首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 150-kDa glycoprotein designated in the mouse as E-selectin ligand-1 (ESL-1; gene symbol Selel) was first isolated based on its ability to function as a ligand for E-selectin. The gene appears equivalent to that for membrane glycoprotein MG160 encoded in the human by the locus for Golgi apparatus protein 1 (GLG1). ESL-1 is also highly homologous to the chicken cysteine-rich fibroblast growth factor receptor (CFR). We describe the genomic structure and chromosomal localization of the Selel locus. The gene is encoded by 27 exons and extends over approximately 75 kb. It maps to murine Chromosome (Chr) 8 in a region homologous to human Chr 16q where the GLG1 locus maps, further indicating that Selel and GLG1 are mouse and human equivalents of the same gene. Received: 21 April 1999 / Accepted: 12 July 1999  相似文献   

2.
The three members of the mammalian fringe gene family, Manic fringe (Mfng), Radical fringe (Rfng), and Lunatic fringe (Lfng), were identified on the basis of their similarity to Drosophila fringe (fng) and their participation in the evolutionarily conserved Notch receptor signaling pathway. Fringe genes encode pioneer secretory proteins with weak similarity to glycosyltransferases. Both expression patterns and functional studies support an important role for Fringe genes in patterning during embryonic development and an association with cellular transformation. We have now further characterized the expression and determined the chromosomal localization and genomic structure of the mouse Mfng, Rfng, and Lfng genes; the genomic structure and conceptual open reading frame of the human RFNG gene; and the refined chromosomal localization of the three human fringe genes. The mouse Fringe genes are expressed in the embryo and in adult tissues. The mouse and human Fringe family members map to three different chromosomes in regions of conserved synteny: Mfng maps to mouse Chr 15, and MFNG maps to human Chr 22q13.1 in the region of two cancer-associated loci; Lfng maps to mouse Chr 5, and LFNG maps to human Chr 7p22; Rfng maps to mouse Chr 11, and RFNG maps to human Chr 17q25 in the minimal region for a familial psoriasis susceptibility locus. Characterization of the genomic loci of the Fringe gene family members reveals a conserved genomic organization of 8 exons. Comparative analysis of mammalian Fringe genomic organization suggests that the first exon is evolutionarily labile and that the Fringe genes have a genomic structure distinct from those of previously characterized glycosyltransferases. Received: 19 February 1999 / Accepted: 22 February 1999  相似文献   

3.
We have identified and characterized the complete cDNA and gene for the mouse MutS homolog 5 (Msh5), as a step toward understanding the molecular genetic mechanisms involved in the biological function of this new MutS homologous protein in mammals. The Msh5 cDNA contains a 2502-bp open reading frame (ORF) that encodes an 833-amino acid protein with a predicted molecular weight of 92.6 kDa, which shares 89.8% amino acid sequence identity with the human hMSH5 protein. Northern blot analysis demonstrated the presence of a Msh5 mRNA approximately 2.9-kb in length, most abundantly expressed in mouse testis. Yeast two-hybrid analysis indicated that the mouse Msh5 protein positively interacted with the human hMSH4 protein—suggesting that Msh5 shares common functional properties with its human counterpart. Sequence and structural analyses show that the mouse gene Msh5 spans approximately 18 kb and contains 24 exons that range in length from 36 bp for exon 7 to 392 bp for exon 1. Structural comparison with the human hMSH5 gene revealed that all of the Msh5 internal exons, but not introns, are conserved in length with the human hMSH5. The Msh5 gene is located on mouse Chromosome (Chr) 17 in a location that is syntenic to the region of human Chr 6 harboring the hMSH5 gene. The identification and characterization of Msh5 will facilitate studies of the potential functional roles of this new member of the MutS family. Received: 11 May 1999 / Accepted: 16 July 1999  相似文献   

