首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transdifferentiation is defined as the conversion of one cell type to another. It belongs to a wider class of cell type transformations called metaplasias which also includes cases in which stem cells of one tissue type switch to a completely different stem cell. Numerous examples of transdifferentiation exist within the literature. For example, isolated striated muscle of the invertebrate jellyfish (Anthomedusae) has enormous transdifferentiation potential and even functional organs (e.g., tentacles and the feeding organ (manubrium)) can be generated in vitro. In contrast, the potential for transdifferentiation in vertebrates is much reduced, at least under normal (nonpathological) conditions. But despite these limitations, there are some well-documented cases of transdifferentiation occurring in vertebrates. For example, in the newt, the lens of the eye can be formed from the epithelial cells of the iris. Other examples of transdifferentiation include the appearance of hepatic foci in the pancreas, the development of intestinal tissue at the lower end of the oesophagus and the formation of muscle, chondrocytes and neurons from neural precursor cells. Although controversial, recent results also suggest the ability of adult stem cells from different embryological germlayers to produce differentiated cells e.g., mesodermal stem cells forming ecto- or endodermally-derived cell types. This phenomenon may constitute an example of metaplasia. The current review examines in detail some well-documented examples of transdifferentiation, speculates on the potential molecular and cellular mechanisms that underlie the switches in phenotype, together with their significance to organogenesis and regenerative medicine.Key Words: transdifferentiation, metaplasia, tissue regeneration, stem cells, plasticity, reprogramming, regenerative medicine  相似文献   

2.
《Organogenesis》2013,9(2):36-44
Transdifferentiation is defined as the conversion of one cell type to another. It belongs to a wider class of cell type transformations called metaplasias which also includes cases in which stem cells of one tissue type switch to a completely different stem cell. Numerous examples of transdifferentiation exist within the literature. For example, isolated striated muscle of the invertebrate jellyfish (Anthomedusae) has enormous transdifferentiation potential and even functional organs (e.g. tentacles and the feeding organ (manubrium) can be generated in-vitro. In contrast, the potential for transdifferentiation in vertebrates is much reduced, at least under normal (non-pathological) conditions. But despite these limitations, there are some well-documented cases of transdifferentiation occurring in vertebrates. For example, in the newt, the lens of the eye can be formed from the epithelial cells of the iris. Other examples of transdifferentiation include the appearance of hepatic foci in the pancreas, the development of intestinal tissue at the lower end of the oesophagus and the formation of muscle, chondrocytes and neurons from neural precursor cells. Although controversial, recent results also suggest the ability of adult stem cells from different embryological germlayers to produce differentiated cells e.g. mesodermal stem cells forming ecto- or endodermally-derived cell types. This phenomenon may constitute an example of metaplasia. The current review examines in detail some well-documented examples of transdifferentiation, speculates on the potential molecular and cellular mechanisms that underlie the switches in phenotype, together with their significance to organogenesis and regenerative medicine.  相似文献   

3.
成体干细胞跨越胚层限制分化为其他胚层来源的细胞,对揭示不同胚层细胞间相互分化的生物学意义和机制具有重要学术价值,并可以为临床细胞移植治疗开辟新的途径,从而成为当前研究的热点之一。综述了近年来肝源性卵圆细胞、成肝细胞、骨髓源干细胞和其他成体干细胞跨越分化为肝细胞的研究现状与进展,以及卵圆细胞、成肝细胞等的分离鉴定,表面标志、生物学特征和跨越分化机制,并对成体干细胞在肝脏疾病细胞治疗上的应用前景作了展望。  相似文献   

4.
成体干细胞的可塑性:横向分化还是细胞融合?   总被引:1,自引:0,他引:1  
钱晖  黄淑帧 《生命科学》2005,17(1):25-29
近年来研究显示成体干细胞(adult stem cells)具有可塑性(plasticity),不仅可以生成它们所在组织的成熟细胞,而且在特定环境下能分化成其他组织类型细胞,这种跨系或跨胚层分化现象称为横向分化或转分化(transdifferentiation)。横向分化已为成体干细胞的研究和临床应用包括组织器官损伤的修复提供了新的思路和应用前景。然而,最近的一些研究进展又引出不同的解释,即成体干细胞的可塑性是由于细胞融合(cellfusion)的结果。在此,就成体干细胞的可塑性、横向分化、细胞融合等方面研究作一综述。  相似文献   

