首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exfoliative toxins of approximately 30 kDa produced by Staphylococcus hyicus strains NCTC 10350, 1289D-88 and 842A-88 were purified and specific polyclonal antisera were raised against each of the toxins. It was shown by immunoblot analysis and ELISA that three exfoliative toxins from S. hyicus were antigenically distinct. The three toxins were designated ExhA, ExhB and ExhC. From 60 diseased pigs, each representing an outbreak of exudative epidermitis, a total of 584 isolates of S. hyicus were phage typed and tested for production of exfoliative toxin. ExhA-, ExhB- and ExhC-producing S. hyicus isolates were found in 12 (20%), 20 (33%) and 11 (18%), respectively, of the 60 pig herds investigated. Production of the different types of exfoliative toxin was predominantly associated with certain phage groups. However, toxin production was found in all of the six phage groups defined by the phage typing system. Some changes in the distribution of isolates between phage groups were observed when the results of this study were compared to previous investigations. In this study two new antigenically distinct exfoliative toxins were isolated and tools for in vitro detection of toxin producing S. hyicus isolates and for further studies on the exfoliative toxins from S. hyicus have been provided.  相似文献   

2.
Exfoliative toxins produced by certain strains of Staphylococcus hyicus mediate exudative epidermitis in pigs. In this study the genes coding for four different exfoliative toxin from S. hyicus (ExhA, ExhB, ExhC, and ExhD) were cloned and sequenced. The coding sequence of the four toxin genes ranged from 816 to 834 bp. The amino acid sequences of these four toxins were homologous to the earlier described exfoliative toxins SHETB from S. hyicus and ETA, ETB, and ETD from Staphylococcus aureus. The homology between the S. hyicus toxins was at the same level as the homology to the exfoliative toxins from S. aureus. The toxins showed similarity to serine proteases, including preservation of the catalytic tract in ExhA, ExhB, and ExhC. However, in ExhD, Asp in the putative catalytic tract was replaced with Glu. The recombinant toxins could be expressed in Escherichia coli, and three of the four toxins were recognized by monoclonal antibodies raised against native exfoliative toxins.  相似文献   

3.
AIMS: To develop a multiplex PCR for detection of genes encoding the exfoliative toxins ExhA, ExhB, ExhC and ExhD from Staphylococcus hyicus and to estimate the prevalence of exfoliative toxins among Staph. hyicus isolates from Danish pig herds with exudative epidermitis (EE). METHODS AND RESULTS: A multiplex PCR employing specific primers for each of the genes encoding four different exfoliative toxins was developed and evaluated using a collection of Staph. hyicus with known toxin type and a number of other staphylococcal species. A total of 314 Staph. hyicus isolates from pigs with EE were screened by multiplex PCR and the combined results of the present and previous investigations showed that ExhA, ExhB, ExhC and ExhD was found in 20, 33, 18 and 22%, respectively, of 60 cases of EE investigated. CONCLUSIONS: This study has provided a new tool for detection of toxigenic Staph. hyicus and a more comprehensive picture of the prevalence of the Staph. hyicus exfoliative toxins in Danish pig herds. SIGNIFICANCE AND IMPACT OF THE STUDY: The multiplex PCR can be used in studies on the prevalence of toxigenic Staph. hyicus elucidating the epidemiology of EE in pigs. The multiplex PCR is currently being used for selection of Staph. hyicus isolates for production of autogenous vaccine.  相似文献   

4.
The effect of divalent cations on bovine sperm adenylate cyclase activity was studied. Mn2+, Co2+, Cd2+, Zn2+, Mg2+ and Ca2+ were found to satisfy the divalent cation requirement for catalysis of the bovine sperm adenylate cyclase. These divalent cations in excess of the amount necessary for the formation of the metal-ATP substrate complex were found to stimulate the enzyme activity to various degrees. The magnitude of stimulation at saturating concentrations of the divalent cations was strikingly greater with M2+ than with either Ca2+, Mg2+, Zn2+, Cd2+ or Co2+. The apparent Km was lowest for Zm2+ (0.1 - 0.2 mM) than for any of the other divalent cations tested (1.2 - 2.3 mM). The enzyme stimulation by Mn2+ was decreased by the simultaneous addition of Co2+, Cd2+, Ni2+ and particularly Zn2+ and Cu2+. The antagonism between Mn2+ and Cu2+ or Zn2+ appeared to have both competitive and non-competitive features. The inhibitory effect of Cu2+ on Mn2+-stimulated adenylate cyclase activity was prevented by 2,3-dimercaptopropanol, but not by dithiothreitol, L-ergothioneine, EDTA, EGTA or D-penicillamine. Ca2+ at concentrations of 1-5 mM was found to act synergistically with Mg2+, Zn2+, Co2+ and Mn2+ in stimulating sperm adenylate cyclase activity. The Ca2+ augmentation of the stimulatory effect of Zn2+, Co2+, Mg2+ and Mn2+ appeared to be specific.  相似文献   