4.
Proximal mouse Chromosome (Chr) 16 shows conserved synteny with human Chrs 16, 8, 22, and 3. The mouse Chr 16/human Chr 22 conserved synteny region includes the DiGeorge/Velocardiofacial syndrome region of human Chr 22q11.2. A physical map of the entire mouse Chr 16/human Chr 22 region of conserved synteny has been constructed to provide a substrate for gene discovery, genomic sequencing, and animal model development. A YAC contig was constructed that extends ca. 5.4 Mb from a region of conserved synteny with human Chr 8 at Prkdc through the region conserved with human Chr 3 at DVL3. Sixty-one markers including 37 genes are mapped with average marker spacing of 90 kb. Physical distance was determined across the 2.6-Mb region from D16Mit74 to Hira with YAC fragmentation. The central region from D16Jhu28 to Igl-C1 was converted into BAC and PAC clones, further refining the physical map and providing sequence-ready template. The gene content and borders of three blocks of conserved linkage between human Chr 22q11.2 mouse Chr 16 are refined. Received: 4 November 1998 / Accepted: 21 December 1998  相似文献   

5.
8-Hydroxyguanine (7,8-dihydro-8-oxoguanine: oh8Gua) is a damaged form of guanine induced by oxygen-free radicals and causes GC to TA transversions. Previously we isolated the hOGG1 gene, a human homolog of the yeast OGG1 gene, which encodes a DNA glycosylase and lyase to excise oh8Gua in DNA. In this study, we isolated a mouse homolog (Ogg1) of the OGG1 gene, characterized oh8Gua-specific DNA glycosylase/AP lyase activities of its product, and determined chromosomal localization and exon-intron organization of this gene. A predicted protein possessed five domains homologous to human and yeast OGG1 proteins. Helix-hairpin-helix and C2H2 zinc finger-like DNA-binding motifs found in human and yeast OGG1 proteins were also retained in mouse Ogg1 protein. The properties of a GST fusion protein were identical to human and yeast OGG1 proteins in glycosylase/lyase activities, their substrate specificities, and suppressive activities against the spontaneous mutagenesis of an Escherichia coli mutM mutY double mutant. The mouse Ogg1 gene was mapped to Chromosome (Chr) 6, and consisted of 7 exons approximately 6 kb long. Two DNA-binding motifs were encoded in exons 4 through 5. These data will facilitate the investigation of the OGG1 gene to elucidate the relationship between oxidative DNA damage and carcinogenesis. Received: 17 July 1997 / Accepted: 15 September 1997  相似文献   

6.
As a first step in determining whether there are polymorphisms in the nicotinic acetylcholine receptor (nAChR) genes that are associated with nicotine addiction, we isolated genomic clones of the β2-nAChR genes from human and mouse BAC libraries. Although cDNA sequences were available for the human gene, only the promoter sequence had been reported for the mouse gene. We determined the genomic structures by sequencing 12 kb of the human gene and over 7 kb of the mouse gene. While the sizes of exons in the mouse and human genes are the same, the introns differ in size. Both promoters have a high GC content (60–80%) proximal to the AUG and share a neural-restrictive silencer element (NRSE), but overall sequence identity is only 72%. Using a 6-Mb YAC contig of Chr 1, we mapped the human β2-nAChR gene, CHRNB2, to 1q21.3 with the order of markers cen, FLG, IVL, LOR, CHRNB2, tel. The mouse gene, Acrb2, had previously been mapped to Chr 3 in a region orthologous to human Chr 1. We refined mapping of the mouse gene and other markers on a radiation hybrid panel of Chr 3 and found the order cen, Acrb2, Lor, Iv1, Flg, tel. Our results indicate that this cluster of markers on human Chr 1 is inverted with respect to its orientation on the chromosome compared with markers in the orthologous region of mouse Chr 3. Received: 26 January 1999 / Accepted: 10 May 1999  相似文献   

