首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Signals from different cellular networks are integrated at the mitochondria in the regulation of apoptosis. This integration is controlled by the Bcl-2 proteins, many of which change localization from the cytosol to the mitochondrial outer membrane in this regulation. For Bcl-xL, this change in localization reflects the ability to undergo a conformational change from a solution to integral membrane conformation. To characterize this conformational change, structural and thermodynamic measurements were performed in the absence and presence of lipid vesicles with Bcl-xL. A pH-dependent model is proposed for the solution to membrane conformational change that consists of three stable conformations: a solution conformation, a conformation similar to the solution conformation but anchored to the membrane by its C-terminal transmembrane domain, and a membrane conformation that is fully associated with the membrane. This model predicts that the solution to membrane conformational change is independent of the C-terminal transmembrane domain, which is experimentally demonstrated. The conformational change is associated with changes in secondary and, especially, tertiary structure of the protein, as measured by far and near-UV circular dichroism spectroscopy, respectively. Membrane insertion was distinguished from peripheral association with the membrane by quenching of intrinsic tryptophan fluorescence by acrylamide and brominated lipids. For the cytosolic domain, the free energy of insertion (DeltaG degrees x) into lipid vesicles was determined to be -6.5 kcal mol(-1) at pH 4.9 by vesicle binding experiments. To test whether electrostatic interactions were significant to this process, the salt dependence of this conformational change was measured and analyzed in terms of Gouy-Chapman theory to estimate an electrostatic contribution of DeltaG degrees el approximately -2.5 kcal mol(-1) and a non-electrostatic contribution of DeltaG degrees nel approximately -4.0 kcal mol(-1) to the free energy of insertion, DeltaG degrees x. Calcium, which blocks ion channel activity of Bcl-xL, did not affect the solution to membrane conformational change more than predicted by these electrostatic considerations. The lipid cardiolipin, that is enriched at mitochondrial contact sites and reported to be important for the localization of Bcl-2 proteins, did not affect the solution to membrane conformational change of the cytosolic domain, suggesting that this lipid is not involved in the localization of Bcl-xL in vivo. Collectively, these data suggest the solution to membrane conformational change is controlled by an electrostatic mechanism. Given the distinct biological activities of these conformations, the possibility that this conformational change might be a regulatory checkpoint for apoptosis is discussed.  相似文献   

2.
Calculations predict that cation- interactions make an important contribution to protein stability. While there have been some attempts to experimentally measure strengths of cation-pi interactions using peptide model systems, much less experimental data are available for globular proteins. We have attempted to determine the magnitude of cation-pi interactions of Lys with aromatic amino acids in four different proteins (LIVBP, MBP, RBP, and Trx). In each case, Lys was replaced with Gln and Met. In a separate series of experiments, the aromatic amino acid in each cation-pi pair was replaced by Leu. Stabilities of wild-type (WT) and mutant proteins were characterized by both thermal and chemical denaturation. Gln and aromatic --> Leu mutants were consistently less stable than corresponding Met mutants, reflecting the nonisosteric nature of these substitutions. The strength of the cation-pi interaction was assessed by the value of the change in the free energy of unfolding [DeltaDeltaG(degrees) = DeltaG(degrees)(Met) - DeltaG(degrees)(WT)]. This ranged from +1.1 to -1.9 kcal/mol (average value -0.4 kcal/mol) at 298 K and +0.7 to -2.6 kcal/mol (average value -1.1 kcal/mol) at the Tm of each WT. It therefore appears that the strength of cation-pi interactions increases with temperature. In addition, the experimentally measured values are appreciably smaller in magnitude than calculated values with an average difference /DeltaG(degrees)expt - DeltaG(degrees)calc/av of 2.9 kcal/mol. At room temperature, the data indicate that cation-pi interactions are at best weakly stabilizing and in some cases are clearly destabilizing. However, at elevated temperatures, close to typical Tm's, cation-pi interactions are generally stabilizing.  相似文献   

