首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several lines of data recently pointed out a role of the serine proteinase thrombin in liver fibrogenesis, but its mechanism of action is unknown. The aim of this study was to evaluate the effect of thrombin on the migration of human liver myofibroblasts. We show here that thrombin inhibits both basal migration and platelet-derived growth factor (PDGF)-BB-induced migration of myofibroblasts. By using a thrombin antagonist, a protease-activated receptor (PAR)-1 mimetic peptide, and a PAR-1 antibody, we show that this effect is dependent on the catalytic activity of thrombin and on PAR-1 activation. Thrombin's effect on basal migration was dependent on cyclooxygenase 2 (COX-2) activation because it was blocked by the COX-2 inhibitors NS-398 and nimesulide, and pharmacological studies showed that it was relayed through prostaglandin E(2) and its EP(2) receptor. On the other hand, thrombin-induced inhibition of PDGF-BB-induced migration was not dependent on COX-2. We show that thrombin inhibits PDGF-induced Akt-1 phosphorylation. This effect was consecutive to inhibition of PDGF-beta receptor activation through active dephosphorylation. Thus thrombin, through two distinct mechanisms, inhibits both basal- and PDGF-BB-induced migration of human hepatic liver myofibroblasts. The fine tuning of myofibroblast migration may be one of the mechanisms used by thrombin to regulate liver fibrogenesis.  相似文献   

2.
3.
We have previously shown that human liver myofibroblasts promote in vitro invasion of human hepatocellular carcinoma (HCC) cells through a hepatocyte growth factor (HGF)/urokinase/plasmin-dependent mechanism. In this study, we demonstrate that myofibroblasts synthesize the serine proteinase inhibitor tissue factor pathway inhibitor-2 (TFPI-2). Despite the fact that recombinant TFPI-2 readily inhibits plasmin, we show that it potentiates HGF-induced invasion of HCC cells and is capable of inducing invasion on its own. Furthermore, HCC cells stably transfected with a TFPI-2 expression vector became spontaneously invasive. HCC cells express tissue factor and specifically factor VII. Addition of an antibody to factor VII abolished the pro-invasive effect of TFPI-2. We suggest that TFPI-2 induces invasion following binding to a tissue factor-factor VIIa complex preformed on HCC cells. Our data thus demonstrate an original mechanism of cell invasion that may be specific for liver tumor cells.  相似文献   

4.
We recently demonstrated that the Gla domain-dependent interaction of protein C with endothelial protein C receptor (EPCR) leads to dissociation of the receptor from caveolin-1 and recruitment of PAR-1 to a protective signaling pathway. Thus, the activation of PAR-1 by either thrombin or PAR-1 agonist peptide elicited a barrier-protective response if endothelial cells were preincubated with protein C. In this study, we examined whether other vitamin K-dependent coagulation protease zymogens can modulate PAR-dependent signaling responses in endothelial cells. We discovered that the activation of both PAR-1 and PAR-2 in endothelial cells pretreated with factor FX (FX)-S195A, but not other procoagulant protease zymogens, also results in initiation of protective intracellular responses. Interestingly, similar to protein C, FX interaction with endothelial cells leads to dissociation of EPCR from caveolin-1 and recruitment of PAR-1 to a protective pathway. Further studies revealed that, FX activated by factor VIIa on tissue factor bearing endothelial cells also initiates protective signaling responses through the activation of PAR-2 independent of EPCR mobilization. All results could be recapitulated by the receptor agonist peptides to both PAR-1 and PAR-2. These results suggest that a cross-talk between EPCR and an unknown FX/FXa receptor, which does not require interaction with the Gla domain of FX, recruits PAR-1 to protective signaling pathways in endothelial cells.  相似文献   