7.
Late-infantile ceroid-lipofuscinosis (CLN2) is an autosomal recessively inherited, neurodegenerative disease in humans. The CLN2 locus has been mapped to Chromosome (Chr) 11p15, and its sequence and genomic organization have recently been reported. In the present study, the cDNA sequence, exon/intron organization, and chromosomal localization of a mouse ortholog of the CLN2 gene are described. The mouse cDNA contains an open reading frame that predicts a protein product of 562 amino acids. The mouse and human coding regions are 86% and 88% identical at the nucleic acid and amino acid levels, respectively. One less codon appears in the mouse cDNA when compared with the human ortholog. The mouse gene (Cln2) spans more than 6 kb and consists of 13 exons separated by introns ranging in size from 111 to 1259 bp. Length polymorphism in an (AC)n microsatellite in intron 3 of the mouse Cln2 gene was used to perform segregation analysis with The Jackson Laboratory DNA Panel Mapping Resource. On the basis of this analysis, the Cln2 gene was localized to a region of mouse Chr 7 that corresponds to human Chr 11p15. Characterization of the mouse Cln2 gene will facilitate generation of a mouse model for late-infantile ceroid-lipofuscinosis by gene targeting and identification of functionally important regions of the Cln2 protein. Received: 25 May 1999 / Accepted: 22 July 1999  相似文献   

8.
The Drosophila melanogaster gene suppressor of position-effect variegation 3-9 [Su(var)3-9] encodes a component of heterochromatin with a chromodomain and a SET domain. Here, we describe the cloning of a mouse homolog called Suv39h1 and describe the genomic organization, pattern of expression, and genetic map position. The genomic locus is approximately 10 kb and consists of five exons. The first two exons, 1a and 1b, are alternative first exons and are followed by three common exons. Two mRNAs, encompassing exon 1a or 1b, encode protein isoforms with distinct amino termini, but which are otherwise identical, including the chromodomain and SET domain. Interestingly, only one of the isoforms contains a putative nuclear localization signal. Consistent with other genes encoding proteins associated with chromatin structure, Suv39h1 is expressed in a widespread manner. Interspecific backcross mapping localized Suv39h1 near tattered (Td) and scurfy (sf) on the proximal X Chromosome (Chr). However, analysis of Td/Y and sf/Y mutant stocks indicated that Suv39h1 is not responsible for either mutant phenotype. Received: 27 August 1999 / Accepted: 24 November 1999  相似文献   

9.
Sulphamidase is an exoglycosidase involved in the degradation of heparan sulfate. Lack of sulphamidase activity leads to the lysosomal storage disorder Mucopolysaccharidosis type IIIA (Sanfilippo type A OMIM No. 252900). At present there are no naturally occurring small animal models of this disease that could be of fundamental importance to study the pathophysiology of the disease and to try therapeutic strategies. Cloning of the mouse gene is an important step to create a mouse model for this common mucopolysaccharidosis. We have isolated and sequenced the gene encoding mouse sulphamidase. Comparison of the deduced amino acid sequences of human and mouse sulphamidase showed 88% identity and 93% similarity. The exon-intron structure of the gene has been determined with the mouse 10-kb gene divided in 8 exons. The mouse sulphamidase gene (Sgsh) was mapped to the distal end of Chromosome (Chr) 11, in a region that is homologous with a segment of human Chr 17 containing the orthologous human gene. Received: 26 July 1999 / Accepted: 3 February 2000  相似文献   

10.
Neutrophil elastase (NE), a serine proteinase, is considered to play a role in normal tissue turnover and host defense. NE may also cause tissue damage in acute and chronic inflammatory diseases. We have isolated and characterized the gene for mouse NE and determined its chromosomal location. The mouse NE gene has been localized by interspecific backcross analysis to Chromosome (Chr) 10. The gene for mouse NE is composed of 5 exons and 4 introns, similar to the human NE. Mouse NE shares the highly conserved exon size and intron-exon borders with human NE. The coding exons of the mouse NE gene predict a translation product in a pre-pro form, similar to human NE. Knowledge of the genomic organization and chromosomal location of mouse NE may allow us to further define mechanisms responsible for cell and tissue-specific expression of mouse NE. Received: 16 July 1996 / Accepted: 1 September 1996  相似文献   

