首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Stable expression of Rad51 siRNA was used to generate mouse hybridoma cell lines in which endogenous Rad51 levels were depleted by as much as 60%. Stable Rad51 knockdowns feature reduced homologous recombination responses. The relative ease with which stable Rad51 knockdowns were recovered was surprising, given the embryonic lethality of Rad51 ablation. Interestingly, Rad51-depleted hybridoma cell lines are characterized by reduced levels of p53 protein. Completely unexpected, was the finding that Rad51-depleted hybridoma cell lines are also reduced for the breast cancer susceptibility 2 (Brca2) protein. Additionally, hybridoma cell lines that are siRNA depleted for mouse Brca2 show a corresponding reduction in Rad51 and p53 proteins. Furthermore, cellular levels of Rad51, Brca2 and p53 can be elevated in these cell lines by ectopic expression of wild-type human Rad51 and wild-type human BRCA2. In marked contrast, hybridoma cell lines that are siRNA depleted for mouse p53 feature relatively normal Rad51 and Brca2 levels. These results suggest that cellular levels of Brca2 and Rad51 are mutually dependent on each other, and that low levels of these proteins provide selective pressure for reduction of p53, which permits cell growth.  相似文献   

2.
Homologous recombinational repair (HRR) restores chromatid breaks arising during DNA replication and prevents chromosomal rearrangements that can occur from the misrepair of such breaks. In vertebrates, five Rad51 paralogs are identified that contribute in a nonessential but critical manner to HRR proficiency. We constructed and characterized a knockout of the paralog Rad51D in widely studied CHO cells. The rad51d mutant (clone 51D1) displays sensitivity to a diverse spectrum of induced DNA damage including gamma-rays, ultraviolet (UV)-C radiation, and methyl methanesulfonate (MMS), indicating the broad relevance of HRR to genotoxicity. Spontaneous chromatid breaks/gaps and isochromatid breaks are elevated 3- to 12-fold, but the chromosome number distribution remains unchanged. Most importantly, 51D1 cells exhibit a 12-fold-increased rate of hprt mutation, as well as 4- to 10-fold increased rates of gene amplification at the dhfr and CAD loci, respectively. Xrcc3 irs1SF cells from the same parental CHO line show similarly elevated mutagenesis at these three loci. Collectively, these results confirm the a priori expectation that HRR acts in an error-free manner to repress three classes of genetic alterations (chromosomal aberrations, loss of gene function and increased gene expression), all of which are associated with carcinogenesis.  相似文献   

3.
The Chinese hamster cell mutant, CL-V4B that is mutated in the Rad51 paralog gene, Rad51C (RAD51L2), has been described to exhibit increased sensitivity to DNA cross-linking agents, genomic instability, and an impaired Rad51 foci formation in response to DNA damage. To directly examine an effect of the Rad51C protein on homologous recombination (HR) in mammalian cells, we compared the frequencies and rates of spontaneous HR in CL-V4B cells and in parental wildtype V79B cells, using a recombination reporter plasmid in host cell reactivation assays. Our results demonstrate that HR is reduced but not abolished in the CL-V4B mutant. We thus, provide direct evidence for a role of mammalian Rad51C in HR processes. The reduced HR events described here help to explain the deficient phenotypes observed in Rad51C mutants and support an accessory role of Rad51C in Rad51-mediated recombination.  相似文献   

4.
BRCA2 is a tumor suppressor gene that is linked to hereditary breast and ovarian cancer. Although the Brca2 protein participates in homologous DNA recombination (HR), its precise role remains unclear. From chicken DT40 cells, we generated BRCA2 gene-deficient cells which harbor a truncation at the 3' end of the BRC3 repeat (brca2tr). Comparison of the characteristics of brca2tr cells with those of other HR-deficient DT40 clones revealed marked similarities with rad51 paralog mutants (rad51b, rad51c, rad51d, xrcc2, or xrcc3 cells). The phenotypic similarities include a shift from HR-mediated diversification to single-nucleotide substitutions in the immunoglobulin variable gene segment and the partial reversion of this shift by overexpression of Rad51. Although recent evidence supports at least Xrcc3 and Rad51C playing a role late in HR, our data suggest that Brca2 and the Rad51 paralogs may also contribute to HR at the same early step, with their loss resulting in the stimulation of an alternative, error-prone repair pathway.  相似文献   