5.
The myofibroblast has recently been identified as an important mediator of tumor necrosis factor-α (TNF-α)-associated colitis and cancer, but the mechanism(s) involved remains incompletely understood. Recent evidence suggests that TNF-α is a central regulator of multiple inflammatory signaling cascades. One important target of TNF-α may be the signaling pathway downstream of the epidermal growth factor receptor (EGFR), which has been associated with many human cancers. Here, we show that long-term exposure of 18Co cells, a model of human colonic myofibroblasts, with TNF-α led to a striking increase in cell surface EGFR expression, an effect that was completely inhibited by cycloheximide. Subsequent EGFR binding by EGF and heparin binding (HB)-EGF was associated with enhanced EGFR tyrosine kinase activity, prolonged ERK activation, and a significant increase in cyclooxygenase-2 (COX-2) expression compared with 18Co cells treated with EGF and HB-EGF alone. TNF-α also increased EGFR expression and signaling in primary myofibroblasts isolated from human colon tissue. TNF-α-induced upregulation of EGFR may be a plausible mechanism to explain the exaggerated cellular responsiveness that characterizes inflammatory bowel disease and that may contribute to a microenvironment that predisposes to colitis-associated cancer through enhanced COX-2 expression.  相似文献   

6.
7.
It has been reported that interleukin-8 (IL-8) and cyclooxygenase-2 (COX-2) expression is regulated by peroxisome proliferator-activated receptor (PPAR)-gamma synthetic ligands. We have shown previously that cytosolic phospholipase A2 (cPLA2) is able to activate gene expression through PPAR-gamma response elements (Pawliczak, R., Han, C., Huang, X. L., Demetris, A. J., Shelhamer, J. H., and Wu, T. (2002) J. Biol. Chem. 277, 33153-33163). In this study we investigated the influence of cPLA2 and secreted phospholipase A2 (sPLA2) Group IIA, Group V, and Group X on IL-8 and COX-2 expression in human lung epithelial cells (A549 cells). We also studied the results of cPLA2 activation by epidermal growth factor (EGF) and calcium ionophore (A23187) on IL-8 and COX-2 reporter gene activity, mRNA level, and protein synthesis. cPLA2 overexpression and activation increased both IL-8 and COX-2 reporter gene activity. Overexpression and activation of Group IIA, Group V, or Group X sPLA2s did not increase IL-8 and COX-2 reporter gene activity. Methyl arachidonyl fluorophosphate, a cPLA2 inhibitor, inhibited the effect of A23187 and of EGF on both IL-8 and COX-2 reporter gene activity, steady state levels of IL-8 and COX-2 mRNA, and IL-8 and COX-2 protein expression. Small inhibitory RNAs directed against PPAR-gamma1 and -gamma2 blunted the effect of A23187 and of EGF on IL-8 and COX-2 protein expression. Moreover small inhibitory RNAs directed against cPLA2 decreased the effect of A23187 and EGF on IL-8 and COX-2 protein expression. These results demonstrate that cPLA2 has an influence on IL-8 and COX 2 gene and protein expression at least in part through PPAR-gamma.  相似文献   

8.
Protease-activated receptor (PAR)-4 is a low affinity thrombin receptor with slow activation and desensitization kinetics relative to PAR-1. This study provides novel evidence that cardiomyocytes express functional PAR-4 whose signaling phenotype is distinct from PAR-1 in cardiomyocytes. AYPGKF, a modified PAR-4 agonist with increased potency at PAR-4, activates p38-mitogen-activated protein kinase but is a weak activator of phospholipase C, extracellular signal-regulated kinase, and cardiomyocyte hypertrophy; AYPGKF and thrombin, but not the PAR-1 agonist SFLLRN, activate Src. The observation that AYPGKF and thrombin activate Src in cardiomyocytes cultured from PAR-1(-/-) mice establishes that Src activation is via PAR-4 (and not PAR-1) in cardiomyocytes. Further studies implicate Src and epidermal growth factor receptor (EGFR) kinase activity in the PAR-4-dependent p38-mitogen-activated protein kinase signaling pathway. Thrombin phosphorylates EGFRs and ErbB2 via a PP1-sensitive pathway in PAR-1(-/-) cells that stably overexpress PAR-4; the Src-mediated pathway for EGFR/ErbB2 transactivation underlies the protracted phases of thrombin-dependent extracellular signal-regulated kinase activation in PAR-1(-/-) cells that overexpress PAR-4 and in cardiomyocytes. These studies identify a unique signaling phenotype for PAR-4 (relative to other cardiomyocyte G protein-coupled receptors) that is predicted to contribute to cardiac remodeling and influence the functional outcome at sites of cardiac inflammation.  相似文献   

