首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spike (S) glycoprotein of coronaviruses mediates viral entry into host cells. It is a type 1 viral fusion protein that characteristically contains two heptad repeat regions, denoted HR-N and HR-C, that form coiled-coil structures within the ectodomain of the protein. Previous studies have shown that the two heptad repeat regions can undergo a conformational change from their native state to a 6-helix bundle (trimer of dimers), which mediates fusion of viral and host cell membranes. Here we describe the biophysical analysis of the two predicted heptad repeat regions within the severe acute respiratory syndrome coronavirus S protein. Our results show that in isolation the HR-N region forms a stable alpha-helical coiled coil that associates in a tetrameric state. The HR-C region in isolation formed a weakly stable trimeric coiled coil. When mixed together, the two peptide regions (HR-N and HR-C) associated to form a very stable alpha-helical 6-stranded structure (trimer of heterodimers). Systematic peptide mapping showed that the site of interaction between the HR-N and HR-C regions is between residues 916-950 of HR-N and residues 1151-1185 of HR-C. Additionally, interchain disulfide bridge experiments showed that the relative orientation of the HR-N and HR-C helices in the complex was antiparallel. Overall, the structure of the hetero-stranded complex is consistent with the structures observed for other type 1 viral fusion proteins in their fusion-competent state.  相似文献   

2.
The SARS-CoV spike protein, a glycoprotein essential for viral entry, is a primary target for vaccine and drug development. Two peptides denoted HR-N(SN50) and HR-C(SC40), corresponding to the Leu/Ile/Val-rich heptad-repeat regions from the N-terminal and C-terminal segments of the SARS-CoV spike S2 sequence, respectively, were synthesized and predicted to form trimeric assembly of hairpin-like structures. The polyclonal antibodies produced by recombinant S2 protein were tested for antigenicity of the two heptad repeats. We report here the first crystallographic study of the SARS spike HR-N/HR-C complex. The crystal belongs to the triclinic space group P1 and the data-set collected to 2.98 A resolution showed noncrystallographic pseudo-222 and 3-fold symmetries. Based on these data, comparative modeling of the SARS-CoV fusion core was performed. The immunological and structural information presented herein may provide a more detailed understanding of the viral fusion mechanism as well as the development of effective therapy against SARS-CoV infection.  相似文献   

3.
Heat shock factor-binding protein (HSBP) 1 is a small, evolutionarily conserved protein originally identified in a yeast two-hybrid screen using the trimerization domain of heat shock factor (HSF) 1 as the bait. Similar in size to HSF1 trimerization domain, human HSBP1 contains two arrays of hydrophobic heptad repeats (designated HR-N and HR-C) characteristic of coiled-coil proteins. Proteins of the HSBP family are relatively small (<100 residues), comprising solely a putative coiled-coil oligomerization domain without any other readily recognizable structural or functional motif. Our biophysical and biochemical characterization of human HSBP1 reveals a cooperatively folded protein with high alpha-helical content and moderate stability. NMR analyses reveal a single continuous helix encompassing both HR-N and HR-C in the highly conserved central region, whereas the less conserved carboxyl terminus is unstructured and accessible to proteases. Unlike previously characterized coiled-coils, backbone 15N relaxation measurements implicate motional processes on the millisecond time scale in the coiled-coil region. Analytical ultracentrifugation and native PAGE studies indicate that HSBP1 is predominantly trimeric over a wide concentration range. NMR analyses suggest a rotationally symmetric trimer. Because the highly conserved hydrophobic heptad repeats extend over 60% of HSBP1, we propose that HSBP most likely regulates the function of other proteins through coiled-coil interactions.  相似文献   

