共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We studied the toxicological responses of a human hepatoblastoma cell line (HepG2/C3A) to various free fatty acids (FFA) in order to identify the relation between reactive oxygen species (ROS) production and mitochondrial permeability transition (MPT). Exposure to the saturated FFA, palmitate, led to a time-dependent ROS production and hydrogen peroxide release as well as a loss of mitochondrial potential. The cytotoxicity of palmitate was significantly reduced by treating with scavengers of hydrogen peroxide, hydroxyl radical and the spin trap alpha-(4-pyridyl-1-oxide)-N-tert-butyl nitrone (POBN). Superoxide dismutase (SOD) mimics, nitric oxide scavenger, and inhibitor of de novo ceramide synthesis had no effect on the toxicity. MPT-inhibitor, cyclosporine, prevented the loss of mitochondrial potential but did not reduce the cytotoxicity. In contrast, inhibiting mitochondrial complexes I and III reduced the early potential loss and the cytotoxicity. These results suggest that palmitate-cytotoxicity to hepatoma cells is mediated through the production of H2O2 and *OH and independent of MPT. 相似文献
3.
We studied the toxicological responses of a human hepatoblastoma cell line (HepG2/C3A) to various free fatty acids (FFA) in order to identify the relation between reactive oxygen species (ROS) production and mitochondrial permeability transition (MPT). Exposure to the saturated FFA, palmitate, led to a time-dependent ROS production and hydrogen peroxide release as well as a loss of mitochondrial potential. The cytotoxicity of palmitate was significantly reduced by treating with scavengers of hydrogen peroxide, hydroxyl radical and the spin trap alpha-(4-pyridyl-1-oxide)-N-tert-butyl nitrone (POBN). Superoxide dismutase (SOD) mimics, nitric oxide scavenger, and inhibitor of de novo ceramide synthesis had no effect on the toxicity. MPT-inhibitor, cyclosporine, prevented the loss of mitochondrial potential but did not reduce the cytotoxicity. In contrast, inhibiting mitochondrial complexes I and III reduced the early potential loss and the cytotoxicity. These results suggest that palmitate-cytotoxicity to hepatoma cells is mediated through the production of H2O2 and *OH and independent of MPT. 相似文献
4.
5.
Hengdao Liu Hong Xiang Shaoli Zhao Haiqiang Sang Fenghua Lv Ruifang Chen Zhihao Shu Alex F. Chen Shuhua Chen Hongwei Lu 《Journal of cellular and molecular medicine》2019,23(2):798-810
The dipeptidyl peptidase 4 inhibitor vildagliptin (VLD), a widely used anti‐diabetic drug, exerts favourable effects on vascular endothelium in diabetes. We determined for the first time the improving effects of VLD on mitochondrial dysfunction in diabetic mice and human umbilical vein endothelial cells (HUVECs) cultured under hyperglycaemic conditions, and further explored the mechanism behind the anti‐diabetic activity. Mitochondrial ROS (mtROS) production was detected by fluorescent microscope and flow cytometry. Mitochondrial DNA damage and ATP synthesis were analysed by real time PCR and ATPlite assay, respectively. Mitochondrial network stained with MitoTracker Red to identify mitochondrial fragmentation was visualized under confocal microscopy. The expression levels of dynamin‐related proteins (Drp1 and Fis1) were determined by immunoblotting. We found that VLD significantly reduced mtROS production and mitochondrial DNA damage, but enhanced ATP synthesis in endothelium under diabetic conditions. Moreover, VLD reduced the expression of Drp1 and Fis1, blocked Drp1 translocation into mitochondria, and blunted mitochondrial fragmentation induced by hyperglycaemia. As a result, mitochondrial dysfunction was alleviated and mitochondrial morphology was restored by VLD. Additionally, VLD promoted the phosphorylation of AMPK and its target acetyl‐CoA carboxylase in the setting of high glucose, and AMPK activation led to a decreased expression and activation of Drp1. In conclusion, VLD improves endothelial mitochondrial dysfunction in diabetes, possibly through inhibiting Drp1‐mediated mitochondrial fission in an AMPK‐dependent manner. 相似文献
6.
