首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the searching behaviour of two species of predatory mites, Typhlodromips swirskii (Athias-Henriot) and Euseius scutalis (Athias-Henriot), both known to feed on immature stages of the whitefly Bemisia tabaci Gennadius. When released in a greenhouse inside a circle of cucumber plants that were alternatingly clean or infested with immature whiteflies, the mites took several days to find plants. Both species were recaptured significantly more on plants with whiteflies. This suggests that the mites are able to discriminate between plants with and without whiteflies. The predators may either have been attracted to plants with whiteflies from a distance or arrested on plants with whiteflies. Typhlodromips swirskii that had previously fed on whitefly immatures on cucumber leaves were significantly attracted by volatiles from cucumber plants with whiteflies in a Y-tube olfactometer. This suggests that the mites use volatile cues to discriminate between infested and clean plants. However, this response waned rapidly; if predators, experienced as above, were starved for 3–4 h in absence of cucumber leaves, they no longer preferred volatiles of infested plants to clean plants. Furthermore, T. swirskii that had no experience with immature whiteflies on cucumber plants also did not prefer odours of infested plants to those of clean plants. Because the release experiment with this species in the greenhouse was done with inexperienced predators, this suggests that the aggregation of mites on plants with whiteflies was mainly caused by differential arrestment of mites on plants with prey and clean plants. For T. swirskii, this was in agreement with the finding that the fraction of predators on plants with prey increased with time to levels higher than 70%. A less clear trend was found for E. scutalis, for which the fraction of predators on plants with prey stabilized soon after release to levels from 54–70%. Hence, the predatory mites may find plants with prey by random searching, but they are subsequently arrested on these plants. An earlier study showed that 87% of all whiteflies released in a set-up as used here were recaptured within 1 day. Hence, the effectiveness with which predatory mites locate plants with whiteflies is low compared with that of their prey. We expect this to generate spatial patterns in the dynamics of predator and prey and this may have consequences for biological control of whiteflies with predatory mites.  相似文献   

2.
Orius sauteri (Poppius) (Heteroptera: Anthocoridae) is a polyphagous predator used as a biological control agent of palm thrips, Thrips palmi (Karny) (Thysanoptera: Thripidae). We studied O. sauteri's searching efficiency, time allocation on a leaf, leaving tendency, and attacking of prey. Approximately 78% of the encountered prey was eaten. Searching for prey was concentrated for 86% of the time on the lower leaf side, where palm thrips are usually found. Patch residence times on empty leaves were different from those on leaves with T. palmi larvae. Walking activity was not affected by the thrips density, and walking took place during 64% of the total search time. The leaving tendency of O. sauteri was affected by the time from patch entry and the presence or absence of palm thrips, but not by the thrips density. If prey were present, the leaving tendency decreased (multiplication factor 0.327), resulting in longer giving‐up times than when no prey was present. The fact that the leaving tendency increases when patch exploitation lasts longer suggests that not much time is wasted on patches where encounters with prey are scarce.  相似文献   

3.
Omnivores obtain resources from more than one trophic level, and choose their food based on quantity and quality of these resources. For example, omnivores may switch to feeding on plants when prey are scarce. Larvae of the western flower thrips Frankiniella occidentalis Pergande (Thysanoptera: Thripidae) are an example of omnivores that become predatory when the quality of their host plant is low. Western flower thrips larvae usually feed on leaf tissue and on plant pollen, but may also attack eggs of predatory mites, their natural enemies, and eggs of the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae), one of their competitors. Here, we present evidence that western flower thrips larvae prey on Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae), another competitor for plant tissue. We tested this on two host plant species, cucumber (Cucumis sativa L.), considered a host plant of high quality for western flower thrips, and sweet pepper (Capsicum annuum L.), a relatively poor quality host. We found that western flower thrips killed and fed especially on whitefly crawlers and that the incidence of feeding did not depend on host-plant species. The developmental rate and oviposition rate of western flower thrips was higher on a diet of cucumber leaves with whitefly crawlers than on cucumber leaves without whitefly crawlers, suggesting that thrips do not just kill whiteflies to reduce competition, but utilize whitefly crawlers as food.  相似文献   