4.
Severe acute respiratory syndrome (SARS) is an infectious and highly contagious disease that is caused by SARS coronavirus (SARS-CoV) and for which there are currently no approved treatments. We report the discovery and characterization of small-molecule inhibitors of SARS-CoV replication that block viral entry by three different mechanisms. The compounds were discovered by screening a chemical library of compounds for blocking of entry of HIV-1 pseudotyped with SARS-CoV surface glycoprotein S (SARS-S) but not that of HIV-1 pseudotyped with vesicular stomatitis virus surface glycoprotein G (VSV-G). Studies on their mechanisms of action revealed that the compounds act by three distinct mechanisms: (i) SSAA09E2 {N-[[4-(4-methylpiperazin-1-yl)phenyl]methyl]-1,2-oxazole-5-carboxamide} acts through a novel mechanism of action, by blocking early interactions of SARS-S with the receptor for SARS-CoV, angiotensin converting enzyme 2 (ACE2); (ii) SSAA09E1 {[(Z)-1-thiophen-2-ylethylideneamino]thiourea} acts later, by blocking cathepsin L, a host protease required for processing of SARS-S during viral entry; and (iii) SSAA09E3 [N-(9,10-dioxo-9,10-dihydroanthracen-2-yl)benzamide] also acts later and does not affect interactions of SARS-S with ACE2 or the enzymatic functions of cathepsin L but prevents fusion of the viral membrane with the host cellular membrane. Our work demonstrates that there are at least three independent strategies for blocking SARS-CoV entry, validates these mechanisms of inhibition, and introduces promising leads for the development of SARS therapeutics.  相似文献   

5.
Severe acute respiratory coronavirus (SARS-CoV) spike (S) glycoprotein fusion core consists of a six-helix bundle with the three C-terminal heptad repeat (HR2) helices packed against a central coiled-coil of the other three N-terminal heptad repeat (HR1) helices. Each of the three peripheral HR2 helices shows prominent contacts with the hydrophobic surface of the central HR1 coiled-coil. The concerted protein-protein interactions among the HR helices are responsible for the fusion event that leads to the release of the SARS-CoV nucleocapsid into the target host-cell. In this investigation, we applied recombinant protein and synthetic peptide-based biophysical assays to characterize the biological activities of the HR helices. In a parallel experiment, we employed a HIV-luc/SARS pseudotyped virus entry inhibition assay to screen for potent inhibitory activities on HR peptides derived from the SARS-CoV S protein HR regions and a series of other small-molecule drugs. Three HR peptides and five small-molecule drugs were identified as potential inhibitors. ADS-J1, which has been used to interfere with the fusogenesis of HIV-1 onto CD4+ cells, demonstrated the highest HIV-luc/SARS pseudotyped virus-entry inhibition activity among the other small-molecule drugs. Molecular modeling analysis suggested that ADS-J1 may bind to the deep pocket of the hydrophobic groove on the surface of the central coiled-coil of SARS-CoV S HR protein and prevent the entrance of the SARS-CoV into the host cells.  相似文献   

6.
Salivary agglutinin is encoded by DMBT1 and identical to gp-340, a member of the scavenger receptor cysteine-rich (SRCR) superfamily. Salivary agglutinin/DMBT1 is known for its Streptococcus mutans agglutinating properties. This 300-400 kDa glycoprotein is composed of conserved peptide motifs: 14 SRCR domains that are separated by SRCR-interspersed domains (SIDs), 2 CUB (C1r/C1s Uegf Bmp1) domains, and a zona pellucida domain. We have searched for the peptide domains of agglutinin/DMBT1 responsible for bacteria binding. Digestion with endoproteinase Lys-C resulted in a protein fragment containing exclusively SRCR and SID domains that binds to S. mutans. To define more closely the S. mutans-binding domain, consensus-based peptides of the SRCR domains and SIDs were designed and synthesized. Only one of the SRCR peptides, designated SRCRP2, and none of the SID peptides bound to S. mutans. Strikingly, this peptide was also able to induce agglutination of S. mutans and a number of other bacteria. The repeated presence of this peptide in the native molecule endows agglutinin/DMBT1 with a general bacterial binding feature with a multivalent character. Moreover, our studies demonstrate for the first time that the polymorphic SRCR domains of salivary agglutinin/DMBT1 mediate ligand interactions.  相似文献   