Ahn CS Lee JH Reum Hwang A Kim WT Pai HS 《The Plant journal : for cell and molecular biology》2006,46(4):658-667
Prohibitin, which consists of two subunits PHB1 and PHB2, plays a role in cell-cycle progression, senescence, apoptosis, and maintenance of mitochondrial function in mammals and yeast. In this study, we examined the role of prohibitins in plants by using virus-induced gene silencing (VIGS) of two prohibitin subunit genes of Nicotiana benthamiana, designated NbPHB1 and NbPHB2. NbPHB1 and NbPHB2 were targeted to the mitochondria, and their gene expression was suppressed during senescence. VIGS of NbPHB2 caused severe growth inhibition, leaf yellowing and symptoms of cell death, whereas VIGS of NbPHB1 resulted in a milder phenotype. At the cellular level, depletion of these subunits affected mitochondria by severely reducing their number and/or mass, and by causing morphological and physiological abnormalities. Suppression of prohibitin function resulted in a 10- to 20-fold higher production of reactive oxygen species and induced premature leaf senescence. Finally, disruption of prohibitin function rendered the plants more susceptible to various oxidative stress-inducing reagents, including H(2)O(2), paraquat, antimycin A and salicylic acid. These results suggest that prohibitins play a crucial role in mitochondrial biogenesis and protection against stress and senescence in plant cells. 相似文献
7.
The mitochondrial membrane protein FgLetm1 regulates mitochondrial integrity,production of endogenous reactive oxygen species and mycotoxin biosynthesis in Fusarium graminearum 下载免费PDF全文
Guangfei Tang Chengqi Zhang Zhenzhen Ju Shiyu Zheng Ziyue Wen Sunde Xu Yun Chen Zhonghua Ma 《Molecular Plant Pathology》2018,19(7):1595-1611
Deoxynivalenol (DON) is a mycotoxin produced in cereal crops infected with Fusarium graminearum. DON poses a serious threat to human and animal health, and is a critical virulence factor. Various environmental factors, including reactive oxygen species (ROS), have been shown to interfere with DON biosynthesis in this pathogen. The regulatory mechanisms of how ROS trigger DON production have been investigated extensively in F. graminearum. However, the role of the endogenous ROS‐generating system in DON biosynthesis is largely unknown. In this study, we genetically analysed the function of leucine zipper‐EF‐hand‐containing transmembrane 1 (LETM1) superfamily proteins and evaluated the role of the mitochondrial‐produced ROS in DON biosynthesis. Our results show that there are two Letm1 orthologues, FgLetm1 and FgLetm2, in F. graminearum. FgLetm1 is localized to the mitochondria and is essential for mitochondrial integrity, whereas FgLetm2 plays a minor role in the maintenance of mitochondrial integrity. The ΔFgLetm1 mutant demonstrated a vegetative growth defect, abnormal conidia and increased sensitivity to various stress agents. More importantly, the ΔFgLetm1 mutant showed significantly reduced levels of endogenous ROS, decreased DON biosynthesis and attenuated virulence in planta. To our knowledge, this is the first report showing that mitochondrial integrity and endogenous ROS production by mitochondria are important for DON production and virulence in Fusarium species. 相似文献
8.
coq7/clk-1 regulates mitochondrial respiration and the generation of reactive oxygen species via coenzyme Q 总被引:1,自引:0,他引:1
Nakai D Shimizu T Nojiri H Uchiyama S Koike H Takahashi M Hirokawa K Shirasawa T 《Aging cell》2004,3(5):273-281
coq7/clk-1 was isolated from a long-lived mutant of Caenorhabditis elegans, and shows sluggish behaviours and an extended lifespan. In C. elegans and Saccharomyces cerevisiae, coq7/clk-1 is required for the biosynthesis of coenzyme Q (CoQ), an essential co-factor in mitochondrial respiration. The clk-1 mutant contains dietary CoQ(8) from Escherichia coli and demethoxyubiquinone 9 (DMQ9) instead of CoQ(9). In a previous study, we generated COQ7-deficient mice by targeted disruption of the coq7 gene and reported that mouse coq7/clk-1 is also essential for CoQ synthesis, maintenance of mitochondrial integrity and neurogenesis. In the present study, we rescued COQ7-deficient mice from embryonic lethality and established a mouse model with decreased CoQ level by transgene expression of COQ7/CLK-1. A biochemical analysis showed a concomitant decrease in CoQ(9), mitochondrial respiratory enzyme activity and the generation of reactive oxygen species (ROS) in the mitochondria of CoQ-insufficient mice. This implied that the depressed activity of respiratory enzymes and the depressed production of ROS may play a physiological role in the control of lifespan in mammalian species and of C. elegans. 相似文献
9.
