (n = 3) was detected in VDR(+/+) and VDR(-/-) cells, respectively. By 5 min, 1,25(OH)(2)D(3) caused a 2.1- and 1.9-fold increase (n = 6) in the phosphorylation of PKC substrate peptide acetylated-MBP(4-14) in VDR(+/+) and VDR(-/-) osteoblasts. The 1,25(OH)(2)D(3)-induced phosphorylation was abolished by GF109203X, a general PKC inhibitor, in both cell types, confirming that the secosteroid induced PKC activity. Moreover, 1,25(OH)(2)D(3) treatment resulted in the same degree of translocation of PKC-alpha and PKC-delta, but not of PKC-zeta, from cytosol to plasma membrane in both VDR(+/+) and VDR(-/-) cells. These experiments demonstrate that the 1,25(OH)(2)D(3)-induced rapid increases in [Ca(2+)](i) and PKC activity are neither mediated by, nor dependent upon, a functional nuclear VDR in mouse osteoblasts. Thus, VDR is not essential for these rapid actions of 1,25(OH)(2)D(3) in osteoblasts.  相似文献   

18.
The responses of human neutrophils (PMN) involve reorganization and phosphorylation of cytoskeletal components. We investigated the translocation of protein kinase C (PKC) isoforms to PMN cytoskeletal (Triton-insoluble) fractions, in conjunction with activation of the respiratory burst enzyme NADPH oxidase. In resting PMN, PKC-delta (29%) and small amounts of PKC-alpha (0.6%), but not PKC-betaII, were present in cytoskeletal fractions. Upon stimulation with the PKC agonist PMA, the levels of PKC-alpha, PKC-betaII, and PKC-delta increased in the cytoskeletal fraction, concomitant with a decrease in the noncytoskeletal (Triton-soluble) fractions. PKC-delta maximally associated with cytoskeletal fractions at 160 nM PMA and then declined, while PKC-alpha and PKC-betaII plateaued at 300 nM PMA. Translocation of PKC-delta was maximal by 2 min and sustained for at least 10 min. Translocation of PKC-alpha and PKC-betaII was biphasic, plateauing at 2-3 min and then increasing up to 10 min. Under maximal stimulation conditions, PKC isoforms were entirely cytoskeletal associated. Translocation of the NADPH oxidase component p47phox to the cytoskeletal fraction correlated with translocation of PKC-alpha and PKC-betaII, but not with translocation of PKC-delta. Oxidase activity in cytoskeletal fractions paralleled translocation of PKC-alpha, PKC-betaII, and p47phox. Stimulation with 1,2-dioctanoylglycerol resulted in little translocation of PKC isoforms or p47phox, and in minimal oxidase activity. We conclude that conventional PKC isoforms (PKC-alpha and/or PKC-betaII) may regulate PMA-stimulated cytoskeletal association and activation of NADPH oxidase. PKC-delta may modulate other PMN responses that involve cytoskeletal components.  相似文献   

19.
Effect of phorbol esters on protein kinase C-zeta.   总被引:7,自引:0,他引:7  
Protein kinase C-zeta (PKC-zeta) is a member of the protein kinase C gene family which using in vitro preparations has been described as being resistant to activation by phorbol esters. PKC-zeta was found to be expressed in several cell types as an 80-kDa protein. In vitro translation of a full-length PKC-zeta construct also yielded as a primary translation product an 80-kDa protein. In the U937 cell, PKC-zeta was slightly more abundant in the cytosol than in the particulate fraction. Acute exposure of U937 cells to tetradecanoyl-phorbol-13-acetate (TPA), phorbol dibutyrate, mezerin, or diacylglycerol derivatives did not induce translocation of this isoform to the particulate fraction. Chronic exposure to 1 microM TPA failed to translocate or down-regulate PKC-zeta in U937, HL-60, COS, or HeLa-fibroblast fusion cells. To examine whether PKC-zeta was activated by TPA, PKC activity was evaluated in COS cells transiently over-expressing this isoform. In non-transfected cells, two peaks of phospholipid- and TPA-dependent kinase activity were observed. Eluting at a lower salt concentration was a peak of activity associated with PKC-alpha. PKC-zeta eluted with the second peak of activity and at a higher salt concentration. In transfected cells which expressed PKC-zeta at 4-10-fold over endogenous levels, there was only a slight increase in activity associated with the second peak. The activity and quantity of PKC-zeta did not strictly correlate. Treatment with TPA under conditions that did not alter PKC-zeta content abolished detection of the second peak of PKC activity eluting from the Mono Q column. Thus, PKC-zeta does not translocate or down-regulate in response to phorbol esters or diacylglycerol derivatives. However, for reasons discussed these studies do not resolve the issue of whether this isoform is activated by TPA.  相似文献   

20.
Lang W  Wang H  Ding L  Xiao L 《Cellular signalling》2004,16(4):457-467
Phorbol esters can induce activation of two mitogen-activated protein kinase (MAPK) pathways, the extracellular signal-regulated kinase (ERK) pathway and the c-Jun N-terminal kinase (JNK) pathway. Unlike ERK activation, JNK activation by phorbol esters is somehow cell-specific. However, the mechanism(s) that contribute to the cell-specific JNK activation remain elusive. In this study, we found that phorbol 12-myristate 13-acetate (PMA) induced JNK activation only in non-small cell lung cancer (NSCLC) cells, but not in small cell lung cancer (SCLC) cells, whereas ERK activation was detected in both cell types. In NSCLC cells, PMA induced JNK activation in a time- and dose-dependent manner. JNK activation was attenuated by protein kinase C (PKC) down-regulation through prolonged pre-treatment with PMA and significantly inhibited by PKC inhibitors G?6976 and GF109203X. Subcellular localization studies demonstrated that PMA induced translocation of PKC-alpha, -betaII, and -epsilon isoforms, but not PKC-delta, from the cytosol to the membrane. Analysis of various PKC isoforms revealed that PKC-epsilon was exclusively absent in the SCLC cell lines tested. Ectopic expression of PKC-epsilon in SCLC cells restored PMA activation of JNK signaling only in the presence of PKC-alpha, suggesting that PKC-alpha and PKC-epsilon act cooperatively in regulating JNK activation in response to PMA. Furthermore, using dominant negative mutants and pharmacological inhibitors, we define that a putative Rac1/Cdc42/PKC-alpha pathway is convergent with the PKC-epsilon/MEK1/2 pathway in terms of the activation of JNK by PMA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号