首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the course of identifying scuticociliates recently obtained from systemically infected olive flounder Paralichthys olivaceus in Korea, we found a scuticociliate species whose small subunit ribosomal RNA (SS rRNA) gene was not amplified by species-specific primers previously designed for Uronema marinum and Pseudocohnilembus persalinus. By studying morphological characteristics of wet-mounted and stained specimens, we identified the species as Philasterides dicentrarchi, which has been reported to cause systemic infection in the European sea bass Dicentrarchus labrax and turbot Scophthalmus maximus. In this study, we compared morphological characteristics of our specimens with previously reported Philasterides species, including P. dicentrarchi, and sequenced the SS rRNA gene in order to design P. dicentrarchi specific primers. This is the first report on scuticociliatosis caused by P. dicentrarchi from marine fish in Asia.  相似文献   

2.
CpG oligodeoxynucleotides (CpG-ODNs) stimulate innate and adaptive immunity by binding to TLR9 molecules. Paradoxically, expression of the immunoregulatory enzyme indoleamine 2,3-dioxygenase (IDO) is induced following i.v. CpG-ODN administration to mice. CpG-ODNs induced selective IDO expression by a minor population of splenic CD19+ dendritic cells (DCs) that did not express the plasmacytoid DC marker 120G8. Following CpG-ODN treatment, CD19+ DCs acquired potent IDO-dependent T cell suppressive functions. Signaling through IFN type I receptors was essential for IDO up-regulation, and CpG-ODNs induced selective activation of STAT-1 in CD19+ DCs. Thus, CpG-ODNs delivered systemically at relatively high doses elicited potent T cell regulatory responses by acting on a discrete, minor population of splenic DCs. The ability of CpG-ODNs to induce both stimulatory and regulatory responses offers novel opportunities for using them as immunomodulatory reagents but may complicate therapeutic use of CpG-ODNs to stimulate antitumor immunity in cancer patients.  相似文献   

3.
Unmethylated CpG dinucleotide (CpG motif) is involved in the exacerbation of DNA-associated autoimmune diseases. We investigated the effect of DNA containing 8-hydroxydeoxyguanosine (oxo-dG), a representative DNA biomarker for oxidative stress in the diseases, on CpG motif-dependent inflammatory responses. ODN1668 and ODN1720 were selected as CpG-DNA and non-CpG DNA, respectively. Deoxyguanosine in the CpG motif (G9) or outside the motif (G15) of ODN1668 was substituted with oxo-dG to obtain oxo(G9)-1668 and oxo(G15)-1668, respectively. Oxo(G15)-1668 induced a significantly higher amount of tumor necrosis factor (TNF)-α from RAW264.7 macrophage-like cells than ODN1668, whereas oxo(G9)-1668, oxo(G8)-1720, or oxo(G15)-1720 hardly did. CpG DNA-induced TNF-α production was significantly increased by addition of oxo(G8)-1720 or oxo(G15)-1720, but not of ODN1720. This oxo-dG-containing DNA-induced increase in TNF-α production was also observed in primary cultured macrophages isolated from wild-type mice, but not observed in those from Toll-like receptor (TLR)-9 knockout mice. In addition, TNF-α production by ligands for TLR3, TLR4, or TLR7 was not affected by oxo-dG-containing DNA. Then, the footpad swelling induced by subcutaneous injection of ODN1668 into mice was increased by coinjection with oxo(G8)-1720, but not with ODN1720. These results indicate that oxo-dG-containing DNA increases the CpG motif-dependent inflammatory responses, which would exacerbate DNA-related autoimmune diseases.  相似文献   

4.
Oligodeoxynucleotides (ODNs) that contain unmethylated CpG dinucleotides (CpG-ODN) trigger a strong innate immune response in vertebrates. They have been used to eradicate experimental neuroblastoma, but a direct interaction of CpG-ODN with neuroblastoma cells has not been investigated. We have analyzed uptake, binding, and intracellular distribution of CpG-ODN in the neuroblastoma cells line SKNSH. Our results indicate that cellular uptake of CpG-ODN is dose, time, temperature, and energy dependent but independent of the CpG motif. After internalization, CpGODN localized to the cytoplasm and showed a typical speckled distribution pattern. The intracellular distribution pattern and binding proteins are CpG motif independent as well. Thus, CpG-ODNs are taken up by neuroblastoma cells by a nonspecific transfer mechanism for oligonucleotides and interact with intracellular proteins. These mechanisms might help us to understand the biodistribution of oligo within tumors and might be helpful in evaluating the therapeutic effects of oligonucleotides and rational drug design.  相似文献   