Bjarte S. Erikstein Hanne R. Hagland Julie Nikolaisen Mariola Kulawiec Keshav K. Singh Bjørn T. Gjertsen Karl J. Tronstad 《Journal of cellular biochemistry》2010,111(3):574-584
Mitochondrial bioenergetics and reactive oxygen species (ROS) often play important roles in cellular stress mechanisms. In this study we investigated how these factors are involved in the stress response triggered by resazurin (Alamar Blue) in cultured cancer cells. Resazurin is a redox reactive compound widely used as reporter agent in assays of cell biology (e.g. cell viability and metabolic activity) due to its colorimetric and fluorimetric properties. In order to investigate resazurin‐induced stress mechanisms we employed cells affording different metabolic and regulatory phenotypes. In HL‐60 and Jurkat leukemia cells resazurin caused mitochondrial disintegration, respiratory dysfunction, reduced proliferation, and cell death. These effects were preceded by a burst of ROS, especially in HL‐60 cells which were also more sensitive and contained autophagic vesicles. Studies in Rho0 cells (devoid of mitochondrial DNA) indicated that the stress response does not depend on the rates of mitochondrial respiration. The anti‐proliferative effect of resazurin was confirmed in native acute myelogenous leukemia (AML) blasts. In conclusion, the data suggest that resazurin triggers cellular ROS production and thereby initiates a stress response leading to mitochondrial dysfunction, reduced proliferation, autophagy, and cell degradation. The ability of cells to tolerate this type of stress may be important in toxicity and chemoresistance. J. Cell. Biochem. 111: 574–584, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
10.
Yang LY Chen WL Lin JW Lee SF Lee CC Hung TI Wei YH Shih CM 《Journal of cellular biochemistry》2005,96(3):622-631
Recent evidence suggests that reactive oxygen species (ROS) play an important role in the pathogenesis of various illnesses, and the ROS and antioxidant enzymes are highly associated with cell differentiation and diseases. In this study, we tested the hypothesis that specific antioxidant enzymes are differentially expressed in hepatocellular carcinoma (HCC) cell lines with various degrees of differentiation. We compared the expression of several antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GRx), and glutathione peroxidase (GPx) in five HCC cell lines with well (Hep G2 and Hep 3B) or poor (HA22T/VGH, HA55T/VGH, and SK-Hep-1) differentiation. Our results showed that both well-differentiated HCC cell lines expressed extremely higher CAT and GRx enzyme activities than all three poorly differentiated ones. Moreover, the protein and mRNA levels of CAT were much higher in two well-differentiated HCC cell lines than in all three poorly differentiated ones. Both well-differentiated HCC cell lines also showed a higher protein or mRNA expression of Cu/ZnSOD and MnSOD than three poorly differentiated ones. Our results demonstrate that specific antioxidant enzymes (especially, CAT and GRx) are differentially expressed in HCC cell lines with well or poor differentiation. These findings suggest that CAT and GRx are two potential differentiation markers for HCC. 相似文献
11.
Chromaffin cell death induced by 6-hydroxydopamine is independent of mitochondrial swelling and caspase activation 总被引:4,自引:0,他引:4
Our results provide evidence that 6-hydroxydopamine induced, after auto-oxidation, toxic levels of hydrogen peroxide (H2O2) that caused bovine chromaffin cell toxicity and death. 6-Hydroxydopamine (6-OHDA) treatment markedly reduced, in a dose-response fashion, chromaffin cell viability. Cell death was accompanied by cell shrinkage, nuclear condensation and DNA degradation. Under our experimental conditions, 6-OHDA auto-oxidation formed quinones and reactive oxygen species (ROS) that mainly contributed to 6-OHDA-induced cytotoxicity in bovine chromaffin cells. Accordingly, different antioxidants, including catalase, vitamin E, Mn(IIItetrakis(4-benzoic acid)porphyrin chloride (MnTBAP) or ascorbic acid, provided protection against 6-OHDA-induced toxicity. Further evidence that 6-OHDA induces oxidative stress is provided by the fact that this compound decreased total mitochondrial reduced NAD(P)H levels. Our results also suggest that mitochondrial swelling and caspase activation do not play a direct role in 6-OHDA-induced death in bovine chromaffin cells. 相似文献
12.