9.
Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine, has been shown to play a role in wound-healing processes. In this study, we investigated whether protease-activated receptor (PAR)-1 and PAR-2 mediated MIF expression in human endothelial cells. Thrombin, factor Xa (FXa), and trypsin induced MIF expression in human dermal microvascular endothelial cells and human umbilical vein endothelial cells, but other proteases, including kallikrein and urokinase, failed to do so. Thrombin-induced MIF mRNA expression was significantly reduced by the thrombin-specific inhibitor hirudin. Thrombin receptor activation peptide-6, a synthetic PAR-1 peptide, induced MIF mRNA expression, suggesting that PAR-1 mediates MIF expression in response to thrombin. The effects of FXa were blocked by antithrombin III, but not by hirudin, indicating that FXa might enhance MIF production directly rather than via thrombin stimulation. The synthetic PAR-2 peptide SLIGRL-NH(2) induced MIF mRNA expression, showing that PAR-2 mediated MIF expression in response to FXa. Concerning the signal transduction, a mitogen-activated protein kinase kinase inhibitor (PD98089) and a nuclear factor (NF)-kappaB inhibitor (SN50) suppressed the up-regulation of MIF mRNA in response to thrombin, FXa, and PAR-2 agonist stimulation, whereas a p38 inhibitor (SB203580) had little effect. These facts indicate that up-regulation of MIF by thrombin or FXa is regulated by p44/p42 mitogen-activated protein kinase-dependent pathways and NF-kappaB-dependent pathways. Moreover, we found that PAR-1 and PAR-2 mRNA expression in endothelial cells was enhanced by MIF. Furthermore, we examined the inflammatory response induced by PAR-1 and PAR-2 agonists injected into the mouse footpad. As shown by footpad thickness, an indicator of inflammation, MIF-deficient mice (C57BL/6) were much less sensitive to either PAR-1 or PAR-2 agonists than wild-type mice. Taken together, these results suggest that MIF contributes to the inflammatory phase of the wound healing process in concert with thrombin and FXa via PAR-1 and PAR-2.  相似文献   

10.
Cyclooxygenase-2 (COX-2)-mediated prostaglandin synthesis has recently been implicated in human cholangiocarcinogenesis. This study was designed to examine the mechanisms by which COX-2-derived prostaglandin E2 (PGE2) regulates cholangiocarcinoma cell growth and invasion. Immunohistochemical analysis revealed elevated expression of COX-2 and the epidermal growth factor (EGF) receptor (EGFR) in human cholangiocarcinoma tissues. Overexpression of COX-2 in a human cholangiocarcinoma cell line (CCLP1) increased tumor cell growth and invasion in vitro and in severe combined immunodeficient mice. Overexpression of COX-2 or treatment with PGE2 or the EP1 receptor agonist ONO-DI-004 induced phosphorylation of EGFR and enhanced tumor cell proliferation and invasion, which were inhibited by the EP1 receptor small interfering RNA or antagonist ONO-8711. Treatment of CCLP1 cells with PGE2 or ONO-DI-004 enhanced binding of EGFR to the EP1 receptor and c-Src. Furthermore, PGE2 or ONO-DI-004 treatment also increased Akt phosphorylation, which was blocked by the EGFR tyrosine kinase inhibitors AG 1478 and PD 153035. These findings reveal that the EP1 receptor transactivated EGFR, thus activating Akt. On the other hand, activation of EGFR by its cognate ligand (EGF) increased COX-2 expression and PGE2 production, whereas blocking PGE2 synthesis or the EP1 receptor inhibited EGF-induced EGFR phosphorylation. This study reveals a novel cross-talk between the EP1 receptor and EGFR signaling that synergistically promotes cancer cell growth and invasion.  相似文献   