3.
To investigate the role of the heme axial ligand in the conformational stability of c-type cytochrome, we constructed M58C and M58H mutants of the red alga Porphyra yezoensis cytochrome c(6) in which the sixth heme iron ligand (Met58) was replaced with Cys and His residues, respectively. The Gibbs free energy change for unfolding of the M58H mutant in water (DeltaG degrees (unf)=1.48 kcal/mol) was lower than that of the wild-type (2.43 kcal/mol), possibly due to the steric effects of the mutation on the apoprotein structure. On the other hand, the M58C mutant exhibited a DeltaG degrees (unf) of 5.45 kcal/mol, a significant increase by 3.02 kcal/mol compared with that of wild-type. This increase was possibly responsible for the sixth heme axial bond of M58C mutant being more stable than that of wild-type according to the heme-bound denaturation curve. Based on these observations, we propose that the sixth heme axial ligand is an important key to determine the conformational stability of c-type cytochromes, and the sixth Cys heme ligand will give stabilizing effects.  相似文献   

4.
TrwB is an integral membrane protein encoded by the conjugative plasmid R388. TrwB binds ATP and is essential for R388-directed bacterial conjugation. The protein consists of a cytosolic domain, which contains an ATP-binding site, and a transmembrane domain. The complete protein has been purified in the presence of detergents, and in addition, the cytosolic domain has also been isolated in the form of a soluble truncated protein, TrwBDeltaN70. The availability of intact and truncated forms of the protein provides a convenient system to study the role of the transmembrane domain in the stability of TrwB. Protein denaturation was achieved by heat, in the presence of guanidinium HCl, or under low salt conditions. In all three cases TrwB was significantly more stable than TrwBDeltaN70 with other conditions being the same. IR spectroscopy of the native and truncated forms revealed significant differences between them. In addition, it was found that TrwBDeltaN70 was stabilized in dispersions of non-ionic detergent, suggesting the presence of hydrophobic patches on the surface of the truncated protein. IR spectroscopy also confirmed the conformational stability provided by the detergent. These results suggest that in integral membrane proteins consisting of a transmembrane and a cytosolic domain, the transmembrane portion may have a role beyond the mere anchoring of the protein to the cell membrane. In addition, this study indicates that the truncated soluble parts of two-domain membrane proteins may not reflect the physiological conformation of their native counterparts.  相似文献   

5.
The folding kinetics and thermodynamics of the isolated C-terminal domain of the ribosomal protein L9 (CTL9) have been studied as a function of pH. CTL9 is an alpha-beta protein that contains a single beta-sheet with an unusual mixed parallel, anti-parallel topology. The folding is fully reversible and two-state over the entire pH range. Stopped-flow fluorescence and CD experiments yield the same folding rate, and the chevron plots have the characteristic V-shape expected for two-state folding. The values of DeltaG*(H2O) and the m value calculated from the kinetic experiments are in excellent agreement with the equilibrium measurements. The extrapolated initial amplitudes of both the stopped-flow fluorescence and CD measurements show that there is no detectable burst phase intermediate. The domain contains three histidine residues, two of which are largely buried in the native state. They do not participate in salt-bridges or take part in a hydrogen bonded network. NMR measurements reveal that the buried histidine residues have significantly perturbed pK(a) values in the native state. The equilibrium stability and the folding rate are found to be strongly dependent upon their ionization state. There is a linear relationship between the log of the folding rate and DeltaG* (H2O) . The protein is much more stable and folds noticeably faster at pH values above the native state pK(a) values. DeltaG*(H2O) of unfolding increases from 2.90 kcal mol(-1) at pH 5.0 to 6.40 kcal mol(-1) at pH 8.0 while the folding rate increases from 0.60 to 18.7 s(-1). Tanford linkage analysis revealed that the interactions involving the two histidine residues are largely developed in the transition state. The results are compared to other studies of the pH-dependence of folding.  相似文献   