5.
C A Grosshans  T R Cech 《Biochemistry》1989,28(17):6888-6894
A shortened form of the self-splicing intervening sequence RNA of Tetrahymena thermophila acts as an enzyme, catalyzing sequence-specific cleavage of RNA substrates. We have now examined the metal ion requirements of this reaction. Mg2+ and Mn2+ are the only metal ions that by themselves give RNA enzyme activity. Atomic absorption spectroscopy indicates that Zn, Cu, Co, and Fe are not present in amounts equimolar to the RNA enzyme and when added to reaction mixtures do not facilitate cleavage. Thus, these ions can be eliminated as cofactors for the reaction. While Ca2+ has no activity by itself, it alleviates a portion of the Mg2+ requirement; 1 mM Ca2+ reduces the Mg2+ optimum from 2 to 1 mM. These results, combined with studies of the reactivity of mixtures of metal ions, lead us to postulate that two classes of metal ion binding sites are required for catalysis. Class 1 sites have more activity with Mn2+ than with Mg2+, with the other divalent ions and Na+ and K+ having no activity. It is not known if ions located at class 1 sites have specific structural roles or are directly involved in active-site chemistry. Class 2 sites, which are presumably structural, have an order of preference Mg2+ greater than or equal to Ca2+ greater than Mn2+ and Ca2+ greater than Sr2+ greater than Ba2+, with Zn2+, Cu2+, Co2+, Na+, and K+ giving no detectable activity over the concentration range tested.  相似文献   

6.
Enzymatic activity which hydrolyzes diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) yielding ADP has been identified in extracts of eubacteria, Escherichia coli and Acidaminococcus fermentans, and of a highly thermophilic archaebacterium, Pyrodictum occultum. Specific Ap4A (symmetric) pyrophosphohydrolase from Escherichia coli K12 has been purified almost 400-fold. The preparation was free of phosphatase, ATPase, phosphodiesterase, AMP-nucleosidase, and adenylate kinase. The Ap4A pyrophosphohydrolase molecular weight estimated by gel filtration is 27,000 +/- 1,000. Activity maximum is at pH 8.3. The Km value computed for Ap4A is 25 +/- 3 microM. The sulfhydryl group(s) is essential for enzyme activity. Metal chelators, EDTA, and o-phenanthroline, inhibit Ap4A hydrolysis; I0.5 values are 3 and 50 microM, respectively. Co2+ is a strong stimulator with an almost 100-fold increase in rate of Ap4A hydrolysis and a plateau in the range of 100-500 microM Co2+, when compared with the nonstimulated hydrolysis. Other transition metal ions, Mn2+, Cd2+, and Ni2+, stimulate by factors of 8, 3.5, and 3.5, respectively, with optimal concentrations in the range 200-500, 2-5, and 4-8 microM, respectively. Zn2+, Cu2+, and Fe2+, up to 30 microM, are without effect and they inhibit at higher concentrations. Mg2+ or Ca2+, in the absence of other divalent metal ions, are weak stimulators (1.5-fold stimulation occurs at 1-2 mM concentration), but act synergistically with Co2+ at its suboptimal concentrations. Stimulation in the presence of 10 microM Co2+ and either 1 mM MgCl2 or CaCl2 increases up to 75-fold. The same degree of synergy is found at 10 microM Co2+ and either 2-5 mM spermidine or 0.5-1.5 mM spermine. Besides Ap4A, bacterial Ap4A pyrophosphohydrolase hydrolyzes effectively Ap5A and Gp4G, and, to some extent, p4A, Ap6A, and Ap3A yielding in each case corresponding nucleoside diphosphate as one of the products.  相似文献   

