首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Early studies of HIV infection dynamics suggested that virus-producing HIV-infected cells had an average half-life of approximately 1 day. However, whether this average behavior is reflective of the dynamics of individual infected cells is unclear. Here, we use HIV-enhanced green fluorescent protein (EGFP) constructs and flow cytometry sorting to explore the dynamics of cell infection, viral protein production, and cell death in vitro. By following the numbers of productively infected cells expressing EGFP over time, we show that infected cell death slows down over time. Although infected cell death in vivo could be very different, our results suggest that the constant decay of cell numbers observed in vivo during antiretroviral treatment could reflect a balance of cell death and delayed viral protein production. We observe no correlation between viral protein production and death rate of productively infected cells, showing that viral protein production is not likely to be the sole determinant of the death of HIV-infected cells. Finally, we show that all observed features can be reproduced by a simple model in which infected cells have broad distributions of productive life spans, times to start viral protein production, and viral protein production rates. This broad spectrum of the level and timing of viral protein production provides new insights into the behavior and characteristics of HIV-infected cells.  相似文献   

2.
We used live-cell, real-time fluorescence imaging of co-cultures of HIV-1 infected T cells and uninfected target cells to examine the action of mitochondria during cell-to-cell transmission of the virus. We find that mitochondria of HIV infected cells enter uninfected target cells and advance viral spread. We show that human mitochondria serve as viral reservoirs and carriers and that they can move between cells. This was confirmed by our results that purified mitochondria from HIV infected cells are infectious, and that mitochondrial inhibitors block HIV transmission. Viral infection and replication in the target cells were verified by syncytial formation and HIV-1 core protein p24 production. Our results offer new insights into the cellular mechanisms of viral transmission and identify mitochondria as new host targets for viral infection.  相似文献   

3.
4.
Spontaneous disease extinction can occur due to a rare stochastic fluctuation. We explore this process, both numerically and theoretically, in two minimal models of stochastic viral infection dynamics. We propose a method that reduces the complexity in models of viral infections so that the remaining dynamics can be studied by previously developed techniques for analyzing epidemiological models. Using this technique, we obtain an expression for the infection clearance time as a function of kinetic parameters. We apply our theoretical results to study stochastic infection clearance for specific stages of HIV and HCV dynamics. Our results show that the typical time for stochastic clearance of a viral infection increases exponentially with the size of the population, but infection still can be cleared spontaneously within a reasonable time interval in a certain population of cells. We also show that the clearance time is exponentially sensitive to the viral decay rate and viral infectivity but only linearly dependent on the lifetime of an infected cell. This suggests that if standard drug therapy fails to clear an infection then intensifying therapy by adding a drug that reduces the rate of cell infection rather than immune modulators that hasten infected cell death may be more useful in ultimately clearing remaining pockets of infection.  相似文献   

5.

HIV preferentially infects activated CD4+ T cells. Current antiretroviral therapy cannot eradicate the virus. Viral infection of other cells such as macrophages may contribute to viral persistence during antiretroviral therapy. In addition to cell-free virus infection, macrophages can also get infected when engulfing infected CD4+ T cells as innate immune sentinels. How macrophages affect the dynamics of HIV infection remains unclear. In this paper, we develop an HIV model that includes the infection of CD4+ T cells and macrophages via cell-free virus infection and cell-to-cell viral transmission. We derive the basic reproduction number and obtain the local and global stability of the steady states. Sensitivity and viral dynamics simulations show that even when the infection of CD4+ T cells is completely blocked by therapy, virus can still persist and the steady-state viral load is not sensitive to the change of treatment efficacy. Analysis of the relative contributions to viral replication shows that cell-free virus infection leads to the majority of macrophage infection. Viral transmission from infected CD4+ T cells to macrophages during engulfment accounts for a small fraction of the macrophage infection and has a negligible effect on the total viral production. These results suggest that macrophage infection can be a source contributing to HIV persistence during suppressive therapy. Improving drug efficacies in heterogeneous target cells is crucial for achieving HIV eradication in infected individuals.