6.
The conformational stability of RNase Rs was determined with chemical and thermal denaturants over the pH range of 1-10. Equilibrium unfolding with urea showed that values of D(1/2) (5.7 M) and DeltaG(H(2)O) (12.8 kcal/mol) were highest at pH 5.0, its pI and the maximum conformational stability of RNase Rs was observed near pH 5.0. Denaturation with guanidine hydrochloride (GdnHCl), at pH 5.0, gave similar values of DeltaG(H(2)O) although GdnHCl was 2-fold more potent denaturant with D(1/2) value of 3.1 M. The curves of fraction unfolded (f(U)) obtained with fluorescence and CD measurements overlapped at pH 5.0. Denaturation of RNase Rs with urea in the pH range studied was reversible but the enzyme denatured irreversibly >pH 11.0. Thermal denaturation of RNase Rs was reversible in the pH range of 2.0-3.0 and 6.0-9.0. Thermal denaturation in the pH range 4.0-5.5 resulted in aggregation and precipitation of the protein above 55 degrees C. The aggregate was amorphous or disordered precipitate as observed in TE micrographs. Blue shift in emission lambda(max) and enhancement of fluorescence intensity of ANS at 70 degrees C indicated the presence of solvent exposed hydrophobic surfaces as a result of heat treatment. Aggregation could be prevented partially with alpha-cyclodextrin (0.15 M) and completely with urea at concentrations >3 M. Aggregation was probably due to intermolecular hydrophobic interaction favored by minimum charge-charge repulsion at the pI of the enzyme. Both urea and temperature-induced denaturation studies showed that RNase Rs unfolds through a two-state F right arrow over left arrow U mechanism. The pH dependence of stability described by DeltaG(H(2)O) (urea) and DeltaG (25 degrees C) suggested that electrostatic interactions among the charged groups make a significant contribution to the conformational stability of RNase Rs. Since RNase Rs is a disulfide-containing protein, the major element for structural stability are the covalent disulfide bonds.  相似文献   

7.
Aromatic amino acids of membrane proteins are enriched at the lipid-water interface. The role of tryptophan on the folding and stability of an integral membrane protein is investigated with ultraviolet resonance Raman and fluorescence spectroscopy. We investigate a model system, the β-barrel outer membrane protein A (OmpA), and focus on interfacial tryptophan residues oriented toward the lipid bilayer (trp-7, trp-170, or trp-15) or the interior of the β-barrel pore (trp-102). OmpA mutants with a single tryptophan residue at a nonnative position 170 (Trp-170) or a native position 7 (Trp-7) exhibit the greatest stability, with Gibbs free energies of unfolding in the absence of denaturant of 9.4 and 6.7 kcal/mol, respectively. These mutants are more stable than the tryptophan-free OmpA mutant, which exhibits a free energy of unfolding of 2.6 kcal/mol. Ultraviolet resonance Raman spectra of Trp-170 and Trp-7 reveal evolution of a hydrogen bond in a nonpolar environment during the folding reaction, evidenced by systematic shifts in hydrophobicity and hydrogen bond markers. These observations suggest that the hydrogen bond acceptor is the lipid acyl carbonyl group, and this interaction contributes significantly to membrane protein stabilization. Other spectral changes are observed for a tryptophan residue at position 15, and these modifications are attributed to development of a tryptophan-lipid cation-π interaction that is more stabilizing than an intraprotein hydrogen bond by ∼2 kcal/mol. As expected, there is no evidence for lipid-protein interactions for the tryptophan residue oriented toward the interior of the β-barrel pore. These results highlight the significance of lipid-protein interactions, and indicate that the bilayer provides more than a hydrophobic environment for membrane protein folding. Instead, a paradigm of lipid-assisted membrane protein folding and stabilization must be adopted.  相似文献   