7.
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is a newly identified member of the family Coronaviridae and poses a serious public health threat. Recent studies indicated that the SARS-CoV viral spike glycoprotein is a class I viral fusion protein. A fusion peptide present at the N-terminal region of class I viral fusion proteins is believed to initiate viral and cell membrane interactions and subsequent fusion. Although the SARS-CoV fusion protein heptad repeats have been well characterized, the fusion peptide has yet to be identified. Based on the conserved features of known viral fusion peptides and using Wimley and White interfacial hydrophobicity plots, we have identified two putative fusion peptides (SARS(WW-I) and SARS(WW-II)) at the N terminus of the SARS-CoV S2 subunit. Both peptides are hydrophobic and rich in alanine, glycine, and/or phenylalanine residues and contain a canonical fusion tripeptide along with a central proline residue. Only the SARS(WW-I) peptide strongly partitioned into the membranes of large unilamellar vesicles (LUV), adopting a beta-sheet structure. Likewise, only SARS(WW-I) induced the fusion of LUV and caused membrane leakage of vesicle contents at peptide/lipid ratios of 1:50 and 1:100, respectively. The activity of this synthetic peptide appeared to be dependent on its amino acid (aa) sequence, as scrambling the peptide rendered it unable to partition into LUV, assume a defined secondary structure, or induce both fusion and leakage of LUV. Based on the activity of SARS(WW-I), we propose that the hydrophobic stretch of 19 aa corresponding to residues 770 to 788 is a fusion peptide of the SARS-CoV S2 subunit.  相似文献   

8.
The spike (S) protein of severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) is not only responsible for receptor binding and virus fusion, but also a major Ag among the SARS-CoV proteins that induces protective Ab responses. In this study, we showed that the S protein of SARS-CoV is highly immunogenic during infection and immunizations, and contains five linear immunodominant sites (sites I to V) as determined by Pepscan analysis with a set of synthetic peptides overlapping the entire S protein sequence against the convalescent sera from SARS patients and antisera from small animals immunized with inactivated SARS-CoV. Site IV located in the middle region of the S protein (residues 528-635) is a major immunodominant epitope. The synthetic peptide S(603-634), which overlaps the site IV sequence reacted with all the convalescent sera from 42 SARS patient, but none of the 30 serum samples from healthy blood donors, suggesting its potential application as an Ag for developing SARS diagnostics. This study also provides information useful for designing SARS vaccines and understanding the SARS pathogenesis.  相似文献   

9.
SARS冠状病毒S蛋白的功能性受体-ACE2   总被引:2,自引:0,他引:2  
SARS冠状病毒的棘突S蛋白 ,与细胞受体介导的感染有关。血管紧张素转化酶 2 (ACE2 )是SARS CoVS蛋白的功能性受体 ,人类ACE2酶的细胞外区域由 2个亚基组成 ,其中锌金属肽酶区域可以进一步分成 2个亚域 (I和II) ,形成一个长而深的裂缝 ,环绕裂缝顶端的隆起线可能作为与S 糖蛋白结合的区域。ACE2可以与SARS CoVS蛋白的S3 1 8 5 1 0结合。这将为发展新型SARS疫苗和SARS的预防和治疗提供新的研究方向。  相似文献   

10.
Qin C  Wavreille AS  Pei D 《Biochemistry》2005,44(36):12196-12202
Src homology-2 (SH2) domains recognize specific phosphotyrosyl (pY) proteins and promote protein-protein interactions. In their classical binding mode, the SH2 domain makes specific contacts with the pY residue and the three residues immediately C-terminal to the pY, although for a few SH2 domains, residues N-terminal to pY have recently been shown to also contribute to the overall binding affinity and specificity. In this work, the ability of an SH2 domain to bind to the N-terminal side of pY has been systematically examined. A pY peptide library containing completely randomized residues at positions -5 to -1 (relative to pY, which is position 0) was synthesized on TentaGel resin and screened against the four SH2 domains of phosphatases SHP-1 and SHP-2. Positive beads that carry high-affinity ligands of the SH2 domains were identified using an enzyme-linked assay, and the peptides were sequenced by partial Edman degradation and matrix-assisted laser desorption ionization mass spectrometry. The N-terminal SH2 domain of SHP-2 binds specifically to peptides of the consensus sequence (H/F)XVX(T/S/A)pY. Further binding studies with individually synthesized pY peptides show that pY and the five residues N-terminal to pY, but not any of the C-terminal residues, are important for binding. The other three SH2 domains also bound to the library beads, albeit more weakly, and the selected peptides did not show any clear consensus. These results demonstrate that at least some SH2 domains can bind to pY peptides in an alternative mode by recognizing only the residues N-terminal to pY.  相似文献   