7.
8.
The pyruvate kinase (ATP: pyruvate 2-O-phosphotransferase, EC 2.7.1.40) from Streptococcus lactis C10 had an obligatory requirement for both a monovalent cation and divalent cation. NH+4 and K+ activated the enzyme in a sigmoidal manner (nH =1.55) at similar concentrations, whereas Na+ and Li+ could only weakly activate the enzyme. Of eight divalent cations studied, only three (Co2+, Mg2+ and Mn2+) activated the enzyme. The remaining five divalent cations (Cu2+, Zn2+, Ca2+, Ni2+ and Ba2+) inhibited the Mg2+ activated enzyme to varying degrees. (Cu2+ completely inhibited activity at 0.1 mM while Ba2+, the least potent inhibitor, caused 50% inhibition at 3.2 mM). In the presence of 1 mM fructose 1,6-diphosphate (Fru-1,6-P2) the enzyme showed a different kinetic response to each of the three activating divalent cations. For Co2+, Mn2+ and Mg2+ the Hill interaction coefficients (nH) were 1.6, 1.7 and 2.3 respectively and the respective divalent cation concentrations required for 50% maximum activity were 0.9, 0.46 and 0.9 mM. Only with Mn2+ as the divalent cation was there significatn activity in the absence of Fru-1,6-P2. When Mn2+ replaced Mg2+, the Fru-1,6-P2 activation changed from sigmoidal (nH = 2.0) to hyperbolic (nH = 1.0) kinetics and the Fru-1,6-P2 concentration required for 50% maximum activity decreased from 0.35 to 0.015 mM. The cooperativity of phosphoenolpyruvate binding increased (nH 1.2 to 1.8) and the value of the phosphoenolpyruvate concentration giving half maximal velocity decreased (0.18 to 0.015 mM phosphoenolyruvate) when Mg2+ was replaced by Mn2+ in the presence of 1 mM Fru-1,6-P2. The kinetic response to ADP was not altered significantly when Mn2+ was substituted for Mg2+. The effects of pH on the binding of phosphoenolpyruvate and Fru-1,6-P2 were different depending on whether Mg2+ or Mn2+ was the divalent cation.  相似文献   

9.
The specificity of glycogen synthase (casein) kinase-1 (CK-1) for different divalent metal ions was explored in this study. Of nine metal ions (Mg2+, Mn2+, Zn2+, Cu2+, Ca2+, Ba2+, Ni2+, Co2+, Fe2+) tested, only Mg2+ supported significant kinase activity. Several of the other metals, however, inhibited the Mg2+-stimulated kinase activity. Half-maximal inhibitions by Mn2+, Zn2+, Co2+, Fe2+, and Ni2+ were observed at 55, 65, 110, 125, and 284 microM, respectively. Kinetic analyses indicate that the metal ions are acting as competitive inhibitors of CK-1 with respect to the protein substrate (casein) and as noncompetitive inhibitors with respect to the nucleotide substrate (ATP). The inhibition of CK-1 by the different metal ions can be reversed by EGTA.  相似文献   

10.
The effects of monovalent (Li+, Cs+) divalent (Cu2+, Ca2+, Sr2+, Ba2+, Zn2+, Cd2+, Hg2+, Pb2+, Mn2+, Fe2+, Co2+, Ni2+) and trivalent (Cr3+, Fe3+, Al3+) metals ions on hexokinase activity in rat brain cytosol were compared at 500 microM. The rank order of their potency as inhibitors of brain hexokinase was: Cr3+ (IC50 = 1.3 microM) greater than Hg2+ = Al3+ greater than Cu2+ greater than Pb2+ (IC50 = 80 microM) greater than Fe3+ (IC50 = 250 microM) greater than Cd2+ (IC50 = 540 microM) greater than Zn2+ (IC50 = 560 microM). However, at 500 microM Co2+ slightly stimulated brain hexokinase whereas the other metal ions were without effect. That inhibition of brain glucose metabolism may be an important mechanism in the neurotoxicity of metals is suggested.  相似文献   