11.
Summary An experimental approach towards the molecular analysis of the male fertility function, located in interval 6 of the human Y chromosome, is presented. This approach is not based on the knowledge of any gene product but on the assumption that the functional DNA structure of male fertility genes, evolutionary conserved with their position on the Y chromosome, may contain an evolutionary conserved frame structure or at least conserved sequence elements. We tested this hypothesis by using dhMiF1, a fertility gene sequence of the Y chromosome of Drosophila hydei, as a screening probe on a pool of cloned human Y-DNA sequences. We were able to select 10 human Y-DNA sequences of which 7 could be mapped to Y interval 6 (the pY6H sequence family). Since the only fertility gene of the human Y chromosome is mapped to the same Y interval, our working hypothesis seems to be strongly supported. Most interesting in this respect is the isolation of the Y-specific repetitive pY6H65 sequence. The pY6H65 locus extends to a length of at least 300 kb in Y interval 6 and has a locus-specific repetitive sequence organization, reminiscent of the functional DNA structure of Y chromosomal fertility genes of Drosophila. We identified the simple sequence family (CA)n as one sequence element conserved between the Drosophila dhMiFi fertility gene sequence and the homologous human Y-DNA sequences.  相似文献   

12.
We present here the genetic mapping of the -skeletal actin locus (Actsk-1) on mouse Chromosome (Chr) 8, on the basis of the PCR analysis of a microsatellite in an interspecific backcross. Linkage and genetic distances were established for four loci by analysis of 192 (or 222) meiotic events and indicated the following gene order: (centromere)-Es-1-11.7 cM-Tat-8.3 cM-Actsk-1-0.5 cM-Aprt. Mapping of ACTSK to human Chr 1 and of TAT and APRT to human Chr 16 demonstrates the existence of a new short region of homology between mouse Chr 8 and human Chr 1. Intermingling on this scale between human and mouse chromosomal homologies that occurred during evolution creates disorders in comparative linkage studies.  相似文献   

13.
Chen  Zhang-qun  Annilo  Tarmo  Shulenin  Sergey  Dean  Michael 《Mammalian genome》2004,15(5):335-343
We have identified and cloned three mouse genes that belong to the ABCA subfamily of ATP-binding cassette (ABC) transporters. These three genes are arranged in a tandem head-to-tail cluster spanning about 300 kb on mouse Chromosome (Chr) 7F3. Phylogenetic analysis indicates that although the three genes are related to human and mouse ABCA3, they are not orthologs of any of the current list of 48 human ABC genes and were, therefore, named Abca14, Abca15, and Abca16. The coding region of each gene is split into 31 exons, has an open reading frame of more than 1600 amino acids, and encodes a full transporter molecule with two nucleotide-binding folds (NBF) and two transmembrane domains (TMD). All three genes are predominantly expressed in testis, which suggests that they may perform special functions in testicular development or spermatogenesis. Interestingly, the human genome contains only fragments (less than ten exons) of at least two different ABC genes in the syntenic region on Chromosome 16p12 that are scattered among other, unrelated genes and are not capable of coding functional ABC transporters.(Zhang-qun Chen and Tarmo Annilo) These authors contributed equally to this study.Sequence data from this article have been deposited with the DDBJ/EMBL/GenBank Data Libraries under accession numbers AY243470–AY243472.  相似文献   

14.
15.
HMG-17 is an abundant, nonhistone chromosomal protein that binds preferentially to nucleosomal core particles of mammalian chromatin. The human gene for HMG-17 has been localized to Chromosome (Chr) 1p, but the murine gene has not been previously mapped. Here we identify the murine functional gene, Hmg17, from among more than 25 related sequences (probably processed pseudogenes) and show that it is located on mouse Chr 4, in a region known to have conserved linkage relationships with human Chr 1p. We also report the map locations of 20 additional Hmg17-related sequences on mouse Chrs 1, 2, 3, 5, 7, 8, 9, 13, 15, 16, 17, 18, and X. The multiple, dispersed members of the Hmg17 multigene family can be detected efficiently with a single cDNA probe and provide useful markers for genetic mapping studies in mice.  相似文献   