5.
One of the most contentious issues in biology today concerns the existence of stem cell plasticity. The term "plasticity" refers to the capacity of tissue-derived stem cells to exhibit a phenotypic potential that extends beyond the differentiated cell phenotypes of their resident tissue. Although evidence of stem cell plasticity has been reported by multiple laboratories, other scientists have not found the data persuasive and have remained skeptical about these new findings. This review will provide an overview of the stem cell plasticity controversy. We will examine many of the major objections that have been made to challenge the stem cell plasticity data. This controversy will be placed in the context of the traditional view of stem cell potential and cell phenotypic diversification. What the implications of cell plasticity are, and how its existence may modulate our present understanding of stem cell biology, will be explored. In addition, we will examine a topic that is usually not included within a discussion of stem cell biology--the direct conversion of one differentiated cell type into another. We believe that these observations on the transdifferentiation of differentiated cells have direct bearing on the issue of stem cell plasticity, and may provide insights into how cell phenotypic diversification is realized in the adult and into the origin of cell phenotypes during evolution.  相似文献   

6.
精原干细胞是动物体内的一种成体干细胞,在睾丸微环境中可以像胚胎干细胞一样具有增殖、分化潜能。近年来借助于各种细胞学技术,人们对精原干细胞在不同睾丸微环境中的分化和发育状况进行了深入研究,睾丸内不同种类细胞间的相互作用以及特定微环境对干细胞转分化的影响,已成为本领域的热点核心内容。将从精原干细胞生命历程的角度讨论该过程中所取得的研究成果和存在的问题。  相似文献   

7.
Muscle-derived stem cells (MDSCs) are multipotent stem cells with a remarkable long-term self-renewal and regeneration capacity. Here, we show that postnatal MDSCs could be transdifferentiated into Schwann cell-like cells upon the combined treatment of three neurotrophic factors (PDGF, NT-3 and IGF-2). The transdifferentiation of MDSCs was initially induced by Schwann cell (SC) conditioned medium. MDSCs adopted a spindle-like morphology similar to SCs after the transdifferentiation. Immunocytochemistry and immunoblot showed clearly that the SC markers S100, GFAP and p75 were expressed highly only after the transdifferentiation. Flow cytometry assay showed that the portion of S100 expressed cells was more than 60 percent and over one fourth of the transdifferentiated cells expressed all the three SC markers, indicating an efficient transdifferentiation. We then tested neurotrophic factors in the conditioned medium and found it was PDGF, NT-3 and IGF-2 in combination that conducted the transdifferentiation. Our findings demonstrate that it is possible to use specific neurotrophic factors to transdifferentiate MDSCs into Schwann cell-like cells, which might be therapeutically useful for clinical applications.  相似文献   

8.
干细胞具有分化成为体内所有类型细胞的能力,因此,其在再生医学治疗、体外疾病模拟、药物筛选等方面具有广阔的应用前景。干细胞技术在近些年取得了突飞猛进的发展,特别是诱导多能性干细胞的出现使干细胞领域经历了一场巨大的变革。我国干细胞研究在这场干细胞技术变革中取得了多项重大成果,逐渐成为了世界干细胞研究领域中的重要力量。本综述着重介绍近几年来,主要是诱导多能性干细胞技术出现之后,我国在干细胞和再生医学领域取得的重要进展,主要涵盖诱导多能性干细胞、转分化、单倍体干细胞以及基因修饰动物模型和基因治疗等方面。  相似文献   

9.
Stem cells of the bone marrow, including hematopoietic stem cells (HSC), mesenchymal stem cells (MSC) and hepatic progenitors were reported to give rise to hepatocytes by both transdifferentiation and cellular fusion. Transdifferentiation was observed without liver damage although significant numbers of stem cell derived hepatocytes were not described. Cellular fusion was demonstrated in the presence of a proliferation stimulus in conjunction with impaired intrinsic liver regeneration capacity. Here, we review potential therapeutic applications of stem cell derived hepatocytes depending on how they emerge. Stem cells turning into hepatocytes by transdifferentiation introduce new functioning liver cells into a diseased organ, which can support intrinsic liver regeneration or bridge the time gap until a definitive treatment is available. When cellular fusion is the mechanism behind stem cell plasticity, however, no new cells emerge in the first place, whereas new genetic material is introduced. The fusion cell thereby acquires a selective advantage over resident hepatocytes allowing for extensive proliferation and liver repopulation. Therefore genetic deficiencies might be the predominant target for cell fusion therapies. We conclude that transdifferentiation and cellular fusion might be powerful tools for the therapy of liver diseases in the future and we propose the introduction of artificial cell fusion as well as stem cell differentiation as therapeutic options.  相似文献   