11.
Severe acute respiratory syndrome (SARS) is a highly contagious and life-threatening disease that emerged in China in November 2002. A novel SARS-associated coronavirus was identified as its principal etiologic agent; however, the immunopathogenesis of SARS and the role of special CTLs in virus clearance are still largely uncharacterized. In this study, potential HLA-A*0201-restricted spike (S) and nucleocapsid protein-derived peptides were selected from an online database and screened for potential CTL epitopes by in vitro refolding and T2 cell-stabilization assays. The antigenicity of nine peptides which could refold with HLA-A*0201 molecules was assessed with an IFN-gamma ELISPOT assay to determine the capacity to stimulate CTLs from PBMCs of HLA-A2(+) SARS-recovered donors. A novel HLA-A*0201-restricted decameric epitope P15 (S411-420, KLPDDFMGCV) derived from the S protein was identified and found to localize within the angiotensin-converting enzyme 2 receptor-binding region of the S1 domain. P15 could significantly enhance the expression of HLA-A*0201 molecules on the T2 cell surface, stimulate IFN-gamma-producing CTLs from the PBMCs of former SARS patients, and induce specific CTLs from P15-immunized HLA-A2.1 transgenic mice in vivo. Furthermore, significant P15-specific CTLs were induced from HLA-A2.1-transgenic mice immunized by a DNA vaccine encoding the S protein; suggesting that P15 was a naturally processed epitope. Thus, P15 may be a novel SARS-associated coronavirus-specific CTL epitope and a potential target for characterization of virus control mechanisms and evaluation of candidate SARS vaccines.  相似文献   

12.
The immunogenicity of HLA-A*0201-restricted cytotoxic T lymphocyte (CTL) peptide in severe acute respiratory syndrome coronavirus (SARS-CoV) nuclear capsid (N) and spike (S) proteins was determined by testing the proteins' ability to elicit a specific cellular immune response after immunization of HLA-A2.1 transgenic mice and in vitro vaccination of HLA-A2.1 positive human peripheral blood mononuclearcytes (PBMCs). First, we screened SARS N and S amino acid sequences for allele-specific motif matching those in human HLA-A2.1 MHC-I molecules. From HLA peptide binding predictions (http://thr.cit.nih.gov/molbio/hla_bind/), ten each potential N- and S-specific HLA-A2.1-binding peptides were synthesized. The high affinity HLA-A2.1 peptides were validated by T2-cell stabilization assays, with immunogenicity assays revealing peptides N223-231, N227-235, and N317-325 to be the first identified HLA-A*0201-restricted CTL epitopes of SARS-CoV N protein. In addition, previous reports identified three HLA-A*0201-restricted CTL epitopes of S protein (S978-986, S1203-1211, and S1167-1175), here we found two novel peptides S787-795 and S1042-1050 as S-specific CTL epitopes. Moreover, our identified N317-325 and S1042-1050 CTL epitopes could induce recall responses when IFN-gamma stimulation of blood CD8+ T-cells revealed significant difference between normal healthy donors and SARS-recovered patients after those PBMCs were in vitro vaccinated with their cognate antigen. Our results would provide a new insight into the development of therapeutic vaccine in SARS.  相似文献   

13.
The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) can be proteolytically activated by cathepsins B and L upon viral uptake into target cell endosomes. In contrast, it is largely unknown whether host cell proteases located in the secretory pathway of infected cells and/or on the surface of target cells can cleave SARS S. We along with others could previously show that the type II transmembrane protease TMPRSS2 activates the influenza virus hemagglutinin and the human metapneumovirus F protein by cleavage. Here, we assessed whether SARS S is proteolytically processed by TMPRSS2. Western blot analysis revealed that SARS S was cleaved into several fragments upon coexpression of TMPRSS2 (cis-cleavage) and upon contact between SARS S-expressing cells and TMPRSS2-positive cells (trans-cleavage). cis-cleavage resulted in release of SARS S fragments into the cellular supernatant and in inhibition of antibody-mediated neutralization, most likely because SARS S fragments function as antibody decoys. trans-cleavage activated SARS S on effector cells for fusion with target cells and allowed efficient SARS S-driven viral entry into targets treated with a lysosomotropic agent or a cathepsin inhibitor. Finally, ACE2, the cellular receptor for SARS-CoV, and TMPRSS2 were found to be coexpressed by type II pneumocytes, which represent important viral target cells, suggesting that SARS S is cleaved by TMPRSS2 in the lung of SARS-CoV-infected individuals. In summary, we show that TMPRSS2 might promote viral spread and pathogenesis by diminishing viral recognition by neutralizing antibodies and by activating SARS S for cell-cell and virus-cell fusion.  相似文献   

