首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The antioxidant-responsive element (ARE) plays an important role in the induction of phase II detoxifying enzymes including NADPH:quinone oxidoreductase (NQO1). We report herein that activation of the human NQO1-ARE (hNQO1-ARE) by tert-butylhydroquinone (tBHQ) is mediated by phosphatidylinositol 3-kinase (PI3-kinase), not extracellular signal-regulated kinase (Erk1/2), in IMR-32 human neuroblastoma cells. Treatment with tBHQ significantly increased NQO1 protein without activation of Erk1/2. In addition, PD 98059 (a selective mitogen-activated kinase/Erk kinase inhibitor) did not inhibit hNQO1-ARE-luciferase expression or NQO1 protein induction by tBHQ. Pretreatment with LY 294002 (a selective PI3-kinase inhibitor), however, inhibited both hNQO1-ARE-luciferase expression and endogenous NQO1 protein induction. In support of a role for PI3-kinase in ARE activation we show that: 1) transfection of IMR-32 cells with constitutively active PI3-kinase selectively activated the ARE in a dose-dependent manner that was completely inhibited by treatment with LY 294002; 2) pretreatment of cells with the PI3-kinase inhibitors, LY 294002 and wortmannin, significantly decreased NF-E2-related factor 2 (Nrf2) nuclear translocation induced by tBHQ; and 3) ARE activation by constitutively active PI3-kinase was blocked completely by dominant negative Nrf2. Taken together, these data clearly show that ARE activation by tBHQ depends on PI3-kinase, which lies upstream of Nrf2.  相似文献   

2.
Human NRH:quinone oxidoreductase 2 (NQO2) is a cytosolic protein that catalyzes the metabolic reduction of quinones and provides protection against myelogenous hyperplasia and chemical carcinogenesis. NQO2 gene expression is induced in response to antioxidant tert-butylhydroquinone (tBHQ). Sequence analysis revealed six putative antioxidant response elements (ARE1 through 6) in the human NQO2 gene promoter. Deletion mutagenesis and transfection studies suggested that the ARE region between nucleotides -1433 and -1424 is essential for basal expression and antioxidant induction of NQO2 gene expression. Mutation of this ARE from 3.8 kb NQO2 gene promoter significantly repressed expression and abrogated the induction in response to antioxidant in transfected cells. Band shift, supershift, and chromatin immunoprecipitation (ChIP) assays demonstrated binding of nuclear factors Nrf2 and JunD with human NQO2 gene ARE. Coimmunoprecipitation experiments revealed an association between Nrf2 and JunD. Overexpression of Nrf2 upregulated and overexpression of Nrf2 dominant-negative mutant downregulated ARE-mediated NQO2 gene expression. The treatment of Hep-G2 cells with Nrf2-specific RNAi significantly reduced Nrf2 and NQO2 gene expression and tBHQ induction. The results combined demonstrated that Nrf2 associates with JunD, binds to ARE at nucleotide -1433, and regulates human NQO2 gene expression and induction in response to antioxidants.  相似文献   

3.
4.
5.
6.
7.
Many phase II protective genes contain a cis -acting enhancer region known as the antioxidant response element (ARE). Increased expression of these genes contributes to the protection of cells from oxidative stress. Transgenic reporter mice were created that carry in their genome the core ARE coupled to the human placental alkaline phosphatase (hPAP) reporter gene. Primary cortical cultures derived from these mice were treated with tBHQ resulting in a dose-dependent increase in hPAP activity. Histochemical staining for hPAP activity was observed in both glia and neurons from tBHQ-treated cultures. The tBHQ-mediated increase in hPAP was not affected by the antioxidant glutathione monoethyl ester (GSHEE), whereas the increase in hPAP following DEM treatment was completely blocked by GSHEE. Pre-treatment of cultures with the PI3-kinase inhibitor LY 294002 demonstrated a dose-dependent decrease in tBHQ-induced hPAP activity. In addition, the tBHQ-mediated expression of ARE-driven genes in primary cortical cultures was blocked by LY 294002. Interestingly, basal expression of Nrf2 was also inhibited by LY 294002. We theorize that increased levels of genes controlled by the ARE are important for cellular protection against oxidative stress. These ARE-hPAP transgenic mice will be an important in vivo model for testing our hypothesis.  相似文献   

8.
The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway is a cellular defense system against oxidative stress. Activation of this pathway increases expression of antioxidant enzymes. Epidemiological studies have demonstrated that the consumption of fruits and vegetables is associated with reduced risk of contracting a variety of human diseases. The aim of this study is to find Nrf2-ARE activators in dietary fruits and vegetables. We first attempted to compare the potency of ARE activation in six fruit and six vegetables extracts. Green perilla (Perilla frutescens var. crispa f. viridis) extract exhibited high ARE activity. We isolated the active fraction from green perilla extract through bioactivity-guided fractionation. Based on nuclear magnetic resonance and mass spectrometric analysis, the active ingredient responsible for the ARE activity was identified as 2',3'-dihydroxy-4',6'-dimethoxychalcone (DDC). DDC induced the expression of antioxidant enzymes, such as γ-glutamylcysteine synthetase (γ-GCS), NAD(P)H: quinone oxidoreductase-1 (NQO1), and heme oxygenase-1. DDC inhibited the formation of intracellular reactive oxygen species and the cytotoxicity induced by 6-hydroxydopamine. Inhibition of the p38 mitogen-activated protein kinase pathway abolished ARE activation, the induction of γ-GCS and NQO1, and the cytoprotective effect brought about by DDC. Thus, this study demonstrated that DDC contained in green perilla enhanced cellular resistance to oxidative damage through activation of the Nrf2-ARE pathway.  相似文献   