11.
The R-form lipopolysaccharide from Klebsiella pneumoniae strain LEN-111 (O3-:K1-), from which cationic material had been removed by electrodialysis, was previously shown to form a hexagonal lattice structure with the lattice constant of 14 to 15 nm when suspended in 50 mM tris(hydroxymethyl)aminomethane buffer at pH 8.5 containing 10 mM Mg2+. Under this experimental condition, effects of other divalent metal cations on the hexagonal assembly of the electrodialyzed LPS were compared with that of Mg2+. The Zn2+, Hg2+, Cu2+, and Ni2+ could produce essentially the same hexagonal lattice structure with the lattice constant of 14.5 to 15.0 nm as that formed with Mg2+. The Cd2+, Co2+, and Fe2+ produced the hexagonal lattice structure with the lattice constant of 15.5 to 16.0 nm, and Ba2+, Sr2+, and Ca2+ produced that with the lattice constant of 18 to 19 nm. In addition, the hexagonal lattice structures formed with the latter three cations were less orderly than those formed with the other cations. When the higher concentrations of Ba2+, Sr2+, and Ca2+ were used, the lattice constants were not shortened. The length of lattice constants of the hexagonal lattice structures formed with the divalent cations did not relate to the quantity of the cations bound to the LPS. Among the divalent cations tested, Hg2+ was bound to the LPS in the smallest amount (its atomic ratio to P, 0.07), and Zn2+ and Fe2+ were bound in very large amounts (their atomic ratios to P, 2.94 and 8.28, respectively).  相似文献   

12.
The exchange of glycine carboxyl carbon with CO2 catalyzed by the combination of chicken liver glycine decarboxylase (P-protein) and aminomethyl carrier protein (H-protein) was markedly inhibited by various divalent cations, although extents of inhibition by individual metal ions varied considerably. Cu2+ and Zn2+, at 100 microM, inhibited the reaction almost completely, and the inhibitions by Co2+ and Ni2+ were also significant, while Mg2+ and Mn2+ did not appreciably affect the reaction. The inhibition by Zn2+ was competitive with both bicarbonate and H-protein and non-competitive with glycine. Of the two reactions involved in the glycine-CO2 exchange, decarboxylation of glycine yielding the H-protein-bound aminomethyl moiety was not significantly affected by 100 microM Zn2+ or Cu2+, but carboxylation of the H-protein-bound aminomethyl moiety to form glycine was strongly inhibited by either Zn2+ or Cu2+. Various degrees of inhibition of the glycine-CO2 exchange by other divalent metal ions could also be accounted for by the inhibition of the carboxylation step of the exchange reaction. The primary site of the action of divalent metal ions is likely to be not P-protein but H-protein, and the binding of metal ions with the H-protein-bound intermediate of glycine decarboxylation was assumed to account for the observed marked inhibition.  相似文献   

13.
It was shown that IgGs purified from the sera of healthy Wistar rats contain several different bound Me2+ ions and oxidize 3,3'-diaminobenzidine through a H2O2-dependent peroxidase and H2O2-independent oxidoreductase activity. IgGs have lost these activities after removing the internal metal ions by dialysis against EDTA. External Cu2+ or Fe2+ activated significantly both activities of non-dialysed IgGs containing different internal metals (Fe > or = Pb > or = Zn > or = Cu > or = Al > or = Ca > or = Ni > or = Mn > Co > or = Mg) showing pronounced biphasic dependencies corresponding to approximately 0.1-2 and approximately 2-5 mM of Me2+, while the curves for Mn2+ were nearly linear. Cu2+ alone significantly stimulated both the peroxidase and oxidoreductase activities of dialysed IgGs only at high concentration (> or = 2 mM), while Mn2+ weakly activated peroxidase activity at concentration >3 mM but was active in the oxidoreductase oxidation at a low concentration (<1 mM). Fe2+-dependent peroxidase activity of dialysed IgGs was observed at 0.1-5 mM, but Fe2+ was completely inactive in the oxidoreductase reaction. Mg2+, Ca2+, Zn2+, Al2+ and especially Co2+ and Ni2+ were not able to activate dialysed IgGs, but slightly activated non-dialysed IgGs. The use of the combinations of Cu2+ + Mn2+, Cu2+ + Zn2+, Fe2+ + Mn2+, Fe2+ + Zn2+ led to a conversion of the biphasic curves to hyperbolic ones and in parallel to a significant increase in the activity as compared with Cu2+, Fe2+ or Mn2+ ions taken separately; the rates of the oxidation reactions, catalysed by non-dialysed and dialysed IgGs, became comparable. Mg2+, Co2+ and Ni2+ markedly activated the Cu2+-dependent oxidation reactions catalysed by dialysed IgGs, while Ca2+ inhibited these reactions. A possible role of the second metal in the oxidation reactions is discussed.  相似文献   