5.
6.
Yeast Rad51 recombinase has only minimal ability to form D loop. Addition of Rad54 renders D loop formation by Rad51 efficient, even when topologically relaxed DNA is used as substrate. Treatment of the nucleoprotein complex of Rad54 and relaxed DNA with topoisomerases reveals dynamic DNA remodeling to generate unconstrained negative and positive supercoils. DNA remodeling requires ATP hydrolysis by Rad54 and is stimulated by Rad51-DNA nucleoprotein complex. A marked sensitivity of DNA undergoing remodeling to P1 nuclease indicates that the negative supercoils produced lead to transient DNA strand separation. Thus, a specific interaction of Rad54 with the Rad51-ssDNA complex enhances the ability of the former to remodel DNA and allows the latter to harvest the negative supercoils generated for DNA joint formation.  相似文献   

7.
DNA double-strand breaks (DSBs) are highly cytotoxic lesions and pose a major threat to genome stability if not properly repaired. We and others have previously shown that a class of DSB-induced small RNAs (diRNAs) is produced from sequences around DSB sites. DiRNAs are associated with Argonaute (Ago) proteins and play an important role in DSB repair, though the mechanism through which they act remains unclear. Here, we report that the role of diRNAs in DSB repair is restricted to repair by homologous recombination (HR) and that it specifically relies on the effector protein Ago2 in mammalian cells. Interestingly, we show that Ago2 forms a complex with Rad51 and that the interaction is enhanced in cells treated with ionizing radiation. We demonstrate that Rad51 accumulation at DSB sites and HR repair depend on catalytic activity and small RNA-binding capability of Ago2. In contrast, DSB resection as well as RPA and Mre11 loading is unaffected by Ago2 or Dicer depletion, suggesting that Ago2 very likely functions directly in mediating Rad51 accumulation at DSBs. Taken together, our findings suggest that guided by diRNAs, Ago2 can promote Rad51 recruitment and/or retention at DSBs to facilitate repair by HR.  相似文献   

8.
Overexpression of DNA polymerase β (polβ), an error-prone DNA repair enzyme, has been shown to result in mutagenesis, aneuploidy and tumorigenesis. To further investigate the molecular basis leading to cancer-associated genetic changes, we examined whether the DNA polβ could affect homologous recombination (HR). Using mammalian cells carrying an intrachromosomal recombination marker we showed that the DNA polβ overexpression increased the HR mostly by enhancing gene conversion. Concomitantly, we observed the generation of DNA strand breaks as well as a DNA polβ-dependent formation of Rad51 foci. The stimulation of HR was abolished by the coexpression of a dominant negative form of Rad51, suggesting that the Rad51 was involved in the increased HR events. The expression of different DNA polβ mutants lacking polymerase activity did not result in HR stimulation, indicating that the DNA synthesis activity of DNA polβ was related to this phenotype. These results provide new insights into the molecular mechanisms of the genetic instability observed in DNA polβ overexpressing tumour cells.  相似文献   

9.
Homologous recombination is one of the major pathways for repair of DNA double-strand breaks (DSBs). Important proteins in this pathway are Rad51 and Rad54. Rad51 forms a nucleoprotein filament on single-stranded DNA (ssDNA) that mediates pairing with and strand invasion of homologous duplex DNA with the assist of Rad54. We estimated that the nucleus of a mouse embryonic stem (ES) cells contains on average 4.7x10(5) Rad51 and 2.4x10(5) Rad54 molecules. Furthermore, we showed that the amount of Rad54 was subject to cell cycle regulation. We discuss our results with respect to two models that describe how Rad54 stimulates Rad51-mediated DNA strand invasion. The models differ in whether Rad54 functions locally or globally. In the first model, Rad54 acts in cis relative to the site of strand invasion. Rad54 coats the Rad51 nucleoprotein filament in stoichiometric amounts and binds to the target duplex DNA at the site that is homologous to the ssDNA in the Rad51 nucleoprotein filament. Subsequently, it promotes duplex DNA unwinding. In the second model, Rad54 acts in trans relative to the site of strand invasion. Rad54 binds duplex DNA distant from the site that will be unwound. Translocation of Rad54 along the duplex DNA increases superhelical stress thereby promoting duplex DNA unwinding.  相似文献   