16.
The mouse gene Punc encodes a member of the immunoglobulin superfamily of cell surface proteins. It is highly expressed in the developing embryo in nervous system and limb buds. At mid-gestation, however, expression levels of Punc decrease sharply. To allow investigation of such a regulatory mechanism, the genomic locus encompassing the Punc gene was cloned, characterized, and mapped. Fluorescent in situ hybridization was used to determine the chromosomal location of the Punc gene of mouse and human. Mouse Punc maps to Chromosome (Chr) 9 in the region D-E1, whereas the human PUNC gene is localized to Chr 15 at 15q22.3-23, a region known to be syntenic to mouse 9D-E1. The human PUNC gene therefore maps close to a genetic locus that is linked to Bardet-Biedl Syndrome, an autosomal recessive human disorder. Confirmation for the location of human PUNC was obtained through sequence relationships between mouse Punc cDNA, human PUNC cDNA, genomic sequence upstream of the murine Punc gene, and human STS markers that had been previously mapped on Chr 15. The STS sequence WI-14920 is in fact derived from the 3′-untranslated region of the human PUNC gene. WI-14920 had been placed at 228cR from the top of the Chr 15 linkage group, which provided positional information for the human PUNC gene at high resolution. Thus, this study identifies PUNC as the gene corresponding to a previously anonymous marker and serves as a basis to investigate its role in genetic disorders. Received: 8 July 1998 / Accepted: 14 October 1998  相似文献   

17.
The mouse homologs of the Huntington's disease (HD) gene and 17 other human Chromosome (Chr) 4 loci (including six previously unmapped) were localized by use of an interspecific cross. All loci mapped in a continuous linkage group on mouse Chr 5, distal to En2 and Il6, whose human counterparts are located on Chr y. The relative order of the loci on human Chr 4 and mouse Chr 5 was maintained, except for a break between D5H4S115E and Idua/rd, with relocation of the latter to the opposite end of the map. The mouse HD homolog (Hdh) mapped within a cluster of seven genes that were completely linked in our data set. In human these loci span a1.8 Mb stretch of human 4p 16.3 that has been entirely cloned. To date, there is no phenotypic correspondence between human and mouse mutations mapping to this region of synteny conservation.  相似文献   

18.
19.
CD5 is a member of the family of receptors which contain extracellular domains homologous to the type I macrophage scavenger receptor cysteine-rich (SRCR) domain. Here, we compare the exon/intron organization of the human CD5 gene with its mouse homologue, as well as with the human CD6 gene, the closest related member of the SRCR superfamily. The human CD5 gene spans about 24.5 kb and consists of at least 11 exons. These exons are conserved in size, number, and structure in the mouse CD5 homologue. No evidence for the biallelic polymorphism reported in the mouse could be found among a population of 100 individuals of different ethnic origins. The human CD5 gene maps to the Chromosome (Chr) 11q12.2 region, 82 kb downstream from the human CD6 gene, in a head-to-tail orientation, a situation which recalls that reported at mouse Chr 19. The exon/intron organization of the human CD5 and CD6 genes was very similar, differing in the size of intron 1 and the number of exons coding for their cytoplasmic regions. While several isoforms, resulting from alternative splicing of the cytoplasmic exons, have been reported for CD6, we only found evidence of a cytoplasmic tailless CD5 isoform. The conserved structure of the CD5 and CD6 loci, both in mouse and human genomes, supports the notion that the two genes may have evolved from duplication of a primordial gene. The existence of a gene complex for the SRCR superfamily on human Chr 11q (and mouse Chr 19) still remains to be disclosed.  相似文献   

20.
Proteinase 3 (PR3), is a matrix-degrading serine proteinase expressed in different hematopoietic cell lineages. The PR3 protein appears to regulate the myeloid differentiation and was found to be the autoantigen associated with Wegener granulomatosis. We have isolated and characterized the gene for mouse PR3 (mPR3) and determined its chromosomal location. The gene has been localized to Chromosome (Chr) 10. Comparison of mouse PR3 genomic structure with that of its human counterpart indicates that: 1) the mPR3 gene spans 7 kb organized in 5 exons and 4 introns, 2) the codons of His-Asp-Ser of the catalytic site are conserved and spread out over different exons, similar to the human gene, and 3) the gene product encodes a pre-proform of the protein. Knowledge of the structure and chromosomal location of the mPR3 gene may help better the understanding of the temporal and cell-specific expression of mouse PR3. Received: 14 July 1998 / Accepted: 28 October 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号