14.
The three isozymes of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Escherichia coli were overproduced, purified, and characterized with respect to their requirement for metal cofactor. The isolated isozymes contained 0.2-0.3 mol of iron/mol of enzyme monomer, variable amounts of zinc, and traces of copper. Enzymatic activity of the native enzymes was stimulated 3-4-fold by the addition of Fe2+ ions to the reaction mixture and was eliminated by treatment of the enzymes with EDTA. The chelated enzymes were reactivated by a variety of divalent metal ions, including Ca2+, Cd2+, Co2+, Cu2+, Fe2+, Mn2+, Ni2+, and Zn2+. The specific activities of the reactivated enzymes varied widely with the different metals as follows: Mn2+ greater than Cd2+, Fe2+ greater than Co2+ greater than Ni2+, Cu2+, Zn2+ much greater than Ca2+. Steady state kinetic analysis of the Mn2+, Fe2+, Co2+, and Zn2+ forms of the phenylalanine-sensitive isozyme (DAHPS(Phe)) revealed that metal variation significantly affected the apparent affinity for the substrate, erythrose 4-phosphate, but not for the second substrate, phosphoenolpyruvate, or for the feedback inhibitor, L-phenylalanine. The tetrameric DAHPS(Phe) exhibited positive homotropic cooperativity with respect to erythrose 4-phosphate, phophoenolpyruvate, and phenylalanine in the presence of all metals tested.  相似文献   

15.
Cyclic nucleotide phosphodiesterase activity in salt extracts of rat liver plasma membranes was progressively inactivated by treatment with the metal chelators 8-hydroxyquinoline and o-phenanthroline, but not the non-chelating m-phenanthroline isomer. Activity at 20 microM-cyclic AMP was lost more slowly than activity at 0.4 microM-cyclic AMP. The activity of treated preparations was partially restored by incubation with Zn2+ or Mn2+ ions (in the presence of 1 mM-MgCl2) but not with Ca2+, Cd2+, Co2+, Cu2+ or Fe2+ ions, nor by MgCl2 alone. The results suggest the presence in the membrane extracts of a cyclic AMP phosphodiesterase containing tightly bound metal, possibly Zn or Mn, that affects the enzyme's affinity for cyclic AMP.  相似文献   

16.
3-Deoxy-d-manno-2-octulosonate-8-phosphate (KDO8P) synthase catalyzes the net condensation of phosphoenolpyruvate and d-arabinose 5-phosphate to form KDO8P and inorganic phosphate (Pi). Two classes of KDO8P synthases have been identified. The Class I KDO8P synthases (e.g. Escherchia coli KDO8P synthase) catalyze the condensation reaction in a metal-independent fashion, whereas the Class II enzymes (e.g. Aquifex aeolicus) require metal ions for catalysis. Helicobacter pylori (H. pylori) KDO8P synthase, a Zn2+-dependent metalloenzyme, has recently been found to be a Class II enzyme and has a high degree of clinical significance since it is an attractive molecular target for the design of novel antibiotic therapy. Although the presence of a divalent metal ion in Class II KDO8P synthases is essential for catalysis, there is a paucity of mechanistic information on the role of the metal ions and functional differences as compared with Class I enzymes. Using H. pylori KDO8P synthase as a prototypical Class II enzyme, a steady-state and transient kinetic approach was undertaken to understand the role of the metal ion in catalysis and define the kinetic reaction pathway. Metal reconstitution experiments examining the reaction kinetics using Zn2+, Cd2+, Cu2+, Co2+, Mn2+, and Ni2+ yielded surprising results in that the Cd2+ enzyme has the greatest activity. Unlike Class-I KDO8P synthases, the Class II metallo-KDO8P synthases containing Zn2+, Cd2+, Cu2+, and Co2+ show cooperativity. This study presents the first detailed kinetic characterization of a metal-dependent Class II KDO8P synthase and offers mechanistic insight for how the divalent metal ions modulate catalysis through effects on chemistry as well as quaternary protein structure.  相似文献   

17.
Rat kidney, spleen, brain, and liver DNA-methylases were partially purified by chromatography on DEAE-Trisacryl columns and their catalytic properties were studied. Crude extracts contain one or several inhibitors which are thermostable and resistant to acidic or alkaline treatments and which can be eliminated by dialysis, or by chromatography on DEAE-Trisacryl. These are most probably divalent ions, such as, Pb2+, Zn2+, Cu2+, Fe2+, Mg2+, Mn2+ or Ca2+, which inhibit the DNA-methylase activity. However, Co2+, at concentrations ranging from 0.05 mM to 1 mM, has an efficient stimulatory action on spleen, kidney or brain DNA-methylase activity. The spleen DNA-methylase activity on chicken erythrocyte DNA could be increased 10-fold, by a 0.2 mM concentration of Co2+, but no stimulation was found with liver DNA-methylase. The fact that significant differences exist between the DNA-methylases from the different organs in their behavior towards Co2+ could indicate that these enzymes are different.  相似文献   