10.
Mediator of DNA damage checkpoint protein-1 (MDC1) is a recently identified nuclear protein that participates in DNA-damage sensing and signaling. Here we report that knockdown of MDC1 by RNA interference results in cellular hypersensitivity to the DNA cross-linking agent mitomycin C and ionizing radiation and in impaired homology-mediated repair of double-strand breaks in DNA. MDC1 forms a complex with Rad51 through a direct interaction with the forkhead-associated domain of MDC1, not the BRCA1 C-terminal domain. Depletion of MDC1 results in impaired formation of Rad51 ionizing radiation-induced foci, reduced amounts of nuclear and chromatin-bound Rad51, and a corresponding increase in Rad51 protein degradation. Together, our findings suggest that MDC1 functions in Rad51-mediated homologous recombination by retaining Rad51 in chromatin.  相似文献   

11.
Human Rad51 (HsRad51), a key element of the homologous recombination repair pathway, is related to the resistance of cancer cells to chemo- and radio-therapies. This protein is thus a good target for the development of anti-cancer treatments. We have searched for new inhibitors directed against HsRad51 using the Systematic Evolution of Ligands by EXponential enrichment (SELEX) approach. We have selected three aptamers displaying strong effects on strand exchange activity. Analysis by circular dichroism shows that they are highly structured DNA molecules. Our results also show that they affect the first step of the strand exchange reaction by promoting the dissociation of DNA from the ATP/HsRad51/DNA complex. Moreover, these inhibitors bind only weakly to RecA, a prokaryotic ortholog of HsRad51. Both the specificity and the efficiency of their inhibition of recombinase activity offer an analytical tool based on molecular recognition and the prospect of developing new therapeutic agents.  相似文献   

12.
To achieve drug resistance Leishmania parasite alters gene copy number by using its repeated sequences widely distributed through the genome. Even though homologous recombination (HR) is ascribed to maintain genome stability, this eukaryote exploits this potent mechanism driven by the Rad51 recombinase to form beneficial extrachromosomal circular amplicons. Here, we provide insights on the formation of these circular amplicons by analyzing the functions of the Rad51 paralogs. We purified three Leishmania infantum Rad51 paralogs homologs (LiRad51-3, LiRad51-4 and LiRad51-6) all of which directly interact with LiRad51. LiRad51-3, LiRad51-4 and LiRad51-6 show differences in DNA binding and annealing capacities. Moreover, it is also noteworthy that LiRad51-3 and LiRad51-4 are able to stimulate Rad51-mediated D-loop formation. In addition, we succeed to inactivate the LiRad51-4 gene and report a decrease of circular amplicons in this mutant. The LiRad51-3 gene was found to be essential for cell viability. Thus, we propose that the LiRad51 paralogs play crucial functions in extrachromosomal circular DNA amplification to circumvent drug actions and preserve survival.  相似文献   

13.
In eukaryotes, Rad51 and Rad54 functionally cooperate to mediate homologous recombination and the repair of damaged chromosomes by recombination. Rad51, the eukaryotic counterpart of the bacterial RecA recombinase, forms filaments on single-stranded DNA that are capable of pairing the bound DNA with a homologous double-stranded donor to yield joint molecules. Rad54 enhances the homologous DNA pairing reaction, and this stimulatory effect involves a physical interaction with Rad51. Correspondingly, the ability of Rad54 to hydrolyze ATP and introduce superhelical tension into covalently closed circular plasmid DNA is stimulated by Rad51. By controlled proteolysis, we show that the amino-terminal region of yeast Rad54 is rather unstructured. Truncation mutations that delete the N-terminal 113 or 129 amino acid residues of Rad54 attenuate or ablate physical and functional interactions with Rad51 under physiological ionic strength, respectively. Surprisingly, under less stringent conditions, the Rad54 Delta129 protein can interact with Rad51 in affinity pull-down and functional assays. These results highlight the functional importance of the N-terminal Rad51 interaction domain of Rad54 and reveal that Rad54 contacts Rad51 through separable epitopes.  相似文献   