Ekaterina Titova Olga Ivanova Lidiya Domnina Maria Domninskaya Olga Strelkova 《Cell cycle (Georgetown, Tex.)》2018,17(14):1797-1811
Mitochondria are important regulators of tumour growth and progression due to their specific role in cancer metabolism and modulation of apoptotic pathways. In this paper we describe that mitochondria-targeted antioxidant SkQ1 designed as a conjugate of decyl-triphenylphosphonium cation (TPP+) with plastoquinone, suppressed the growth of fibrosarcoma HT1080 and rhabdomyosarcoma RD tumour cells in culture and tumour growth of RD in xenograft nude mouse model. Under the same conditions, no detrimental effect of SkQ1 on cell growth of primary human subcutaneous fibroblasts was observed. The tumour growth suppression was shown to be a result of the antioxidant action of low nanomolar concentrations of SkQ1. We have revealed significant prolongation of mitosis induced by SkQ1 in both tumour cell cultures. Prolonged mitosis and apoptosis could be responsible for growth suppression after SkQ1 treatment in RD cells. Growth suppression in HT1080 cells was accompanied by the delay of telophase and cytokinesis, followed by multinuclear cells formation. The effects of SkQ1 on the cell cycle were proved to be at least partially mediated by inactivation of Aurora family kinases.
Abbreviations: TPP+: Triphenylphosphonium cation; ROS: Reactive oxygen species; mtROS: Mitochondrial reactive oxygen species; NAC: N-acetyl-L-cysteine; DCFH-DA: Dichlorodihydrofluorescein diacetate; APC: Anaphase promoting complex; ABPs: Actin-binding proteins; DMEM: Dulbecco’s modified Eagle media; SDS: sodium dodecyl sulfate; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 相似文献
13.
《Free radical research》2013,47(7):758-768
AbstractStromal interaction molecule (STIM) proteins are parts of elaborate eukaryotic Ca2+ signaling systems and are considered to be important players in regulating neuronal Ca2+ homeostasis under normal ageing and pathological conditions. Here, we investigated the potential role of STIM1 in 6-hydroxydopamine (6-OHDA)-induced toxicity in undifferentiated PC12 cell lines. Cells exposed to 6-OHDA demonstrated alterations in the generation of reactive oxygen species (ROS) in a Ca2+-dependent manner. Downregulation of STIM1 expression by specific small interfering RNA (siRNA) attenuated apoptotic cell death, reduced intracellular ROS production, and partially prevented the impaired endogenous antioxidant enzyme activities after 6-OHDA treatment. Furthermore, STIM1 knockdown significantly attenuated 6-OHDA-induced intracellular Ca2+ overload by inhibiting endogenous store-operated calcium entry (SOCE). The effect of STIM1 siNRA on SOCE was related to orai1 and L-type Ca2+ channels, but not to transient receptor potential canonical type 1 (TRPC1) channel. In addition, silencing of STIM1 increased the Ca2+ buffering capacity of the endoplasmic reticulum (ER) in 6-OHDA-injured cells. ER vacuoles formed from the destruction of ER structural integrity and activation of ER-related apoptotic factors (CHOP and Caspase-12) were partially prevented by STIM1 knockdown. Moreover, STIM1 knockdown attenuated 6-OHDA-induced mitochondrial Ca2+ uptake and mitochondrial dysfunction, including the collapse of mitochondrial membrane potential (MMP) and the decrease of ATP generation. Taken together, our data provide the first evidence that inhibition of STIM1-meditated intracellular Ca2+ dyshomeostasis protects undifferentiated PC12 cells against 6-OHDA toxicity and indicate that STIM1 may be responsible for neuronal oxidative stress induced by ER stress and mitochondrial dysfunction in PD. 相似文献
14.