8.
Chen YR  Clark AC 《Biochemistry》2003,42(20):6310-6320
We have characterized the equilibrium and kinetic folding of a unique protein domain, caspase recruitment domain (CARD), of the RIP-like interacting CLARP kinase (RICK) (RICK-CARD), which adopts a alpha-helical Greek key fold. At equilibrium, the folding of RICK-CARD is well described by a two-state mechanism representing the native and unfolded ensembles. The protein is marginally stable, with a DeltaG(H)()2(O) of 3.0 +/- 0.15 kcal/mol and an m-value of 1.27 +/- 0.06 kcal mol(-1) M(-1) (30 mM Tris-HCl, pH 8, 1 mM DTT, 25 degrees C). While the m-value is constant, the protein stability decreases in the presence of moderate salt concentrations (below 200 mM) and then increases at higher salt concentrations. The results suggest that electrostatic interactions are stabilizing in the native protein, and the favorable Coulombic interactions are reduced at low ionic strength. Above 200 mM salt, the results are consistent with Hofmeister effects. The unfolding pathway of RICK-CARD is complex and contains at least three non-native conformations. The refolding pathway of RICK-CARD also is complex, and the data suggest that the unfolded protein folds via two intermediate conformations prior to reaching the native state. Overall, the data suggest the presence of kinetically trapped, or misfolded, species that are on-pathway both in refolding and in unfolding.  相似文献   

9.
Edgell MH  Sims DA  Pielak GJ  Yi F 《Biochemistry》2003,42(24):7587-7593
The use of statistical modeling to test hypotheses concerning the determinants of protein structure requires stability data (e.g., the free energy of denaturation in H(2)O, DeltaG(HOH)) from hundreds of protein mutants. Fluorescence-monitored chemical denaturation provides a convenient method for high-precision, high-throughput DeltaG(HOH) determination. For eglin c we find that a throughput of about 20 min per protein can be attained in a two-channel semiautomated titrating fluorometer. We find also that the use of robotics for protein purification and preparation of the solutions for chemical denaturation gives highly precise DeltaG(HOH) values in which the standard deviation of values from multiple preparations (+/-0.051 kcal/mol) differs very little from multiple measurements from a single preparation (+/-0.040 kcal/mol). Since the variance introduced into model fitting by DeltaG(HOH) increases as the square of measurement error, there is a premium on precision. In fact, the fraction of stability behavior explicable by otherwise perfect models goes from 98% to only 50% over the error range commonly reported for chemical denaturation measurements (0.1-0.6 kcal/mol). We have found that the precision of chemical denaturation DeltaG(HOH) measurements depends most heavily on the precision of the instrument used, followed by protein purity and the capacity to precisely prepare the solutions used for titrations.  相似文献   

10.
The stability of the N-terminal domain of the ribosomal protein L9, NTL9, from Bacillus stearothermophilus has been monitored by circular dichroism at various temperatures and chemical denaturant concentrations in H2O and D2O. The basic thermodynamic parameters for the unfolding reaction, deltaH(o), deltaS(o), and deltaC(o)p, were determined by global analysis of temperature and denaturant effects on stability. The data were well fit by a model that assumes stability varies linearly with denaturant concentration and that uses the Gibbs-Helmholtz equation to model changes in stability with temperature. The results obtained from the global analysis are consistent with information obtained from individual thermal and chemical denaturations. NTL9 has a maximum stability of 3.78 +/- 0.25 kcal mol(-1) at 14 degrees C. DeltaH(o)(25 degrees C) for protein unfolding equals 9.9 +/- 0.7 kcal mol(-1) and TdeltaS(o)++(25 degrees C) equals 6.2 +/- 0.6 kcal mol(-1). DeltaC(o)p equals 0.53 +/- 0.06 kcal mol(-1) deg(-1). There is a small increase in stability when D2O is substituted for H2O. Based on the results from global analysis, NTL9 is 1.06 +/- 0.60 kcal mol(-1) more stable in D2O at 25 degrees C and Tm is increased by 5.8 +/- 3.6 degrees C in D2O. Based on the results from individual denaturation experiments, NTL9 is 0.68 +/- 0.68 kcal mol(-1) more stable in D2O at 25 degrees C and Tm is increased by 3.5 +/- 2.1 degrees C in D2O. Within experimental error there are no changes in deltaH(o) (25 degrees C) when D2O is substituted for H2O.  相似文献   