14.
Marple T  Kim TM  Hasty P 《Mutation research》2006,602(1-2):110-120
The breast cancer susceptibility protein, Brca2 and the RecQ helicase, Blm (Bloom syndrome mutated) are tumor suppressors that maintain genome integrity, at least in part, through homologous recombination (HR). Brca2 facilitates HR by interacting with Rad51 in multiple regions, the BRC motifs encoded by exon 11 and a single domain encoded by exon 27; however, the exact importance of these regions is not fully understood. Blm also interacts with Rad51 and appears to suppress HR in most circumstances; however, its yeast homologue Sgs1 facilitates HR in response to some genotoxins. To better understand the biological importance of these two proteins, we performed a genotoxic screen on mouse embryonic stem (ES) cells impaired for either Brca2 or Blm to establish their genotoxic profiles (a cellular dose-response to a wide range of agents). This is the first side-by-side comparison of these two proteins in an identical genetic background. We compared cells deleted for Brca2 exon 27 to cells reduced for Blm expression and find that the Brca2- and Blm-impaired cells exhibit genotoxic profiles that reflect opposing activities during HR. Cells deleted for Brca2 exon 27 are hypersensitive to γ-radiation, streptonigrin, mitomycin C and camptothecin and mildly resistant to ICRF-193 which is similar to HR defective cells null for Rad54. By contrast, Blm-impaired cells are hypersensitive to ICRF-193, mildly resistant to camptothecin and mitomycin C and more strongly resistant to hydroxyurea. These divergent profiles support the notion that Brca2 and Blm perform opposing functions during HR in mouse ES cells.  相似文献   

15.
Archaeal RadA or Rad51 recombinases are close homologues of eukaryal Rad51 and DMC1. These and bacterial RecA orthologues play a key role in DNA repair by forming helical nucleoprotein filaments in which a hallmark strand exchange reaction between homologous DNA substrates occurs. Recent studies have discovered the stimulatory role by calcium on human and yeast recombinases. Here we report that the strand exchange activity but not the ATPase activity of an archaeal RadA/Rad51 recombinase from Methanococcus voltae (MvRadA) is also subject to calcium stimulation. Crystallized MvRadA filaments in the presence of CaCl(2) resemble that of the recently reported ATPase active form in the presence of an activating dose of KCl. At the ATPase center, one Ca(2+) ion takes the place of two K(+) ions in the K(+)-bound form. The terminal phosphate of the nonhydrolyzable ATP analogue is in a staggered conformation in the Ca(2+)-bound form. In comparison, an eclipsed conformation was seen in the K(+)-bound form. Despite the changes in the ATPase center, both forms harbor largely ordered L2 regions in essentially identical conformations. These data suggest a unified stimulation mechanism by potassium and calcium because of the existence of a conserved ATPase center promiscuous in binding cations.  相似文献   

16.
Kwon Y  Chi P  Roh DH  Klein H  Sung P 《DNA Repair》2007,6(10):1496-1506
Rad54, a member of the Swi2/Snf2 protein family, works in concert with the RecA-like recombinase Rad51 during the early and late stages of homologous recombination. Rad51 markedly enhances the activities of Rad54, including the induction of topological changes in DNA and the remodeling of chromatin structure. Reciprocally, Rad54 promotes Rad51-mediated DNA strand invasion with either naked or chromatinized DNA. Here, using various Saccharomyces cerevisiae rad51 and rad54 mutant proteins, mechanistic aspects of Rad54/Rad51-mediated chromatin remodeling are defined. Disruption of the Rad51-Rad54 complex leads to a marked attenuation of chromatin remodeling activity. Moreover, we present evidence that assembly of the Rad51 presynaptic filament represents an obligatory step in the enhancement of the chromatin remodeling reaction. Interestingly, we find a specific interaction of the N-terminal tail of histone H3 with Rad54 and show that the H3 tail interaction domain resides within the amino terminus of Rad54. These results suggest that Rad54-mediated chromatin remodeling coincides with DNA homology search by the Rad51 presynaptic filament and that this process is facilitated by an interaction of Rad54 with histone H3.  相似文献   