11.
12.
Endothelial membrane-bound thrombomodulin is a high affinity receptor for thrombin to inhibit coagulation. We previously demonstrated that the thrombin-thrombomodulin complex restrains cell proliferation mediated through protease-activated receptor (PAR)-1. We have now tested the hypothesis that thrombomodulin transduces a signal to activate the endothelial nitric-oxide synthase (NOS3) and to modulate G protein-coupled receptor signaling. Cultured human umbilical vein endothelial cells were stimulated with thrombin or a mutant of thrombin that binds to thrombomodulin and has no catalytic activity on PAR-1. Thrombin and its mutant dose dependently activated NO release at cell surface. Pretreatment with anti-thrombomodulin antibody suppressed NO response to the mutant and to low thrombin concentration and reduced by half response to high concentration. Thrombin receptor-activating peptide that only activates PAR-1 and high thrombin concentration induced marked biphasic Ca2+ signals with rapid phosphorylation of PLC(beta3) and NOS3 at both serine 1177 and threonine 495. The mutant thrombin evoked a Ca2+ spark and progressive phosphorylation of Src family kinases at tyrosine 416 and NOS3 only at threonine 495. It activated rapid phosphatidylinositol-3 kinase-dependent NO synthesis and phosphorylation of epidermal growth factor receptor and calmodulin kinase II. Complete epidermal growth factor receptor inhibition only partly reduced the activation of phospholipase Cgamma1 and NOS3. Prestimulation of thrombomodulin did not affect NO release but reduced Ca2+ responses to thrombin and histamine, suggesting cross-talks between thrombomodulin and G protein-coupled receptors. This is the first demonstration of an outside-in signal mediated by the cell surface thrombomodulin receptor to activate NOS3 through tyrosine kinase-dependent pathway. This signaling may contribute to thrombomodulin function in thrombosis, inflammation, and atherosclerosis.  相似文献   

13.
Rezaie AR 《IUBMB life》2011,63(6):390-396
Several recent studies have demonstrated that the activation of protease-activated receptor 1 (PAR-1) by thrombin and activated protein C (APC) on cultured vascular endothelial cells elicits paradoxical proinflammatory and antiinflammatory responses, respectively. Noting that the protective intracellular signaling activity of APC requires the interaction of the protease with its receptor, endothelial protein C receptor (EPCR), we recently hypothesized that the occupancy of EPCR by protein C may also change the PAR-1-dependent signaling specificity of thrombin. In support of this hypothesis, we demonstrated that EPCR is associated with caveolin-1 in lipid rafts of endothelial cells and that the occupancy of EPCR by the Gla-domain of protein C/APC leads to its dissociation from caveolin-1 and recruitment of PAR-1 to a protective signaling pathway through the coupling of PAR-1 to the pertussis toxin sensitive G(i) -protein. Thus, when EPCR is bound by protein C, a PAR-1-dependent protective signaling response in cultured endothelial cells can be mediated by either thrombin or APC. This article will briefly review the mechanism by which the occupancy of EPCR by its natural ligand modulates the PAR-1-dependent signaling specificity of coagulation proteases.  相似文献   

14.
15.
The thrombin/proteinase-activated receptors (PARs) have been shown to regulate smooth muscle cell proliferation, migration, and vascular maturation. Thrombin up-regulates expression of several proteins including cyclooxygenase (COX)-2 in vascular smooth muscle cells (VSMCs) and contributes to vascular diseases. However, the mechanisms underlying thrombin-regulated COX-2 expression in VSMCs remain unclear. Western blotting, RT-PCR, and EIA kit analyses showed that thrombin induced the expression of COX-2 mRNA and protein and PGE(2) release in a time-dependent manner, which was attenuated by inhibitors of PKC (GF109203X and rottlerin), c-Src (PP1), EGF receptor (EGFR; AG1478) and MEK1/2 (U0126), or transfection with dominant negative mutants of PKC-delta, c-Src or extracellular regulated kinase (ERK) and ERK1 short hairpin RNA interference (shRNA). These results suggest that transactivation of EGFR participates in COX-2 expression induced by thrombin in VSMCs. Accordingly, thrombin stimulated phosphorylation of ERK1/2 which was attenuated by GF109203X, rottlerin, PP1, GM6001, CRM197, AG1478, or U0126, respectively. Furthermore, this up-regulation of COX-2 mRNA and protein was blocked by selective inhibitors of AP-1 and NF-kappaB, curcumin and helenalin, respectively. Moreover, thrombin-stimulated activation of NF-kappaB, AP-1, and COX-2 promoter activity was blocked by the inhibitors of c-Src, PKC, EGFR, MEK1/2, AP-1 and NF-kappaB, suggesting that thrombin induces COX-2 promoter activity mediated through PKC(delta)/c-Src-dependent EGFR transactivation, MEK-ERK1/2, AP-1, and NF-kappaB. These results demonstrate that in VSMCs, activation of ERK1/2, AP-1 and NF-kappaB pathways was essential for thrombin-induced COX-2 gene expression. Understanding the regulation of COX-2 expression and PGE(2) release by thrombin/PARs system on VSMCs may provide potential therapeutic targets of vascular inflammatory disorders including arteriosclerosis.  相似文献   