Essential role of Rac1/NADPH oxidase in nerve growth factor induction of TRPV1 expression 总被引:6,自引:0,他引:6
Nerve growth factor (NGF) regulates the nociceptive properties of a subset of small diameter sensory neurons by increasing the expression of the heat-sensing transient receptor potential (TRP) channel, TRPV1. This action involves activation of the tyrosine kinase receptor (Trk) A/p38 MAPK pathway. Recent studies indicate that activation of TrkA promotes superoxide generation via NADPH oxidase. In this study, we determined whether the NADPH oxidase pathway is involved in NGF-stimulated TRPV1 expression using a rat pheochromocytoma 12 line and rat dorsal root ganglion neurons. Treatment of these cells with NGF (100 ng/mL) increased TRPV1 protein expression (approx. twofold) but not mRNA. This increase was mimicked by H(2)O(2) and attenuated by catalase and inhibitors of NADPH oxidase. NGF stimulated NADPH oxidase activity, while 24 h exposure further increased expression of the Rac1 and gp91(phox) subunits of the holoenzyme. Inhibition of NADPH oxidase by transient transfection of a dominant negative Rac1 mutant (RacN17) plasmid blocked NGF-stimulated TRPV1 protein expression, while expression of a constitutively active Rac1 increased basal and NGF-stimulated TRPV1 levels. Inhibition of NADPH oxidase activity also attenuated NGF-dependent p38 MAPK activation. We conclude that the Rac1/NADPH oxidase pathway regulates p38 activation and TRPV1 expression which aids in the maintenance of peripheral neuron integrity and pain perception. 相似文献
15.
Yanan Huo Wei Chen Xiaoxiao Zheng Jinchuan Zhao Qi Zhang Yuerou Hou Ying Cai Xuemei Lu Xiuming Jin 《Journal of cellular physiology》2020,235(10):7018-7029
Oxidative stress is a major pathogenesis of some ocular surface diseases. Our previous study demonstrated that epidermal growth factor (EGF)-activated reactive oxygen species (ROS) could protect against human corneal epithelial cell (HCE) injury. In the present study, we aimed to explore the role and mechanisms of oxidative stress and mitochondrial autophagy in HCE cells subjected to scratch injury. CCK-8 assays, EdU assays, Western blot analysis, wound-healing assays, and flow cytometry were conducted to determine cell viability, proliferation, protein expression, cell apoptosis, and intracellular ROS levels, respectively. The results showed that EGF could promote damage repair and inhibit cell apoptosis in scratch injured HCE cells by upregulating ROS (**p < .01, ***p < .001). EGF also induced mitochondrial autophagy and alleviated mitochondrial damage. Interestingly, the combination of the mitochondrial autophagy inhibitor and mitochondrial division inhibitor 1 (MDIVI-1) with EGF could reduce cell proliferation, viability, and the ROS level (*p < .05, **p < .01, ***p < .001). Treatment using the ROS inhibitor N-acetyl- l -cysteine abrogated the increase in mitochondrial membrane potential after EGF treatment. (*p < .05). Taken together, these findings indicated that EGF plays an important role in HCE damage repair and could activate ROS to protect against HCE injury by inducing mitochondrial autophagy via activation of TRPM2. 相似文献
16.
Previously, we reported that the expression of zinc-finger protein 143 (ZNF143) was induced by insulin-like growth factor-1
(IGF-1) via reactive oxygen species (ROS)- and phosphatidylinositide-3-kinase (PI3-kinase)-linked pathways in colon cancer
cells. Here, we investigated whether GAIP-interacting protein, C-terminus (GIPC), a binding partner of IGF-1R, is involved
in ZNF143 expression through IGF-1 and IGF-1R signaling in colon cancer cells. The knockdown of GIPC in colon cancer cells
reduced ZNF143 expression in response to IGF-1. IGF-1 signaling through its receptor, leading to the phosphorylation and activation
of the PI3-kinase-Akt pathway and mitogenactivated protein kinases (MAPKs) was unaffected by the knockdown of GIPC, indicating
the independence of the GIPC-linked pathway from PI3-kinase- and MAPK-linked signaling in IGF-1-induced ZNF143 expression.