17.
Homologous recombination (HR) is a primary DNA double-strand breaks (DSBs) repair mechanism. The recombinases Rad51 and Dmc1 are highly conserved in the RecA family; Rad51 is mainly responsible for DNA repair in somatic cells during mitosis while Dmc1 only works during meiosis in germ cells. This spatiotemporal difference is probably due to their distinctive mismatch tolerance during HR: Rad51 does not permit HR in the presence of mismatches, whereas Dmc1 can tolerate certain mismatches. Here, the cryo-EM structures of Rad51–DNA and Dmc1–DNA complexes revealed that the major conformational differences between these two proteins are located in their Loop2 regions, which contain invading single-stranded DNA (ssDNA) binding residues and double-stranded DNA (dsDNA) complementary strand binding residues, stabilizing ssDNA and dsDNA in presynaptic and postsynaptic complexes, respectively. By combining molecular dynamic simulation and single-molecule FRET assays, we identified that V273 and D274 in the Loop2 region of human RAD51 (hRAD51), corresponding to P274 and G275 of human DMC1 (hDMC1), are the key residues regulating mismatch tolerance during strand exchange in HR. This HR accuracy control mechanism provides mechanistic insights into the specific roles of Rad51 and Dmc1 in DNA double-strand break repair and may shed light on the regulatory mechanism of genetic recombination in mitosis and meiosis.  相似文献   

18.
  相似文献   

19.
Lee SA  Baker MD 《DNA Repair》2007,6(6):809-817
The tumor suppressor BRCA2 is considered to play an important role in the maintenance of genome integrity through the repair of DNA lesions by homologous recombination. A mechanistic understanding of BRCA2 has been complicated by the embryonic lethality of mice bearing allelic knockouts of Brca2, and by variation in the DNA damage response in cells bearing BRCA2 deficiencies. It would be advantageous to develop approaches that avoid the cell lethality associated with complete inactivation of the gene, or the use of established tumor cell lines in which other genes in addition to BRCA2 may be mutant. In this study, SiRNA was used in stable transformation assays to knockdown Brca2 in mouse hybridoma cells by at least 75%. The Brca2-depleted cells were analyzed with respect to cell growth, sensitivity to DNA damaging agents (mitomycin C, methylmethane sulfonate, or ionizing radiation), intrachromosomal homologous recombination and gene targeting. Although the effect of Brca2-depletion on cell growth and sensitivity to DNA damaging agents was modest, the Brca2-depleted cells did show a significant shift in homologous recombination from gene conversion to single-strand annealing and a significant decrease in the efficiency of gene targeting. Both of these phenotypes are consistent with the proposed role of Brca2 in DNA repair and recombination.  相似文献   

20.
S Visp  C Cazaux  C Lesca    M Defais 《Nucleic acids research》1998,26(12):2859-2864
Rad51 proteins share both structural and functional homologies with the bacterial recombinase RecA. The human Rad51 (HsRad51) is able to catalyse strand exchange between homologous DNA molecules in vitro . However the biological functions of Rad51 in mammals are largely unknown. In order to address this question, we have cloned hamster Rad51 cDNA and overexpressed the corresponding protein in CHO cells. We found that 2-3-fold overexpression of the protein stimulated the homologous recombination between integrated genes by 20-fold indicating that Rad51 is a functional and key enzyme of an intrachromosomal recombination pathway. Cells overexpressing Rad51 were resistant to ionizing radiation when irradiated in late S/G2phase of the cell cycle. This suggests that Rad51 participate in the repair of double-strand breaks most likely by homologous recombination involving sister chromatids formed after the S phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号