  相似文献   

6.
CD8+ cytotoxic T lymphocytes (CTLs), natural killer (NK) cells, B cells and target cell limitation have all been suggested to play a role in the control of SIV and HIV-1 infection. However, previous research typically studied each population in isolation leaving the magnitude, relative importance and in vivo relevance of each effect unclear. Here we quantify the relative importance of CTLs, NK cells, B cells and target cell limitation in controlling acute SIV infection in rhesus macaques. Using three different methods, we find that the availability of target cells and CD8+ T cells are important predictors of viral load dynamics. If CTL are assumed to mediate this anti-viral effect via a lytic mechanism then we estimate that CTL killing is responsible for approximately 40% of productively infected cell death, the remaining cell death being attributable to intrinsic, immune (CD8+ T cell, NK cell, B cell) -independent mechanisms. Furthermore, we find that NK cells have little impact on the death rate of infected CD4+ cells and that their net impact is to increase viral load. We hypothesize that NK cells play a detrimental role in SIV infection, possibly by increasing T cell activation.  相似文献   

7.
The design of ‘hunter’ viruses aimed at destroying human immunodeficiency virus (HIV) infected cells is an active area of research that has produced promising results in vitro. Hunters are designed to target exposed viral envelope proteins in the membranes of infected cells, but there is evidence that the hunter may also target envelope proteins of free HIV, inducing virus-virus fusion. In order to predict the effects of this fusion on therapy outcomes and determine whether fusion ability is advantageous for hunter virus design, we have constructed a model to account for the possibility of hunter-HIV fusion. The study was based on a target cell-limited model of HIV infection and it examined the hunter therapeutic effect on recovering the HIV main target cells, the activated CD4+ T lymphocytes. These cells assist in setting up an immune response to opportunistic infections. The study analyzed the hunter dual mechanisms to control infection and because of diverse estimates for viral production and clearance of HIV, simulations were examined at rates spanning an order of magnitude. Results indicate that without hunter-HIV fusion ability, hunters that kill HIV-infected cells lead to a substantial recovery of healthy cell population at both low and high HIV turnover rates. When hunter-HIV fusion is included, cell recovery was particularly enhanced at lower HIV turnover rates. This study shows that the fusion ability, in addition to hunter infection ability, could be a favorable attribute for improving the efficacy of hunter-viral therapy. These results provide support for the potential use of engineered viruses to control HIV and other viral infections.  相似文献   

8.
9.
10.
Petravic J  Davenport MP 《PloS one》2010,5(11):e15083
Many studies have shown that vaccines inducing CD8+ T cell responses can reduce viral loads and preserve CD4+ T cell numbers in monkey models of HIV infection. The mechanism of viral control by the vaccine-induced CD8+ T cells is usually assumed to be cytolysis of infected cells. However, in addition to cytolysis of infected cells, CD8+ T cells secrete a range of soluble factors that suppress viral replication. We have studied the dynamics of virus and CD4+ T cells in a successful vaccination-challenge model of SHIV infection. We find that better viral control in the acute phase of infection is associated with slower decay of peak viral load. Comparing viral and CD4+ T cell dynamics in acute infection, we find that a cytolytic mode of viral control with direct killing of infected cells is inconsistent with the observed trends. On the other hand, comparison of the predicted effects of noncytolytic CD8+ effector function with the experimental data shows that non-cytolytic control provides a better explanation of the experimental results. Our analysis suggests that vaccine-induced CD8+ T cells control SHIV infection by non-cytolytic means.  相似文献   

11.
Viral production from infected cells can occur continuously or in a burst that generally kills the cell. For HIV infection, both modes of production have been suggested. Standard viral dynamic models formulated as sets of ordinary differential equations can not distinguish between these two modes of viral production, as the predicted dynamics is identical as long as infected cells produce the same total number of virions over their lifespan. Here we show that in stochastic models of viral infection the two modes of viral production yield different early term dynamics. Further, we analytically determine the probability that infections initiated with any number of virions and infected cells reach extinction, the state when both the population of virions and infected cells vanish, and show this too has different solutions for continuous and burst production. We also compute the distributions of times to establish infection as well as the distribution of times to extinction starting from both a single virion as well as from a single infected cell for both modes of virion production.  相似文献   