4.
The leaf beetle Plagiodera versicolora (Coleoptera: Chrysomelidae) is a specialist herbivore, all of whose mobile stages feed on the leaves of salicaceous plants. Both the larval and adult stages of the ladybird Aiolocaria hexaspilota (Coleoptera: Coccinellidae) are dominant natural enemies of the larvae of the leaf beetle. To clarify the role of plant volatiles in prey‐finding behaviour of A. hexaspilota, the olfactory responses of the ladybird in a Y‐tube olfactometer are studied. The ladybird adults show no preference for willow plants Salix eriocarpa that are infested by leaf beetle adults (nonprey) over that for intact plants but move more to the willow plants infested by leaf beetle larvae (prey) than to intact plants. Moreover, ladybird larvae show no preference for willow plants infested by leaf beetle larvae or adults over intact plants. Using gas chromatography‐mass spectrometry, six volatile compounds are released in larger amounts in the headspace of willow plants infested by leaf beetle larvae than in the headspace of willow plants infested by leaf beetle adults. In addition, the total amount of volatiles emitted from willow plants that are either intact or infested by leaf beetle adults is much smaller than that from willow plants infested by leaf beetle larvae. These results indicate that volatiles from S. eriocarpa infested by P. versicolora inform A. hexaspilota adults about the presence of the most suitable stage of their prey, whereas A. hexaspilota larvae do not use such information.  相似文献   

5.
Phenotypic plasticity in Bemisia tabaci is expressed, among others, through the degree of nymphal setosity. We tested the hypothesis that the setose phenotype of nymphs can act as a defense mechanism against the predatory coccinellid Delphastus pusillus. Since it has been shown that the relative number of each phenotype is directly correlated with the tomentosity level of the host leaf, our study included characterization of D. pusillus predatory activity when exposed to the different nymphs upon two different leaf types: glabrous and tomentose. Leaf trichomes were found responsible for differences in durations of observed events, their frequency and transitions between events, leading to a break in the predatory sequence regularly found on glabrous leaves. However, despite this break, observational data and functional response tests showed no differences in prey consumption when the predator was exposed to each prey type separately. This is explained by a particular foraging behavior displayed by D. pusillus on tomentose leaves that included walking upon leaf trichomes while performing a vertical introduction of the head between the trichomes, thus reaching the leaf surface. Differences in handling times between the nymph phenotypes were recorded during direct observations of patch time allocation, but these did not result in significant differences in the number of prey eaten. Moreover, our estimates of handling time, calculated with a type II functional response equation, also failed to show these differences. However, foraging predators were more prone to discover smooth nymphs than setose nymphs when the former were offered on tomentose leaves. The significance of these findings in the context of predator-prey-plant interactions is discussed.  相似文献   

6.
小黑瓢虫对高氏瘤粉虱捕食作用的研究   总被引:5,自引:1,他引:5  
在高氏瘤粉虱不同虫态共存的条件下,小黑标虫对高氏瘤粉虱各虫态的选择次序为卵>1龄若虫>2龄若虫>3龄若虫>4龄若虫和拟蛹,对卵的捕食率均最高,有明显的嗜好选择;小黑瓢虫幼虫捕食粉虱卵的数量,随着龄期的增长而递增,其中4龄幼虫的捕食量最大,4龄期捕食量平均为1565.42粒,占全幼虫期总食卵量的45.42%,整个幼虫期可捕食高氏瘤粉虱的卵数平均为3446.5粒。小黑瓢虫3龄幼虫对粉虱卵的捕食作用率在所给的猎物密度(1500粒/皿)条件下,随着自身密度的增加而降低。  相似文献   