11.
Prediction of protein stability upon amino acid substitutions is an important problem in molecular biology and the solving of which would help for designing stable mutants. In this work, we have analyzed the stability of protein mutants using two different datasets of 1396 and 2204 mutants obtained from ProTherm database, respectively for free energy change due to thermal (DeltaDeltaG) and denaturant denaturations (DeltaDeltaG(H(2)O)). We have used a set of 48 physical, chemical energetic and conformational properties of amino acid residues and computed the difference of amino acid properties for each mutant in both sets of data. These differences in amino acid properties have been related to protein stability (DeltaDeltaG and DeltaDeltaG(H(2)O)) and are used to train with classification and regression tool for predicting the stability of protein mutants. Further, we have tested the method with 4 fold, 5 fold and 10 fold cross validation procedures. We found that the physical properties, shape and flexibility are important determinants of protein stability. The classification of mutants based on secondary structure (helix, strand, turn and coil) and solvent accessibility (buried, partially buried, partially exposed and exposed) distinguished the stabilizing/destabilizing mutants at an average accuracy of 81% and 80%, respectively for DeltaDeltaG and DeltaDeltaG(H(2)O). The correlation between the experimental and predicted stability change is 0.61 for DeltaDeltaG and 0.44 for DeltaDeltaG(H(2)O). Further, the free energy change due to the replacement of amino acid residue has been predicted within an average error of 1.08 kcal/mol and 1.37 kcal/mol for thermal and chemical denaturation, respectively. The relative importance of secondary structure and solvent accessibility, and the influence of the dataset on prediction of protein mutant stability have been discussed.  相似文献   

12.
The role of electrostatic interactions in the stability and the folding of the N-terminal domain of the ribosomal protein L9 (NTL9) was investigated by determining the effects of varying the pH conditions. Urea denaturations and thermal unfolding experiments were used to measure the free energy of folding, DeltaG degrees, at 18 different pH values, ranging from pH 1.1 to pH 10.5. Folding rates were measured at 19 pH values between pH 2.1 and pH 9.5, and unfolding rates were determined at 15 pH values in this range using stopped-flow fluorescence experiments. The protein is maximally stable between pH 5.5 and 7.5 with a value of DeltaG degrees =4.45 kcal mol(-1). The folding rate reaches a maximum at pH 5.5, however the change in folding rates with pH is relatively modest. Over the pH range of 2.1 to 5.5 there is a small increase in folding rates, ln (k(f)) changes from 5.1 to 6.8. However, the change in stability is more dramatic, with a difference of 2.6 kcal mol(-1) between pH 2.0 and pH 5.4. The change in stability is largely due to the smaller barrier for unfolding at low pH values. The natural log of the unfolding rates varies by approximately four units between pH 2.1 and pH 5.5. The stability of the protein decreases above pH 7.5 and again the change is largely due to changes in the unfolding rate. ln (k(f)) varies by less than one unit between pH 5.5 and pH 9.5 while DeltaG degrees decreases by 2.4 kcal mol(-1) over the range of pH 5. 4 to pH 10.0, which corresponds to a change in ln K(eq) of 4.0. These studies show that pH-dependent interactions contribute significantly to the overall stability of the protein but have only a small effect upon the folding kinetics, indicating that electrostatic interactions are weakly formed in the transition state for folding.  相似文献   