12.
CD4+ T-cell death is a crucial feature of AIDS pathogenesis, but the mechanisms involved remain unclear. Here, we present in vitro findings that identify a novel process of HIV1 mediated killing of bystander CD4+ T cells, which does not require productive infection of these cells but depends on the presence of neighboring dying cells. X4-tropic HIV1 strains, which use CD4 and CXCR4 as receptors for cell entry, caused death of unstimulated noncycling primary CD4+ T cells only if the viruses were produced by dying, productively infected T cells, but not by living, chronically infected T cells or by living HIV1-transfected HeLa cells. Inducing cell death in HIV1-transfected HeLa cells was sufficient to obtain viruses that caused CD4+ T-cell death. The addition of supernatants from dying control cells, including primary T cells, allowed viruses produced by living HIV1-transfected cells to cause CD4+ T-cell death. CD4+ T-cell killing required HIV1 fusion and/or entry into these cells, but neither HIV1 envelope-mediated CD4 or CXCR4 signaling nor the presence of the HIV1 Nef protein in the viral particles. Supernatants from dying control cells contained CD95 ligand (CD95L), and antibody-mediated neutralization of CD95L prevented these supernatants from complementing HIV1 in inducing CD4+ T-cell death. Our in vitro findings suggest that the very extent of cell death induced in vivo during HIV1 infection by either virus cytopathic effects or immune activation may by itself provide an amplification loop in AIDS pathogenesis. More generally, they provide a paradigm for pathogen-mediated killing processes in which the extent of cell death occurring in the microenvironment might drive the capacity of the pathogen to induce further cell death.  相似文献   

13.
During sexual transmission of HIV in women, the first cells likely to be infected are submucosal CD4(+) T cells and dendritic cells of the lower genital tract. HIV is segregated from these target cells by an epithelial cell layer that can be bypassed even when healthy and intact. To understand how HIV penetrates this barrier, we identified a host protein, gp340, that is expressed on genital epithelium and binds the HIV envelope via a specific protein-protein interaction. This binding allows otherwise subinfectious amounts of HIV to efficiently infect target cells and allows this infection to occur over a longer period of time after binding. Our findings suggest a mechanism of viral entry during heterosexual transmission where HIV is bound to intact genital epithelia, which then promotes the initial events of infection. Understanding this step in the initiation of infection will allow for the development of tools and methods for blocking HIV transmission.  相似文献   

14.
Highly active antiretroviral therapy (HAART) reduces the viral burden in human immunodeficiency virus type 1 (HIV-1) infected patients below the threshold of detectability. However, substantial evidence indicates that viral replication persists in these individuals. In this paper we examine the ability of several biologically motivated models of HIV-1 dynamics to explain sustained low viral loads. At or near drug efficacies that result in steady state viral loads below detectability, most models are extremely sensitive to small changes in drug efficacy. We argue that if these models reflect reality many patients should have cleared the virus, contrary to observation. We find that a model in which the infected cell death rate is dependent on the infected cell density does not suffer this shortcoming. The shortcoming is also overcome in two more conventional models that include small populations of cells in which the drug is less effective than in the main population, suggesting that difficulties with drug penetrance and maintenance of effective intracellular drug concentrations in all cells susceptible to HIV infection may underlie ongoing viral replication.  相似文献   