18.
The lactate dehydrogenase of Lactobacillus casei, like that of streptococci, requires fructose-1,6-diphosphate (FDP) for activity. The L. casei enzyme has a much more acidic pH optimum (pH 5.5) than the streptococcal lactate dehydrogenases. This is apparently due to a marked decrease in the affinity of the enzyme for the activator with increasing pH above 5.5; the concentration of FDP required for half-maximal velocity increase nearly 1,000-fold from 0.002 mM at pH 5.5 to 1.65 mM at 6.6. Manganous ions increase the pH range of activity particularly on the alkaline side of the optimum by increasing the affinity for FDP. This pH dependent metal ion activation is not specific for Mn2+. Other divalent metals, Co2+, Cu2+, Cd2+, Ni2+, Fe2+, Fe2+, and Zn2+ but not Mg2+, will effectively substitute for Mn2+, but the pH dependence of the activation differs with the metal ion used. The enzyme is inhibited by a number of commonly used buffering ions, particularly phosphate, citrate, and tris (hydroxymethyl) aminomethane-maleate buffers, even at low buffer concentrations (0.02 M). These buffers inhibit by affecting the binding of FDP.  相似文献   

19.
F D Coffman  M F Dunn 《Biochemistry》1988,27(16):6179-6187
An insulin hexamer containing one B10-bound Co(III) ion and one unoccupied B10 site has been synthesized. The properties of the monosubstituted hexamer show that occupancy of only one B10 site by Co3+ is sufficient to stabilize the hexameric form under the conditions of pH and concentration used in these studies. The experimentally determined, second-order rate constants for the binding of Zn2+ and Co2+ to the unoccupied B10 site are consistent with literature rate constants for the rate of association of these divalent metal ions with similar small molecule ligands. These findings indicate that the rate-limiting steps for Zn2+ and Co2+ binding involve the removal of the first aqua ligand. The rate constant for the binding of Cd2+ is significantly lower than the literature values for small molecule chelators, which suggests that some other protein-related process is rate-limiting for Cd2+ binding to the unoccupied, preformed B10 site. The kinetics of the assembly of insulin in the presence of limiting metal ion provides strong evidence indicating that the B13 site of the tetramer species can bind Zn2+, Cd2+, or Ca2+ prior to hexamer formation and that such binding assists hexamer formation. Both the tetramer and the hexamer B13 sites were found to exhibit similar affinities for Zn2+ and Cd2+ (Kd congruent to 9 microM), whereas the tetramer B13 sites bind Ca2+ much more weakly (Kd congruent to 1 mM for tetramer vs 83 microM for hexamer). The second-order rate constants estimated for the association of Zn2+ and Cd2+ to the tetrameric site indicate that the loss of the first inner-sphere aqua ligand is the rate-limiting step for binding.  相似文献   

20.
Characterization of the zinc binding site of bacterial phosphotriesterase.   总被引:5,自引:0,他引:5  
The bacterial phosphotriesterase has been found to require a divalent cation for enzymatic activity. This enzyme catalyzes the detoxification of organophosphorus insecticides and nerve agents. In an Escherichia coli expression system significantly higher concentrations of active enzyme could be produced when 1.0 mM concentrations of Mn2+, Co2+, Ni2+, and Cd2+ were included in the growth medium. The isolated enzymes contained up to 2 equivalents of these metal ions as determined by atomic absorption spectroscopy. The catalytic activity of the various metal enzyme derivatives was lost upon incubation with EDTA, 1,10-phenanthroline, and 8-hydroxyquinoline-5-sulfonic acid. Protection against inactivation by metal chelation was afforded by the binding of competitive inhibitors, suggesting that at least one metal is at or near the active site. Apoenzyme was prepared by incubation of the phosphotriesterase with beta-mercaptoethanol and EDTA for 2 days. Full recovery of enzymatic activity could be obtained by incubation of the apoenzyme with 2 equivalents of Zn2+, Co2+, Ni2+, Cd2+, or Mn2+. The 113Cd NMR spectrum of enzyme containing 2 equivalents of 113Cd2+ showed two resonances at 120 and 215 ppm downfield from Cd(ClO4)2. The NMR data are consistent with nitrogen (histidine) and oxygen ligands to the metal centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号