7.
James Hagler 《BioControl》2009,54(3):351-361
The predatory activities of commercially-purchased adult Hippodamia convergens Guérin-Méneville and two laboratory-reared strains of adult Geocoris punctipes (Say) were compared with their feral counterparts. In single prey choice feeding tests, commercially-purchased and feral H. convergens were provided copious amounts of silverleaf whitefly, Bemisia argentifolii Bellows & Perring adults or eggs of pink bollworm, Pectinophora gossypiella (Saunders). Commercially-purchased H. convergens devoured more pink bollworm eggs and at a faster rate than the feral H. convergens. In contrast, feral H. convergens consumed more adult whiteflies and at a faster rate than commercial H. convergens. In multiple feeding choice tests, two distinctly different laboratory-reared strains and feral G. punctipes were provided a cotton leaf disk containing copious amounts of silverleaf whitefly eggs, nymphs, and adults. Virtually no predation was observed on whitefly eggs, but both laboratory strains of G. punctipes fed on more whitefly nymphs and adults than the feral G. punctipes. Moreover, both of the laboratory strains had a significantly faster feeding rate on adult whiteflies and spent significantly less time feeding on plant tissue than the feral strain. These results suggest that the augmentative biological control candidates retained their ability to prey on these selected prey items, even after being displaced from their overwintering site (H. convergens) or being reared in captivity (G. punctipes) for over 40 generations. Handling editor: Patrick De Clercq. This article reports the results of research only. Mention of a proprietary product does not constitute an endorsement or a recommendation for its use by the USDA.  相似文献   

8.
Ambulatory dispersal behavior ofNeoseiulus fallacis (Garman) was studied in the laboratory to evaluate within-plant movement in relation to temperature and prey density. Adult femaleN. fallacis were confined in 2.5-cm-diameter arenas on the abaxial surface of excised corn leaves. Four temperatures (23, 28, 33, and 39° C) and prey densities ranging from 0 to 55 spider mite eggs per cm2 were used. The walking paths of these mites were traced, digitized and used to calculate turning angles, walking speeds and turning rates. A computer simulation of walking behavior used this information to model mite ambulatory behavior and predict dispersal rates.Neoseiulus fallacis behavior while on whole corn leaves was quantified to verify the results of the simulation. The results showed thatN. fallacis will follow a leaf or arena edge (edge-walking) at all temperatures and prey densities. In addition, this behavior was used to the exclusion of the other types of behavior such as resting, and random-walk type search when prey egg density was less than 4 eggs per cm2. The exclusion of edge-walking behavior from the model caused the model to underestimate substantially the dispersal rates leaves. These data suggest that there are at least two recognizable types of ambulatory search used byN. fallacis—the random-walk type, which is used when prey density is high (searching within prey patches), and the edge-walking behavior, which is used when prey density is low. This behavior allows the mite to travel rapidly from leaf to leaf in search of new prey patches.  相似文献   

9.
Insight into the foraging behavior of the parasitoid Encarsia formosa Gahan for whitefly hosts was gained by continuous observation of individual parasitoids on leaves of the ornamental plant Gerbera jamesonii, until females left the leaf. Comparison of the parasitoid behavior on three cultivars gave similar results. Mean searching time on uninfested G. jamesonii leaves of three cultivars was 1 h 30 min and the mean percentage of walking activity of the total observation time on those cultivars was 61%. Both parameters were not influenced by different leaf structures of Gerbera cultivars. Encounters with hosts arrested the parasitoids on the leaves. The walking activity and the percentage of host encounters that resulted in an oviposition decreased with decreasing egg load of the parasitoid. In comparison with tomato, where biological control of whiteflies is successful, only minor differences in the foraging behavior occur, except for the residence time of females, which was about three to four times longer on G. jamesonii leaves, but these leaves are about seven times larger than tomato leaves. The facts that (1) the foraging behavior of E. formosa on G. jamesonii is independant of the cultivar and (2) the foraging behavior is, in many aspects, similar to that on tomato suggest that biological control of whitefly on this ornamental plant is a potential option.  相似文献   

10.
1 The zoophytophagy of Nesidiocoris tenuis (Reuter) (Heteroptera: Miridae) was characterized in relation to prey availability and environmental factors by: (i) monitoring its population dynamics in tomato greenhouses; (ii) analysis of the influence of N. tenuis and whitefly density, temperature and humidity on the intensity of N. tenuis plant feeding; and (iii) laboratory assays under controlled conditions to determine the intensity of plant feeding in relation to prey availability, temperature and humidity. 2 A negative relationship was found between plant feeding and predated whiteflies in tomato greenhouses. Plant feeding was directly related to N. tenuis density and temperature and inversely related to whitefly density. The significance of prey availability and temperature was corroborated in laboratory assays. The intensification of plant feeding at low prey density indicates switching from zoophagy to phytophagy as prey become scarce. 3 Nesidiocoris tenuis showed a typical predator dynamic in relation to variance in prey density. Populations increased after whitefly outbreaks and decreased after whitefly had been depleted. The rapid decrease of N. tenuis populations after whitefly decreased, however, suggests that plants are a poorer nutrient source than whitefly for this species.  相似文献   