13.
Gursky O  Ranjana  Gantz DL 《Biochemistry》2002,41(23):7373-7384
Thermal unfolding of discoidal complexes of apolipoprotein (apo) C-1 with dimyristoyl phosphatidylcholine (DMPC) reveals a novel mechanism of lipoprotein stabilization that is based on kinetics rather than thermodynamics. Far-UV CD melting curves recorded at several heating/cooling rates from 0.047 to 1.34 K/min show hysteresis and scan rate dependence characteristic of slow nonequilibrium transitions. At slow heating rates, the apoC-1 unfolding in the complexes starts just above 25 degrees C and has an apparent melting temperature T(m) approximately 48 +/- 1.5 degrees C, close to T(m) = 51 +/- 1.5 degrees C of free protein. Thus, DMPC binding may not substantially increase the low apparent thermodynamic stability of apoC-1, DeltaG(25 degrees C) < 2 kcal/mol. The scan rate dependence of T(m) and Arrhenius analysis of the kinetic data suggest an activation enthalpy E(a) = 25 +/- 5 kcal/mol that provides the major contribution to the free energy barrier for the protein unfolding on the disk, DeltaG > or = 17 kcal/mol. Consequently, apoC-1/DMPC disks are kinetically but not thermodynamically stable. To explore the origins of this kinetic stability, we utilized dynode voltage measured in CD experiments that shows temperature-dependent contribution from UV light scattering of apoC-1/DMPC complexes (d approximately 20 nm). Correlation of CD and dynode voltage melting curves recorded at 222 nm indicates close coupling between protein unfolding and an increase in the complex size and/or lamellar structure, suggesting that the enthalpic barrier arises from transient disruption of lipid packing interactions upon disk-to-vesicle fusion. We hypothesize that a kinetic mechanism may provide a general strategy for lipoprotein stabilization that facilitates complex stability and compositional variability in the absence of high packing specificity.  相似文献   

14.
In this work we examined the effect of urea and guanidinium chloride on the structural stability of a single isoform of soybean seed acid phosphatase, based on the intensity of tryptophan fluorescence as a function of denaturant concentration. The free energy of unfolding, DeltaGu, was calculated at 25 degrees C as a function of the concentrations of both chaotropic agents; the conformational stability, DeltaG (H2O), was determined to be 2.48 kcal mol(-1). Center of mass, determined from analysis of fluorescence data, was used as a parameter to assess conformational changes. Our results indicate that complete enzyme inactivation occurred before full enzyme unfolding in both cases, and suggest that there are differences between the conformational flexibility of the active-site and that of the macromolecule as a whole.  相似文献   

15.
PmOmpA is a two-domain outer membrane protein from Pasteurella multocida. The N-terminal domain of PmOmpA is a homologue of the transmembrane beta-barrel domain of OmpA from Escherichia coli, whilst the C-terminal domain of PmOmpA is a homologue of the extra-membrane Neisseria meningitidis RmpM C-terminal domain. This enables a model of a complete two domain PmOmpA to be constructed and its conformational dynamics explored via MD simulations of the protein embedded within two different phospholipid bilayers (DMPC and DMPE). The conformational stability of the transmembrane beta-barrel is similar to that of a homology model of OprF from Pseudomonas aeruginosa in bilayer simulations. There is a degree of water penetration into the interior of the beta-barrel, suggestive of a possible transmembrane pore. Although the PmOmpA model is stable over 20 ns simulations, retaining its secondary structure and fold integrity throughout, substantial flexibility is observed in a short linker region between the N- and the C-terminal domains. At low ionic strength, the C-terminal domain moves to interact electrostatically with the lipid bilayer headgroups. This study demonstrates that computational approaches may be applied to more complex, multi-domain outer membrane proteins, rather than just to transmembrane beta-barrels, opening the possibility of in silico proteomics approaches to such proteins.  相似文献   