10.
Cell fusion and reprogramming: resolving our transdifferences   总被引:7,自引:0,他引:7  
Bone marrow-derived cells (BMDCs) can contribute to the regeneration of diverse adult tissues, including brain, liver and heart, following bone marrow transplantation. These unexpected events were initially considered a result of transdifferentiation of BMDCs, supporting the emerging idea of extended plasticity of adult stem cells. Although studies have now clearly demonstrated that spontaneous cell fusion, rather than transdifferentiation, was the primary cause for unexpected cell fate-switches of BMDCs into hepatocytes, Purkinje cells and cardiac myocytes in vivo.  相似文献   

11.
We have established an in vitro transdifferentiation and regeneration system which is based entirely on mononucleated striated muscle cells. The muscle tissue is isolated from anthomedusae and activated by various means to undergo cell cycles and transdifferentiation to several new cell types. In all cases DNA-replication is initiated and the division products are smooth muscle cells, characterized by their ultrastructure and monoclonal antibodies, and nerve/sensory cells, characterized by their ultrastructure and FMRFamide-staining. Both cell types are found at a 1:1 ratio after the first division. The nerve cells stop to replicate, whereas the smooth muscle cells continue and keep producing in each successive division a smooth muscle cell and a nerve cell. The observed data indicate that smooth muscle cells behave like stem cells. Depending on the destabilization and culturing methods, some isolated muscle tissue will form a bilayered fragment and within only two cell cycles manubria (the feeding and sexual organ) or tentacles will regenerate. In this case six to eight new non-muscle cell types have been formed by transdifferentiation.  相似文献   

12.
Cardiomyocyte differentiation from embryonic and adult stem cells   总被引:3,自引:0,他引:3  
In recent years multiple reports indicating that embryonic as well as adult stem cells can differentiate to cardiomyocytes have ignited discussions on whether these stem cells could lead to new therapies for patients with heart disease. Recent developments have been made in the generation of cardiomyocytes from both embryonic and adult stem cells, and progress towards clinical applications in patients with heart failure has been made. Nevertheless, controversies surrounding safety and transdifferentiation issues will need to be overcome before these stem cell approaches can reach their full potential.  相似文献   

13.
Transdifferentiation--fact or artifact   总被引:7,自引:0,他引:7  
Normal development appears to involve a progressive restriction in developmental potential. However, recent evidence suggests that this progressive restriction is not irreversible and can be altered to reveal novel phenotypic potentials of stem, progenitor, and even differentiated cells. While some of these results can be explained by the presence of contaminating cell populations, persistence of pluripotent stem cells, cell fusion, etc., several examples exist that are difficult to explain as anything other than "true transdifferentiation" and/or dedifferentiation. These examples of transdifferentiation are best explained by understanding how the normal process of progressive cell fate restriction occurs during development. We suggest that subversion of epigenetic controls regulating cell type specific gene expression likely underlies the process of transdifferentiation and it may be possible to identify specific factors to control the transdifferentiation process. We predict, however, that transdifferentiation will not be reliable or reproducible and will probably require complex manipulations.  相似文献   