11.
1. To reduce the risk of being eaten by predators, prey alter their morphology or behaviour. This response can be tuned to the current danger if chemical or other cues associated with predators inform the prey about the risks involved. 2. It is well known that various prey species discriminate between chemical cues from predators that fed on conspecific prey and those that fed on heterospecific prey, and react stronger to the first. It is therefore expected that generalist predators are more successful in capturing a given prey species when they are contaminated with chemical cues from another prey species instead of cues from the same prey species. 3. Here, a generalist predatory mite was studied that feeds on thrips larvae as well as on whitefly eggs and crawlers. Mites were marked with cues (i.e. body fluids) of one of these two prey species and were subsequently offered thrips larva. 4. Predators marked with thrips cues killed significantly fewer thrips than predators marked with whitefly cues, even though the predator's tendency to attack was the same. In addition, more thrips larvae sought refuge in the presence of a predatory mite marked with thrips cues instead of whitefly cues. 5. This suggests that generalist predators may experience improved attack success when switching prey species.  相似文献   

12.
While searching for food, predators may use volatiles associated with their prey, but also with their competitors for prey. This was tested for the case of Zetzellia mali (Ewing) (Acari: Stigmaeidae), an important predator of the hawthorn spider mite, Amphitetranychus viennensis (Zacher) (Acari: Tetranychidae), in black-cherry orchards in Baraghan, Iran. Using a Y-tube olfactometer, the response of this predatory mite was tested to odour from black-cherry leaves with a conspecific female predatory mite, either with or without a female of the hawthorn spider mite when the alternative odour came from black-cherry leaves with the hawthorn spider mite only. Female predators avoided odours from leaves with both a hawthorn spider mite and a conspecific predator, as well as leaves with a conspecific predator only. We discuss whether avoidance emerges in response to cues from the competitor/predator, the herbivore/prey or the herbivore-damaged plant.  相似文献   

13.
在实验室条件下研究了沙巴拟刀角瓢虫Serangiella sababensis Sasaji与越南斧瓢虫Axinoscymnus apioides Kuzne tsov and Ren对烟粉虱Bemisia tabaci(Genna dius)卵的捕食行为及各种行为的时间分配。2种瓢虫的捕食过程非常相似,大致可以分为搜寻、取食、清洁、静息、整翅和排泄6个部分。在整个捕食过程中,沙巴拟刀角瓢虫在饥饿状态下,其各行为所占的时间为爬行时间>取食时间>静息时间>清洁时间>猎物处置时间,而在非饥饿状态下,各行为所占的时间为爬行时间>静息时间>取食时间>清洁时间>猎物处置时间;对于越南斧瓢虫来讲,饥饿状态下各行为所占的时间比例为爬行时间>静息时间>取食时间>清洁时间>猎物处置时间,而在非饥饿状态,越南斧瓢虫用在取食方面的时间很少,仅长于处置猎物的时间。2种瓢虫相比,沙巴拟刀角瓢虫用在爬行和取食方面的时间要比越南斧瓢虫长,而用在静息和清洁方面的时间比越南斧瓢虫短。  相似文献   

14.
The effect of leaf hairs on searching efficiency of adult female Phytoseiulus persimilis was investigated. For this purpose we used the ornamental crop Gerbera jamesonii and determined the predator's searching efficiency on three cultivars that differ largely in the density of leaf hairs on the undersurface of the leaves. Walking speed of the mites was highest on the cultivar with the lowest leaf hair density. Walking activity, defined as the percentage of time spent walking, was not dependent on leaf hair density of the cultivars. At both prey densities tested, time until first predation increased with leaf hair density. The predation rate of adult female P. persimilis is affected by trichome density, particularly when prey density is low. At prey densities of 1.3 and 2.5 Tetranychus urticae eggs cm–2, predation rate was inversely related to leaf hair density. At a prey density of 8.0 eggs cm–2 no significant effect of leaf hair density on predation rate was found. These negative effects on searching efficiency and predation success at low prey density of P. persimilis suggest that biological control of T. urticae on gerbera may be hampered by leaf hairs. © Rapid Science Ltd. 1998  相似文献   