16.
Asp residues are significantly under represented in beta-sheet regions of proteins, especially in the middle of beta-strands, as found by a number of studies using statistical, modeling, or experimental methods. To further understand the reasons for this under representation of Asp, we prepared and analyzed mutants of a beta-domain. Two Gln residues of the immunoglobulin light-chain variable domain (V(L)) of protein Len were replaced with Asp, and then the effects of these changes on protein stability and protein structure were studied. The replacement of Q38D, located at the end of a beta-strand, and that of Q89D, located in the middle of a beta-strand, reduced the stability of the parent immunoglobulin V(L) domain by 2.0 kcal/mol and 5.3 kcal/mol, respectively. Because the Q89D mutant of the wild-type V(L)-Len domain was too unstable to be expressed as a soluble protein, we prepared the Q89D mutant in a triple mutant background, V(L)-Len M4L/Y27dD/T94H, which was 4.2 kcal/mol more stable than the wild-type V(L)-Len domain. The structures of mutants V(L)-Len Q38D and V(L)-Len Q89D/M4L/Y27dD/T94H were determined by X-ray diffraction at 1.6 A resolution. We found no major perturbances in the structures of these Q-->D mutant proteins relative to structures of the parent proteins. The observed stability changes have to be accounted for by cumulative effects of the following several factors: (1) by changes in main-chain dihedral angles and in side-chain rotomers, (2) by close contacts between some atoms, and, most significantly, (3) by the unfavorable electrostatic interactions between the Asp side chain and the carbonyls of the main chain. We show that the Asn side chain, which is of similar size but neutral, is less destabilizing. The detrimental effect of Asp within a beta-sheet of an immunoglobulin-type domain can have very serious consequences. A somatic mutation of a beta-strand residue to Asp could prevent the expression of the domain both in vitro and in vivo, or it could contribute to the pathogenic potential of the protein in vivo.  相似文献   

17.
The thermodynamics of interactions between phloretin and a phosphatidylcholine (PC) vesicle membrane are characterized using equilibrium spectrophotometric titration, stopped-flow, and temperature- jump techniques. Binding of phloretin to a PC vesicle membrane is diffusion limited, with an association rate constant greater than 10(8) M-1s-1, and an interfacial activation free energy of less than 2 kcal/mol. Equilibrium binding of phloretin to a vesicle membrane is characterized by a single class of high-affinity (8 micro M), noninteracting sites. Binding is enthalpy driven (delta H = -4.9 kcal/mol) at 23 degrees C. Analysis of amplitudes of kinetic processes shows that 66 +/- 3% of total phloretin binding sites are exposed at the external vesicle surface. The rate of phloretin movement between binding sites located near the external and internal interfaces is proportional to the concentration of un-ionized phloretin, with a rate constant of 5.7 X 10(4) M-1s-1 at 23 degrees C. The rate of this process is limited by a large enthalpic (9 kcal/mol) and entropic (-31 entropy units) barrier. An analysis of the concentration dependence of the rate of transmembrane movement suggests the presence of multiple intramembrane potential barriers. Permeation of phloretin through a lipid bilayer is modeled quantitatively in terms of discrete steps: binding to a membrane surface, translocation across a series of intramembrane barriers, and dissociation from the opposite membrane surface. The permeability coefficient for phloretin is calculated as 1.9 X 10(-3) cm/s on the basis of the model presented. Structure- function relationships are examined for a number of phloretin analogues.  相似文献   

18.
Both forms of the hepatitis delta antigen (HDAg) encoded by hepatitis delta virus are active only as oligomers. Previous studies showed that quadrin, a synthetic 50-residue peptide containing residues 12-60 from the N-terminus of HDAg, interferes with HDAg oligomerization, forms an alpha-helical coiled coil in solution, and forms a novel square octamer in the crystal consisting of four antiparallel coiled-coil dimers joined at the corners by hydrophobic binding of oligomerization sites located at each end of the dimers. We designed and synthesized deltoid (CH3CO-[Cys23]HDAg-(12-27)-seryl-tRNA synthetae-(59-65)-[Cys42]HDAg-(34-60)-Tyr-NH2), a chimeric protein that structurally resembles one end of the quadrin dimer and contains a single oligomerization site. The 51-residue chain of deltoid contains a seven-residue alpha-hairpin loop in place of the remainder of the quadrin dimer plus Cys12 and Cys31 for forming an intrachain disulfide bridge. Reduced, unbridged deltoid (Tm=61 degrees C, DeltaG(H2O)=-1.7 kcal mol(-1)) was less stable to denaturation by heat or guanidine HCl than oxidized, intrachain disulfide-bridged deltoid (Tm>80 degrees C, DeltaG(H2O)=-2.6 kcal mol(-1)). Each form is an alpha-helical dimer that reversibly dissociates into two monomers (Kd=80 microM).  相似文献   