In accordance with previous results in breast cancer cells (Choi et al., 2010), the knockdown of GIPC reduced ROS production
in response to IGF-1 in colon cancer cells. Furthermore, the knockdown of GIPC reduced the expression of Rad51, which is regulated
by ZNF143, in response to IGF-1 in colon cancer cells. Taken together, these data suggest that GIPC is involved in IGF-1 signaling
leading to ZNF143 expression through the regulation of ROS production, which may play a role for colon cancer tumorigenesis. 相似文献
17.
Glucose deprivation induces mitochondrial dysfunction and oxidative stress in PC12 cell line 总被引:6,自引:1,他引:6
Glucose metabolism plays a pivotal role in many physiological and pathological conditions. To investigate the effect of hypoglycemia (obtained by glucose deprivation) on PC12 cell line, we analyzed the cell viability, mitochondrial function (assessed by MTT reduction, cellular ATP level, mitochondrial transmembrane potential), and the level of reactive oxygen species (ROS) after glucose deprivation (GD). Upon exposure to GD, ROS level increased and MTT reduction decreased immediately, intracellular ATP level increased in the first 3 hours, followed by progressive decrease till the end of GD treatment, and the mitochondrial transmembrane potential (ΔΨm ) dropped after 6 hours. Both necrosis and apoptosis occurred apparently after 24 hours which was determined by nuclei staining with propidium iodide(PI) and Hoechst 33342. These data suggested that cytotoxity of GD is mainly due to ROS accumulation and ATP depletion in PC12 cells. 相似文献
18.
Yoshiko Myoken Yoshinari Myoken Tetsuji Okamoto Mikio Kan J. Denry Sato Kazuaki Takada 《In vitro cellular & developmental biology. Animal》1994,30(11):790-795
Summary A squamous cell carcinoma cell line Nakata proliferated in serum-free culture and was not responsive to exogenous fibroblast
growth factor-1 (FGF-1). Immunostaining revealed that Nakata cells expressed FGF-1 in their cytoplasms and nuclei. Two molecular
mass species of FGF-1 (16 and 18 kDa) were identified in cell extracts by Western blot. These cells also expressed high-affinity
FGF-1 binding sites (Kd=360 pM, 28 000 sites/cell). The results of cross-linking with [125I]FGF-1 demonstrated the presence of two bands with molecular masses of 160 and 140 kDa. The addition of FGF-1 specific antisense
oligonucleotides at 25 μM to Nakata cells resulted in an 82% inhibition in cell growth and suppressed FGF-1 expression. This effect was dose-dependent
and specific, because sense oligonucleotides were ineffective in inhibiting cell growth. In addition, Nakata cell growth was
suppressed by an anti-FGF-1 neutralizing antibody, which resulted in a 52% inhibition at 8 μg/ml. These results demonstrate
that Nakata cells produce FGF-1, and indicate that this growth factor acts in an autocrine manner by interacting with FGF-1
binding sites on Nakata cells. 相似文献
19.
20.
The involvement of mitochondrial glycerophosphate dehydrogenase (mGPDH) has previously been established in the production of ROS in prostate cancer cell lines (LNCaP, DU145, PC3 and CL1). The current study demonstrates that the mRNA level of mGPDH in prostate cancer cells is 3.3-8.9-fold higher compared to the normal prostate epithelial cell line, PNT1A. This is consistent with the enzymatic activity and protein level of mGPDH. However, cytochrome c oxidase (COX) activity is 2.9-3.2-fold down-regulated in androgen-independent prostate cancer cell lines. The level of antioxidant enzymes, catalase, MnSOD and CuZnSOD are up-regulated in prostate cancer cell lines. Furthermore, it was observed that the activity of mGPDH is significantly higher in liver tissues from all mice with cancer compared to liver tissues from control mice. These data suggest that the up-regulation of mGPDH, due to a highly glycolytic environment, contributes to the overall increase in ROS generation and may result in the progression of the cancer. 相似文献