15.
Plant characteristics, such as leaf structure or hairiness, are important for the movement and attachment of insects. It has been suggested that increased trichome density on new Salix cinerea L. (Salicaceae) leaves, produced after grazing by the willow leaf beetle Phratora vulgatissima L. (Coleoptera: Chrysomelidae), function as an inducible defence against the beetle and especially its larvae. Here we studied whether and how two of the main natural enemies of P. vulgatissima, viz., Anthocoris nemorum L. (Heteroptera: Anthocoridae) and Ortothylus marginalis L. (Heteroptera: Miridae), were influenced by trichome density on S. cinerea leaves. The effect of trichome density on these two predators was studied on plants with different trichome densities, comparing natural enemy efficiency, measured as number of P. vulgatissima eggs consumed or larvae missing and/or killed. To obtain different trichome densities, cuttings of several different clones of S. cinerea were used. In the experiment using eggs as prey, an increase in trichome density was, in addition, induced through leaf beetle defoliation on half of the plants of each willow clone. Furthermore, a field study was performed to investigate whether trichome density was correlated with natural enemy abundance. The results indicate that neither the efficiency of these two natural enemies in the greenhouse, nor their abundance in the field was influenced by trichome density. A well‐known behavioural difference between the two predator species could probably account for the higher disappearance of larvae after exposure to the more active predator. These findings are relevant for the development of pest management programs, not least because the enemies are polyphagous predators. It is concluded that an induced increase in leaf hairiness in willows in response to leaf beetle grazing could be a plant resistance trait worthy of further study in this system, because no negative effects on the main natural enemies were observed.  相似文献   

16.
Predator foraging behaviour affects the outcome of enemy–enemy interactions. Using a combination of fieldwork and laboratory experiments, we show that intraguild predation may be important in the field distribution of generalist predators that share a common prey: the eggs (and larvae) of the leaf beetle Phratora vulgatissima, a major insect pest in coppicing willow plantations. We focused on a species from the hoverfly genus Parasyrphus (Syrphidae), which may exhibit large temporal and spatial variation in density. Predator and prey densities were quantified in 40 field plots in willow plantations. The likelihood of finding hoverfly eggs declined with increasing densities of two predatory mirids, Orthotylus marginalis and Closterotomus fulvomaculatus, which exhibit less mobile behaviour similar to that of hoverfly larvae. The density of a more mobile predatory bug species, the anthocorid Anthocoris nemorum, was not associated with hoverfly occurrence. These results corroborate the hypothesis that less mobile predators should be stronger intraguild predators than mobilepredators. Further partial support for this hypothesis was obtained in the laboratory study where individual predators were presented with clutches of P. vulgatissima eggs containing one hoverfly egg: the less mobile C. fulvomaculatus and O. marginalis tended to consume the hoverfly egg more readily than the more mobile A. nemorum. However, most individuals of all three bug species consumed the egg of the potential competitor – the syrphid – within 24 h. The field study also showed that hoverfly occurrence was positively associated with the density of their prey and with the presence of nearby forests. We conclude that intraguild predation, abundance of prey and the surrounding habitat affect the distribution of hoverflies in this system and should be considered when developing biological control methods.  相似文献   

17.
Interactions among members of biological communities can create spatial patterns that effectively generate habitat heterogeneity for other members in the community, and this heterogeneity might be crucial for their persistence. For example, stage‐dependent vulnerability of a predatory lady beetle to aggression of the ant, Azteca instabilis, creates two habitat types that are utilized differently by the immature and adult life stages of the beetle. Due to a mutualistic association between A. instabilis and the hemipteran Coccus viridis – which is A. orbigera main prey in the area – only plants around ant nests have high C. viridis populations. Here, we report on a series of surveys at three different scales aimed at detecting how the presence and clustered distribution of ant nests affect the distribution of the different life stages of this predatory lady beetle in a coffee farm in Chiapas, Mexico. Both beetle adults and larvae were more abundant in areas with ant nests, but adults were restricted to the peripheries of highest ant activity and outside the reach of coffee bushes containing the highest densities of lady beetle larvae. The abundance of adult beetles located around trees with ants increased with the size of the ant nest clusters but the relationship is not significant for larvae. Thus, we suggest that A. orbigera undergoes an ontogenetic niche shift, not through shifting prey species, but through stage‐specific vulnerability differences against a competitor that renders areas of abundant prey populations inaccessible for adults but not for larvae. Together with evidence presented elsewhere, this study shows how an important predator is not only dependent on the existence of two qualitatively distinct habitat types, but also on the spatial distribution of these habitats. We suggest that this dependency arises due to the different responses that the predator's life stages have to this emergent spatial pattern.  相似文献   