19.
Fibritin is a segmented coiled-coil homotrimer of the 486-residue product of phage T4 gene wac. This protein attaches to a phage particle by the N-terminal region and forms fibrous whiskers of 530 A, which perform a chaperone function during virus assembly. The short C-terminal region has a beta-annulus-like structure. We engineered a set of fibritin deletion mutants sequentially truncated from the N-termini, and the mutants were studied by differential scanning calorimetry (DSC) and CD measurements. The analysis of DSC curves indicates that full-length fibritin exhibits three thermal-heat-absorption peaks centred at 321 K (Delta H=1390 kJ x mol trimer(-1)), at 336 K (Delta H=7600 kJ x mol trimer(-1)), and at 345 K (Delta H=515 kJ x mol trimer(-1)). These transitions were assigned to the N-terminal, segmented coiled-coil, and C-terminal functional domains, respectively. The coiled-coil region, containing 13 segments, melts co-operatively as a single domain with a mean enthalpy Delta Hres=21 kJ x mol residue(-1). The ratio of Delta HVH/Delta Hcal for the coiled-coil part of the 120-, 182-, 258- and 281-residue per monomer mutants, truncated from the N-termini, and for full-length fibritin are 0.91, 0.88, 0.42, 0.39, and 0.13, respectively. This gives an indication of the decrease of the 'all-or-none' character of the transition with increasing protein size. The deletion of the 12-residue-long loop in the 120-residue fibritin increases the thermal stability of the coiled-coil region. According to CD data, full-length fibritin and all the mutants truncated from the N-termini refold properly after heat denaturation. In contrast, fibritin XN, which is deleted for the C-terminal domain, forms aggregates inside the cell. The XN protein can be partially refolded by dilution from urea and does not refold after heat denaturation. These results confirm that the C-terminal domain is essential for correct fibritin assembly both in vivo and in vitro and acts as a foldon.  相似文献   

20.
To understand the effect of visible light on the stability of photoactive yellow protein (PYP), urea denaturation experiments were performed with PYP in the dark and with PYP(M) under continuous illumination. The urea concentrations at the midpoint of denaturation were 5.26 +/- 0.29 and 3.77 +/- 0.19 M for PYP and PYP(M), respectively, in 100 mM acetate buffer, and 5.26 +/- 0.24 and 4.11 +/- 0.12 M for PYP and PYP(M), respectively, in 100 mM citrate buffer. The free energy change upon denaturation (DeltaG(D)(H2O)), obtained from the denaturation curve, was 11.0 +/- 0.4 and 7.6 +/- 0.2 kcal/mol for PYP and PYP(M), respectively, in acetate buffer, and 11.5 +/- 0.3 and 7.8 +/- 0.1 kcal/mol for PYP and PYP(M), respectively, in citrate buffer. Even though the DeltaG(D)(H2O) value for PYP(M) is almost identical in the two buffer systems, the urea concentration at the midpoint of denaturation is lower in acetate buffer than in citrate buffer. Although their CD spectra indicate that the protein conformations of the denatured states of PYP and PYP(M) are indistinguishable, the configurations of the chromophores in their denatured structures are not necessarily identical. Both denatured states are interconvertible through PYP and PYP(M). Therefore, the free energy difference between PYP and PYP(M) is 3.4-3.7 kcal/mol for the protein moiety, plus the additional contribution from the difference in configuration of the chromophore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号