14.
严重急性呼吸系统综合征(severe acute respiratory syndrome,SARS)是由严重急性呼吸系统综合征冠状病毒(SARS corona-vims,SARS-CoV)引起的呼吸系统疾病。SARS-CoV的刺突蛋白(spike protein)具有S1和S2两个独特的功能结构域,研究发现两者都是进行疫苗和抗体研究的理想和有效的靶点。对非典疫苗的研究生产非常有价值,对预防和治疗SARS也有重大意义。  相似文献   

15.
Gan W  Roux B 《Proteins》2009,74(4):996-1007
Cellular signal transduction pathways are controlled by specific protein-protein interactions mediated by the binding of short peptides to small modular interaction domains. To gain insights into the specificity of these interactions, the association of phosphotyrosine-containing peptides to Src Homology 2 (SH2) domains is characterized using computations. Molecular dynamics simulations based on high-resolution crystal structures complemented by homology models are used to calculate the absolute binding free energies for 25 SH2-peptides pairs. The calculations are carried out using a potential of mean force free energy simulations method with restraining potentials that was developed previously (Woo and Roux, Proc Natl Acad Sci USA 2005;102:6825-6830). The method is utilized in conjunction with an implicit solvent representation to reduce the computational cost to characterize the association of five SH2 domains and five peptides. Specificity is ascertained by directly comparing the affinities of a given SH2 domain binding for any of the different peptides. For three of the five SH2 domains, the computational results rank the native peptides, as the most preferred binding motif. For the remaining two SH2 domains, high affinity binding motifs other than the native peptides are identified. This study illustrates how free energy computations can complement experiments in trying to elucidate complex protein-protein interactions networks.  相似文献   

16.
The severe acute respiratory syndrome (SARS) 3C-like protease consists of two distinct folds, namely the N-terminal chymotrypsin fold containing the domains I and II hosting the complete catalytic machinery and the C-terminal extra helical domain III unique for the coronavirus 3CL proteases. Previously the functional role of this extra domain has been completely unknown, and it was believed that the coronavirus 3CL proteases share the same enzymatic mechanism with picornavirus 3C proteases, which contain the chymotrypsin fold but have no extra domain. To understand the functional role of the extra domain and to characterize the enzyme-substrate interactions by use of the dynamic light scattering, circular dichroism, and NMR spectroscopy, we 1) dissected the full-length SARS 3CL protease into two distinct folds and subsequently investigated their structural and dimerization properties and 2) studied the structural and binding interactions of three substrate peptides with the entire enzyme and its two dissected folds. The results lead to several findings; 1) although two dissected parts folded into the native-like structures, the chymotrypsin fold only had weak activity as compared with the entire enzyme, and 2) although the chymotrypsin fold remained a monomer within a wide range of protein concentrations, the extra domain existed as a stable dimer even at a very low concentration. This observation strongly indicates that the extra domain contributes to the dimerization of the SARS 3CL protease, thus, switching the enzyme from the inactive form (monomer) to the active form (dimer). This discovery not only separates the coronavirus 3CL protease from the picornavirus 3C protease in terms of the enzymatic mechanism but also defines the dimerization interface on the extra helical domain as a new target for design of the specific protease inhibitors. Furthermore, the determination of the preferred solution conformation of the substrate peptide S1 together with the NMR differential line-broadening and transferred nuclear Overhauser enhancement study allows us to pinpoint the bound structure of the S1 peptide.  相似文献   

17.
The coronavirus spike (S) protein mediates infection of receptor-expressing host cells and is a critical target for antiviral neutralizing antibodies. Angiotensin-converting enzyme 2 (ACE2) is a functional receptor for the coronavirus (severe acute respiratory syndrome (SARS)-CoV) that causes SARS. Here we demonstrate that a 193-amino acid fragment of the S protein (residues 318-510) bound ACE2 more efficiently than did the full S1 domain (residues 12-672). Smaller S protein fragments, expressing residues 327-510 or 318-490, did not detectably bind ACE2. A point mutation at aspartic acid 454 abolished association of the full S1 domain and of the 193-residue fragment with ACE2. The 193-residue fragment blocked S protein-mediated infection with an IC(50) of less than 10 nm, whereas the IC(50) of the S1 domain was approximately 50 nm. These data identify an independently folded receptor-binding domain of the SARS-CoV S protein.  相似文献   