18.
微小花蝽对温室白粉虱的捕食作用   总被引:3,自引:0,他引:3  
研究微小花蝽Orius minutus(L.)对温室白粉虱Trialeurodes vaporariorum(Westwood)的捕食作用。结果表明,微小花蝽成虫对温室白粉虱各虫态的功能反应呈HollingⅡ型。微小花蝽成虫对温室白粉虱卵、1龄和2龄混合若虫及其3龄若虫的理论最大捕食量分别为123,74和52头/d。微小花蝽成虫对温室白粉虱卵的捕食效应随捕食者个体间干扰作用的增加而下降,符合Hassel-Varley方程,捕食作用率(E)随着微小花蝽数(P)增加而呈幂指数下降,模拟模型E=0.1021P-0.3189,干扰系数为0.3189。在15~40℃的温度范围内,随着温度的升高微小花蝽成虫对温室白粉虱卵的寻找效率提高,最高达1.1990,处置时间缩短,最低达到0.0035d。  相似文献   

19.
Earwigs (Dermaptera), such as Forficula auricularia L., are important euryphagous predators for a wide variety of prey and can markedly influence the populations of orchard pests. Most previous studies on earwig feeding behaviour have not used adult beetles of the prey species; few researchers have focused on prey preference in earwigs. Some fragments of beetle exoskeleton and an earwig adult, Anisolabella marginalis (Dohrn), were found in the same cage, where adults of ambrosia beetle, Euwallacea interjectus (Blandford), were emerging from the logs of a fig tree infected with Ceratocystis canker (fig wilt disease). Thus, A. marginalis was suspected of being a predator of E. interjectus. To shed light on this issue, in the laboratory, we set up a test arena and observed and recorded behavioural interactions between A. marginalis and E. interjectus. E. interjectus was collected from the logs of fig trees and reared on an artificial diet, along with six different ambrosia beetle species, which were collected from a trap (baited with ethanol) and a fallen maple tree. A series of laboratory experiments demonstrated that A. marginalis is actually a predator of E. interjectus and other species of ambrosia beetle, indicating its a potential for use in effective pest control in the field. The predators frequently consume and tend to select their prey depending on prey size, rather than sex and beetle species. Furthermore, earwigs have alternative predatory strategies for dealing with seven different species, although they use their forceps to cut the body of most tested beetles.  相似文献   

20.
The nature and severity of intraguild interactions between predators and entomopathogens will be determined, in part, by a combination of threat of infection, and avoidance of that threat by the predator. We determined the threat of infection posed by the entomopathogen, Paecilomyces fumosoroseus (as PFR-97™) to the generalist predator, Dicyphus hesperus. We then asked if D. hesperus displays behavioral avoidance of infection while foraging for whitefly nymphs at different stages of infection by the pathogen. When exposed to leaf surfaces treated with the pathogen, 28% of adult female predators died due to infection. Consumption of Ephestia kuehniella eggs by surviving predators over 6 d was significantly reduced, suggesting effects of a sublethal infection. Whitefly nymphs that had been treated with P. fumosoroseus 3 d prior were acceptable as prey to D. hesperus but whitefly nymphs that had been treated with P. fumosoroseus 5 days prior were not. When foraging for whitefly nymphs, adult D. hesperus females rejected infected nymphs 96% of the time, compared to 39% of non-infected nymphs. Paecilomyces fumosoroseus therefore presents a measurable threat to D. hesperus through mortality and reduced prey consumption. Dicyphus hesperus does not avoid initial contact with infected prey but does not feed on such prey. The mechanism underlying these rejections could be due to either avoidance of infection or rejection of prey already consumed by the infectious agent. These results suggest that predation by D. hesperus foraging among infected whitefly nymphs under greenhouse or natural conditions could be reduced through a combination of pathogenicity and reduced efficiency of foraging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号