16.
Although large amounts of epidermal growth factor (EGF) are found in the synovial fluids of arthritic cartilage, the role of EGF in arthritis is not clearly understood. This study investigated the effect of EGF on differentiation and on inflammatory responses such as cyclooxygenase-2 (COX-2) expression and prostaglandin E(2) (PGE(2)) production in articular chondrocytes. EGF caused a loss of differentiated chondrocyte phenotype as demonstrated by inhibition of type II collagen expression and proteoglycan synthesis. EGF also induced COX-2 expression and PGE(2) production. EGF-induced dedifferentiation was caused by EGF receptor-mediated activation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) but not p38 kinase, whereas the activation of both ERK1/2 and p38 kinase was necessary for COX-2 expression and PGE(2) production. Neither the inhibition of COX-2 expression and PGE(2) production nor the addition of exogenous PGE(2) affected EGF-induced dedifferentiation. However, COX-2 expression and PGE(2) production were significantly enhanced in chondrocytes that were dedifferentiated by serial subculture, and EGF also potentiated COX-2 expression and PGE(2) production, although these cells were less sensitive to EGF. Dedifferentiation-induced COX-2 expression and PGE(2) production were mediated by ERK1/2 and p38 kinase signaling. Our results indicate that EGF in articular chondrocytes stimulates COX-2 expression and PGE(2) production via ERK and p38 kinase signaling in association with differentiation status.  相似文献   

17.
TNF and epidermal growth factor (EGF) are well-known stimuli of cyclooxygenase (COX)-2 expression, and TNF stimulates transactivation of EGF receptor (EGFR) signaling to promote survival in colon epithelial cells. We hypothesized that COX-2 induction and cell survival signaling downstream of TNF are mediated by EGFR transactivation. TNF treatment was more cytotoxic to COX-2(-/-) mouse colon epithelial (MCE) cells than wild-type (WT) young adult mouse colon (YAMC) epithelial cells or COX-1(-/-) cells. TNF also induced COX-2 protein and mRNA expression in YAMC cells, but blockade of EGFR kinase activity or expression inhibited COX-2 upregulation. TNF-induced COX-2 expression was reduced and absent in EGFR(-/-) and TNF receptor-1 (TNFR1) knockout MCE cells, respectively, but was restored upon expression of the WT receptors. Inhibition of mediators of EGFR transactivation, Src family kinases and p38 MAPK, blocked TNF-induced COX-2 protein and mRNA expression. Finally, TNF injection increased COX-2 expression in colon epithelium of WT, but not kinase-defective EGFR(wa2) and EGFR(wa5), mice. These data indicate that TNFR1-dependent transactivation of EGFR through a p38- and/or an Src-dependent mechanism stimulates COX-2 expression to promote cell survival. This highlights an EGFR-dependent cell signaling pathway and response that may be significant in colitis-associated carcinoma.  相似文献   