18.
Tang TK  Wu MP  Chen ST  Hou MH  Hong MH  Pan FM  Yu HM  Chen JH  Yao CW  Wang AH 《Proteomics》2005,5(4):925-937
Severe acute respiratory syndrome (SARS) is a serious health threat and its early diagnosis is important for infection control and potential treatment of the disease. Diagnostic tools require rapid and accurate methods, of which a capture ELISA method may be useful. Toward this goal, we have prepared and characterized soluble full-length nucleocapsid proteins (N protein) from SARS and 229E human coronaviruses. N proteins form oligomers, mostly as dimers at low concentration. These two N proteins degrade rapidly upon storage and the major degraded N protein is the C-terminal fragment of amino acid (aa) 169-422. Taken together with other data, we suggest that N protein is a two-domain protein, with the N-terminal aa 50-150 as the RNA-binding domain and the C-terminal aa 169-422 as the dimerization domain. Polyclonal antibodies against the SARS N protein have been produced and the strong binding sites of the anti-nucleocapsid protein (NP) antibodies produced were mapped to aa 1-20, aa 150-170 and aa 390-410. These sites are generally consistent with those mapped by sera obtained from SARS patients. The SARS anti-NP antibody was able to clearly detect SARS virus grown in Vero E6 cells and did not cross-react with the NP from the human coronavirus 229E. We have predicted several antigenic sites (15-20 amino acids) of S, M and N proteins and produced antibodies against those peptides, some of which could be recognized by sera obtained from SARS patients. Antibodies against the NP peptides could detect the cognate N protein clearly. Further refinement of these antibodies, particularly large-scale production of monoclonal antibodies, could lead to the development of useful diagnostic kits for diseases associated with SARS and other human coronaviruses.  相似文献   

19.
Coronavirus (CoV) entry is mediated by the viral spike (S) glycoprotein, a class I viral fusion protein. During viral and target cell membrane fusion, the heptad repeat (HR) regions of the S2 subunit assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of viral and target cell membranes; however, the exact mechanism is unclear. Here, we characterize an aromatic amino acid rich region within the ectodomain of the S2 subunit that both partitions into lipid membranes and has the capacity to perturb lipid vesicle integrity. Circular dichroism analysis indicated that peptides analogous to the aromatic domains of the severe acute respiratory syndrome (SARS)-CoV, mouse hepatitis virus (MHV) and the human CoV OC43 S2 subunits, did not have a propensity for a defined secondary structure. These peptides strongly partitioned into lipid membranes and induced lipid vesicle permeabilization at peptide/lipid ratios of 1:100 in two independent leakage assays. Thus, partitioning of the peptides into the lipid interface is sufficient to disorganize membrane integrity. Our study of the S2 aromatic domain of three CoVs provides supportive evidence for a functional role of this region. We propose that, when aligned with the fusion peptide and transmembrane domains during membrane apposition, the aromatic domain of the CoV S protein functions to perturb the target cell membrane and provides a continuous track of hydrophobic surface, resulting in lipid-membrane fusion and subsequent viral nucleocapsid entry.  相似文献   

20.
Detection of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is a crucial tool for fighting the COVID‐19 pandemic. This dataset brief presents the exploration of a shotgun proteomics dataset acquired on SARS‐CoV‐2 infected Vero cells. Proteins from inactivated virus samples were extracted, digested with trypsin, and the resulting peptides were identified by data‐dependent acquisition tandem mass spectrometry. The 101 peptides reporting for six viral proteins were specifically analyzed in terms of their analytical characteristics, species specificity and conservation, and their proneness to structural modifications. Based on these results, a shortlist of 14 peptides from the N, S, and M main structural proteins that could be used for targeted mass‐spectrometry method development and diagnostic of the new SARS‐CoV‐2 is proposed and the best candidates are commented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号