15.
Kim SM  Park JH  Chung SK  Kim JY  Hwang HY  Chung KC  Jo I  Park SI  Nam JH 《Journal of virology》2004,78(24):13479-13488
Coxsackievirus B3 (CVB3), an enterovirus in the Picornavirus family, is the most common human pathogen associated with myocarditis and idiopathic dilated cardiomyopathy. We found upregulation of the cysteine-rich protein gene (cyr61) after CVB3 infection in HeLa cells with a cDNA microarray approach, which is confirmed by Northern blot analysis. It is also revealed that the extracellular amount of Cyr61 protein was increased after CVB3 infection in HeLa cells. cyr61 is an early-transcribed gene, and the Cyr61 protein is secreted into the extracellular matrix. Its function is related to cell adhesion, migration, and neuronal cell death. Here, we show that activation of the cyr61 promoter by CVB3 infection is dependent on JNK activation induced by CVB3 replication and viral protein expression in infected cells. To explore the role of Cyr61 protein in infected HeLa cells, we transiently overexpressed cyr61 and infected HeLa cells with CVB3. This increased CVB3 growth in the cells and promoted host cell death by viral infection, whereas down-expression of cyr61 with short interfering RNA reduced CVB3 growth and showed resistance to cell death by CVB3 infection. In conclusion, we have demonstrated a new role for cyr61 in HeLa cells infected with CVB3, which is associated with the cell death induced by virus infection. These data thus expand our understanding of the physiological functions of cyr61 in virus-induced cell death and provide new insights into the cellular factors involved.  相似文献   

16.
Virus-host interactions are characterized by the selection of adaptive mechanisms by which to evade pathogenic and defense mechanisms, respectively. In primary T cells infected with HIV, HIV infection up-regulates TNF-related apoptosis inducing ligand (TRAIL) and death-inducing TRAIL receptors, but blockade of TRAIL:TRAIL receptor interaction does not alter HIV-induced cell death. Instead, HIV infection results in a novel splice variant that we call TRAIL-short (TRAIL-s), which antagonizes TRAIL-R2. In HIV patients, plasma TRAIL-s concentration increases with increasing viral load and renders cells resistant to TRAIL-induced death. Knockdown of TRAIL-s abrogates this resistance. We propose that TRAIL-s is a novel adaptive mechanism of apoptosis resistance acquired by HIV-infected cells to avoid their elimination by TRAIL-dependent effector mechanism.  相似文献   

17.
18.
Both Kaposi’s sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) establish the persistent, life-long infection primarily at the latent status, and associate with certain types of tumors, such as B cell lymphomas, especially in immuno-compromised individuals including people living with HIV (PLWH). Lytic reactivation of these viruses can be employed to kill tumor cells harboring latently infected viral episomes through the viral cytopathic effects and the subsequent antiviral immune responses. In this study, we identified that polo-like kinase 1 (PLK1) is induced by KSHV de novo infection as well as lytic switch from KSHV latency. We further demonstrated that PLK1 depletion or inhibition facilitates KSHV reactivation and promotes cell death of KSHV-infected lymphoma cells. Mechanistically, PLK1 regulates Myc that is critical to both maintenance of KSHV latency and support of cell survival, and preferentially affects the level of H3K27me3 inactive mark both globally and at certain loci of KSHV viral episomes. Furthremore, we recognized that PLK1 inhibition synergizes with STAT3 inhibition to efficiently induce KSHV reactivation. We also confirmed that PLK1 depletion or inhibition yields the similar effect on EBV lytic reactivation and cell death of EBV-infected lymphoma cells. Lastly, we noticed that PLK1 in B cells is elevated in the context of HIV infection and caused by HIV Nef protein to favor KSHV/EBV latency.  相似文献   

19.
20.
mAb 907 is directed against the envelope protein of the HIV. The epitope recognized by this antibody is expressed in moderate density on the surface of tissue culture cells infected with the LAV/HTLV-IIIB strain of HIV. We have coupled antibody 907 to ricin A chain (RAC). The antibody-RAC conjugate inhibited protein synthesis and cell growth in HIV-infected cells. An irrelevant antibody conjugated to RAC had no effect. Most important, treatment of infected cells with the conjugate markedly inhibited the production of infectious virus, as measured by the production of viral foci on susceptible monolayer cells. Exposure of HIV-infected target cells to the conjugate for as short a period as 1 h resulted in cell death. Serum of AIDS patients inhibited, but did not completely suppress, the toxicity of the 907-RAC conjugate. A second antibody, designated BM-1, which recognizes a carbohydrate Ag on the surface of virally infected cells, was conjugated to RAC. The BM-1-RAC conjugate did not kill HIV-infected cells, highlighting the importance of the target Ag. Immunotoxins produced with antibodies that recognize Ag on the surface of HIV-infected cells may have utility in the therapy of AIDS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号