18.
TGF-beta receptors (TbetaRs) are serine/threonine kinase receptors that bind to TGF-beta and propagate intracellular signaling through Smad proteins. TbetaRs are repressed in some human cancers and expressed at high levels in several fibrotic diseases. We demonstrated that epidermal growth factor (EGF) up-regulates type II TGF-beta receptor (TbetaRII) expression in human dermal fibroblasts. EGF-mediated induction of TbetaRII expression was inhibited by the treatment of fibroblasts with a specific p38 mitogen-activated protein kinase (MAPK) inhibitor, SB203580, whereas MEK inhibitor PD98059 did not block the up-regulation of TbetaRII by EGF. EGF induced the TbetaRII promoter activity, and this induction was significantly blocked by SB203580, but not by PD98059. The overexpression of the dominant negative form of p38alpha or p38beta significantly reduced the induction of TbetaRII promoter activity by EGF. These results indicate that the EGF-mediated induction of TbetaRII expression involves the p38 MAPK signaling pathway. The EGF-mediated induction of TbetaRII expression may participate in a synergistic interplay between EGF and TGF-beta signaling pathway.  相似文献   

19.
Herstatin is an autoinhibitor of the ErbB family consisting of subdomains I and II of the human epidermal growth factor receptor 2 (ErbB-2) extracellular domain and a novel C-terminal domain encoded by an intron. Herstatin binds to human epidermal growth factor receptor 2 and to the epidermal growth factor receptor (EGFR), blocking receptor oligomerization and tyrosine phosphorylation. In this study, we characterized several early steps in EGFR activation and investigated downstream signaling events induced by epidermal growth factor (EGF) and by transforming growth factor alpha (TGF-alpha) in NIH3T3 cell lines expressing EGFR with and without herstatin. Herstatin expression decreased EGF-induced EGFR tyrosine phosphorylation and delayed receptor down-regulation despite receptor occupancy by ligand with normal binding affinity. Akt stimulation by EGF and TGF-alpha, but not by fibroblast growth factor 2, was almost completely blocked in the presence of herstatin. Surprisingly, EGF and TGF-alpha induced full activation of MAPK in duration and intensity and stimulated association of the EGFR with Shc and Grb2. Although MAPK was fully stimulated, herstatin expression prevented TGF-alpha-induced DNA synthesis and EGF-induced proliferation. The herstatin-mediated uncoupling of MAPK from Akt activation was also observed in Chinese hamster ovary cells co-transfected with EGFR and herstatin. These findings show that herstatin expression alters EGF and TGF-alpha signaling profiles, culminating in inhibition of proliferation.  相似文献   

20.
Tissue factor pathway inhibitor 2 (TFPI2) is a serine protease inhibitor critical for the regulation of extracellular matrix remodeling and atherosclerotic plaque stability. Previously, we demonstrated that TFPI2 expression is increased in monocytes from patients with familial combined hyperlipidemia (FCH). To gain insight into the molecular mechanisms responsible for this upregulation, we examined TFPI2 expression in THP-1 macrophages exposed to lipoproteins and thrombin. Our results showed that TFPI2 expression was not affected by treatment with very low density lipoproteins (VLDL), but was induced by thrombin (10 U/ml) in THP-1 (1.9-fold increase, p < 0.001) and human monocyte-derived macrophages (2.3-fold increase, p < 0.005). The specificity of the inductive effect was demonstrated by preincubation with the thrombin inhibitors hirudin and PPACK, which ablated thrombin effects. TFPI2 induction was prevented by pre-incubation with MEK1/2 and JNK inhibitors, but not by the EGF receptor antagonist AG1478. In the presence of parthenolide, an inhibitor of NFκB, but not of SR-11302, a selective AP-1 inhibitor, thrombin-mediated TFPI2 induction was blunted. Our results also show that thrombin treatment increased ERK1/2, JNK and IκBα phosphorylation. Finally, we ruled out the possibility that TFPI2 induction by thrombin was mediated by COX-2, as preincubation with a selective COX-2 inhibitor did not prevent the inductive effect. In conclusion, thrombin induces TFPI2 expression by a mechanism involving ERK1/2 and JNK phosphorylation, leading finally to NFkB activation. In the context of atherosclerosis, thrombin-induced macrophage TFPI2 expression could represent a means of avoiding excessive activation of matrix metalloproteases at sites of inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号