14.
Adult reserve stem cells and their potential for tissue engineering   总被引:6,自引:0,他引:6  
Tissue restoration is the process whereby multiple damaged cell types are replaced to restore the histoarchitecture and function to the tissue. Several theories, have been proposed to explain the phenomenon of tissue restoration in amphibians and in animals belonging to higher order. These theories include dedifferentiation of damaged tissues, transdifferentiation of lineage-committed progenitor cells, and activation of reserve, precursor cells. Studies by Young et al. and others demonstrated that connective tissue compartments throughout postnatal individuals contain reserve precursor cells. Subsequent repetitive single cell-cloning and cell-sorting studies revealed that these reserve precursor cells consisted of multiple populations of cells, including, tissue-specific progenitor cells, germ-layer lineage stem cells, and pluripotent stem cells. Tissue-specific progenitor cells display various capacities for differentiation, ranging from unipotency (forming a single cell type) to multipotency (forming multiple cell types). However, all progenitor cells demonstrate a finite life span of 50 to 70 population doublings before programmed cell senescence and cell death occurs. Germ-layer lineage stem cells can form a wider range of cell types than a progenitor cell. An individual germ-layer lineage stem cell can form all cells types within its respective germ-layer lineage (i.e., ectoderm, mesoderm, or endoderm). Pluripotent stem cells can form a wider range of cell types than a single germ-layer lineage stem cell. A single pluripotent stem cell can form cells belonging to all three germ layer lineages. Both germ-layer lineage stem cells and pluripotent stem cells exhibit extended capabilities for self-renewal, far surpassing the limited life span of progenitor cells (50–70 population doublings). The authors propose that the activation of quiescent tissue-specific progenitor cells, germ-layer lineage stem cells, and/or pluripotent stem cells may be a potential explanation, along with dedifferentiation and transdifferentiation, for the process of tissue restoration. Several model systems are currently being investigated to determine the possibilities of using these adult quiescent reserve precursor cells for tissue engineering.  相似文献   

15.
We previously demonstrated that retinoic acid (RA) induces epidermis to transdifferentiate to mucosal epithelium with goblet cells in chick embryonic cultured skin. To characterize the molecular mechanism of this transdifferentiation process, we used rat embryonic cultured skin and immunohistochemistry to confirm that RA-induced epidermal transdifferentiation accompanies the expression of markers of esophagus epithelium. Because Gbx1, TG2/Gh (transglutaminase2) and TGF-beta2 are reported individually to be induced by RA in cultures of chick embryonic skin, mouse epidermal cells and human hair follicles respectively, here, we investigated whether cooperative interplay of Gbx1, TG2/Gh and TGF-beta2 is required for the transdifferentiation of epidermal cells to mucosal cells. We have shown that expression of Gbx1, TG2/Gh and TGF-beta proteins were all upregulated in RA-induced transdifferentiated skin and that the former two were expressed in the epidermis, while TGF-beta was expressed in the dermis. Inhibitors of the TGF-beta signal pathway partially inhibited transdifferentiation. Overexpression of both hTG2/Gh and mGbx1 together in the epidermis by electroporation resulted in cuboidal cells in the upper cell layers of the epidermis without keratinized layers, although epidermal keratinization was observed in skin by overexpression of either of them. Labeling DNA with BrdU indicated that RA directly transdifferentiated transient amplifying epidermal cells, not stem cells, to mucosal cells. This study showed that coexpression of TG/2 and Gbx1 in the epidermis was required for esophagus-like mucosal transdifferentiation, and that increase in TGF-beta2 expression by RA in the dermis was essential to induce transdifferentiation through epithelial-mesenchymal interaction.  相似文献   

16.
Experimental observations suggesting adult stem cell plasticity and cross-lineage transdifferentiation have underpinned the investigation of cell therapy for cardiovascular disease. Many challenges still face the full realization of cardiovascular regenerative medicine. This brief review will highlight some of these, with emphasis on the choice of cell preparation, route of cell delivery and tracking of delivered cells.  相似文献   

17.
The mammalian inner ear largely lacks the capacity to regenerate hair cells, the sensory cells required for hearing and balance. Recent studies in both lower vertebrates and mammals have uncovered genes and pathways important in hair cell development and have suggested ways that the sensory epithelia could be manipulated to achieve hair cell regeneration. These approaches include the use of inner ear stem cells, transdifferentiation of nonsensory cells, and induction of a proliferative response in the cells that can become hair cells.  相似文献   

18.
Fruehauf S  Ho AD 《Cytotherapy》2005,7(3):301-308
The call for the meeting which took place in Heidelberg 13 January 2005, resulted in a high number of contributions covering a diversity of topics: embryonal stem cell research; molecular signaling pathways; assay systems for primitive, mesenchymal and epithelial stem cells; markers for transdifferentiation; and theoretical considerations including biomathematical modeling of stem cell development. The program was rounded off by pre-clinical and clinical applications of stem cell therapies, including new mobilization agents, treatment of myocardial infarction and chemoprotective gene transfer to stem cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号