9.
10.
Regulation of genes encoding NAD(P)H:quinone oxidoreductases   总被引:15,自引:0,他引:15  
  相似文献   

11.
Nuclear factor erythroid 2-related factor 2 (Nrf2) coordinates the up-regulation of cytoprotective genes via the antioxidant response element (ARE). There is significant evidence that oxidative stress is a critical event in the pathogenesis of AD. Considering the protective role of Nrf2 against oxidative injury, we studied to determine whether in vivo toxicity of amyloid β (Aβ) can be attenuated by tBHQ, an Nrf2 stabilizer, Using an Aβ injection model. We demonstrated that pre-activation of endogenous Nrf2 by tBHQ attenuated Aβ-induced caspase-3 expression. tBHQ enhanced GSH, decreased MDA level, and inhibited NF-κB. This investigation provides the first documentation of tBHQ’s neuroprotective effect through decrease of Aβ accumulation in rat brain. Our results show the involvement of Hsp-70 in this protective effect. In summary tBHQ treatment for 1 week prior to Aβ injection protected against the oxidative damage, apoptosis and Aβ accumulation in rats.  相似文献   

12.
13.
氧化和化学应激的防御性转导通路——Nrf2/ARE   总被引:2,自引:0,他引:2  
Nrf2/ARE是近年新发现的机体抵抗内外界氧化和化学等刺激的防御性转导通路.生理条件下,NF-E2相关因子2(Nrf2,NF-E2-related factor 2)在细胞质中与Keap1结合处于非活性、易降解的状态.在内外界自由基和化学物质刺激时,Keap1的构象改变或者Nrf2直接被磷酸化,导致Nrf2与Keap1解离而活化.活化的Nrf2进入细胞核,与抗氧化反应元件(ARE)结合,启动ARE下游的Ⅱ相解毒酶、抗氧化蛋白、蛋白酶体/分子伴侣等基因转录和表达以抵抗内外界的有害刺激.MAPK、PI3K/AKT、PKC等信号通路分子广泛参与了Nrf2的活化和核转位过程,但是具体何种通路被激动、何种通路发挥主导作用,取决于刺激物种类、刺激方式和细胞类型.本文就Nrf2分子结构、Nrf2活化机制、Nrf2/ARE调控的下游基因、与Nrf2相关的信号通路分子以及其在肿瘤、炎症、衰老等应用领域的最新进展进行综述.  相似文献   

14.
Mitogen-activated protein kinase (MAPK) cascades are activated by diverse extracellular signals and participate in the regulation of an array of cellular programs. In this study, we investigated the roles of MAPKs in the induction of phase II detoxifying enzymes by chemicals. Treatment of human hepatoma (HepG2) and murine hepatoma (Hepa1c1c7) cells with tert-butylhydroquinone (tBHQ) or sulforaphane (SUL), two potent phase II enzyme inducers, stimulated the activity of extracellular signal-regulated protein kinase 2 (ERK2) but not c-Jun N-terminal kinase 1. tBHQ and SUL also activated MAPK kinase. Inhibition of MAPK kinase with its inhibitor, PD98059, abolished ERK2 activation and impaired the induction of quinone reductase, a phase II detoxifying enzyme, and antioxidant response element (ARE)-linked reporter gene by tBHQ and SUL. Overexpression of a dominant-negative mutant of ERK2 also attenuated tBHQ and SUL induction of ARE reporter gene activity. Interestingly, although expression of Ras and its mutant forms showed distinct effects on basal ARE reporter gene activity, they did not affect the activation of reporter gene by the inducers. Furthermore, a dominant-negative mutant of Ras had little effect on ERK2 activation by tBHQ and SUL, implicating a Ras-independent mechanism. Indeed, both tBHQ and SUL were able to stimulate Raf-1 kinase activity in vivo as well as in vitro. Thus, our results indicate that the induction of ARE-dependent phase II detoxifying enzymes is mediated by a MAPK pathway, which may involve direct activation of Raf-1 by the inducers.  相似文献   

15.
16.
17.
18.
19.
Liver regeneration can be impaired by permanent oxidative stress and activation of nuclear factor erythroid 2–related factor 2 (Nrf2), known to regulate the cellular antioxidant response, and has been shown to improve the process of liver regeneration. A variety of factors regulate hepatic tissue regeneration, among them augmenter of liver regeneration (ALR), attained great attention as being survival factors for the liver with proproliferative and antiapoptotic properties. Here we determined the Nrf2/antioxidant response element (ARE) regulated expression of ALR and show ALR as a target gene of Nrf2 in vitro and in vivo. The ALR promoter comprises an ARE binding site and, therefore, ALR expression can be induced by ARE-activator tertiary butylhydroquinone (tBHQ) in hepatoma cells and primary human hepatocytes (PHH). Promoter activity and expression of ALR were enhanced after cotransfection of Nrf2 compared with control and dominant negative mutant of Nrf2. Performing partial hepatectomy in livers from Nrf2+/+ mice compared with Nrf2−/− knock-out (KO) mice, we found increased expression of ALR in addition to known antioxidant ARE-regulated genes. Furthermore, we observed increased ALR expression in hepatitis B virus (HBV) compared with hepatitis C virus (HCV) positive hepatoma cells and PHH. Recently, it was demonstrated that HBV infection activates Nrf2 and, now, we add results showing increased ALR expression in liver samples from patients infected with HBV. ALR is regulated by Nrf2, acts as a liver regeneration and antioxidative protein and, therefore, links oxidative stress to hepatic regeneration to ensure survival of damaged cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号