5.
The immune system of vertebrates detects bacterial DNA as a "danger signal" based on the presence of unmethylated CpG motifs. We examined whether oligodeoxynucleotides (ODNs) with CpG motifs (CpG-ODNs) also induce mobilization of hematopoietic progenitor cells (HPCs). Mice challenged with CpG-ODNs showed an increase in peripheral blood colony-forming units (CFU) with a peak at day 4 after treatment, associated with an increase, starting 30 min after CpG treatment, in serum levels of mouse keratinocyte-derived chemokine (mKC), a functional homolog of human interleukin (IL) 8; production of granulocyte-colony-stimulating factor (CSF) was also detected. Mobilization and mKC induction were sequence-specific and dose-dependent occurring even with low doses of CpG-ODNs. Interestingly, intestinal cells were involved in mKC production. HPC mobilization by CpG-ODNs was dependent on peripheral blood mononuclear cells since mobilization was reduced in neutrophil-depleted mice. Moreover, CpG-ODN treatment significantly increased G-CSF mobilizing capacity. Finally, pretreatment with an anti-mKC neutralizing antibody significantly reduced CpG-induced mobilization, further supporting a role for mKC. Thus, bacterial DNA is a "danger signal" not only for immune cells but also for hematopoietic cells, communicating the need for increased hematopoiesis during infections and for the renewal of the immune system. The HPC mobilization activity of CpG-ODNs will need to be considered in the design of treatment regimens for cancer clinical trials using CpG-ODNs in association with chemotherapy.  相似文献   

6.
Immunostimulatory activities of synthetic oligodeoxynucleotides containing CpG motifs (CpG-ODNs) have gained attention as potentially useful immunotherapeutics. However, CpG-ODNs induce harmful and lethal shock effects because they greatly enhance the sequence-dependent induction of tumor necrosis factor-alpha (TNF-alpha). We have shown that phosphorothioate-modified oligodeoxynucleotides (PS-ODNs) of the CpG-ODN 1826 stimulate TNF-alpha gene expression, TNF-alpha promoter activity, IkappaB degradation, and NF-kappaB activation at higher levels compared with its phosphodiester ODN (PO-ODN). In contrast to the effects of CpG-ODN 1826, PS-ODN of the CpG-ODN 2006 showed lower stimulatory activities than its PO-ODN. Using transient transfection, it was found that myeloid differentiation protein (MyD88) and tumor necrosis factor receptor-associated factor 6 are commonly required for activation of the TNF-alpha promoter by various CpG-ODNs with different potencies. These results strongly suggest a possibility to optimally activate the innate immune responses by modulating the potency of CpG-ODNs via sequence rearrangement and phosphorothioate backbone modification.  相似文献   

7.
Synthetic nonmethylated oligonucleotides containing CpG dinucleotides (CpG-ODNs) have been shown to exhibit immunostimulatory activity. CpG-ODNs have the capacity to directly activate B cells, macrophages, and dendritic cells, and we show here that this is reflected by cell surface binding of oligonucleotides to these cell subsets. However, T cells are not directly activated by CpG-ODNs, which correlates with the failure to bind to the T-cell surface. Efficient competition for CpG-induced B-cell activation by non-CpG-containing oligonucleotides suggests that oligonucleotides might bind to an as yet undefined sequence-nonspecific receptor prior to cellular activation. Induction of protective T-cell responses against challenge infection with lymphocytic choriomeningitis virus (LCMV) or with recombinant vaccinia virus expressing the LCMV glycoprotein was achieved by immunizing mice with the immunodominant major histocompatibility complex class I-binding LCMV glycoprotein-derived peptide gp33 together with CpG-ODNs. In these experiments, B cells, potentially serving as CpG-ODN-activated antigen-presenting cells (APCs), were not required for induction of protective immunity since CpG-ODN-gp33-immunized B-cell-deficient mice were equally protected against challenge infection with both viruses. This finding suggested that macrophages and/or dendritic cells were sufficiently activated in vivo by CpG-ODNs to serve as potent APCs for the induction of naive T cells. Furthermore, treatment with CpG-ODN alone induced protection against infection with Listeria monocytogenes via antigen-independent activation of macrophages. These data suggest that CpG activation of macrophages and dendritic cells may provide a critical step in CpG-ODN adjuvant activity.  相似文献   

8.
In this study, we have attempted to determine whether the systemic administration of CpG oligodeoxynucleotide (CpG-ODN) 1826 would protect mice against systemic lethal Candida albicans infection. CpG-ODNs were found completely to protect mice from death and also reduced the growth of C. albicans in the kidneys. The administration of CpG-ODNs resulted in early interleukin (IL)-12 mRNA expression in the kidneys and an increase in serum IL-12 levels. The protective activity of CpG-ODN was abolished in IL-12-deficient (IL-12-/-) mice, thereby indicating the IL-12-dependency inherent to the effects of CpG-ODN. The protective effect of CpG-ODN was not associated with the activity of NF-kappaB. Interestingly, in tumor necrosis factor (TNF)-alpha-deficient (TNF-/-) mice CpG-ODN neither exerted protective effects nor induced IL-12 expression. These data indicate that CpG-ODN protects animals against lethal C. albicans challenge via a pathway that involves the TNF-alpha-dependent induction of IL-12.  相似文献   

9.
The aims of the present study were to find more powerful promoter for DNA vaccines in olive flounder (Paralichthys olivaceus) and to evaluate the availability of the auxotrophic Edwardsiella tarda mutant (Δalr Δasd E. tarda) as a delivery vehicle for DNA vaccine against VHSV in olive flounder. The marine medaka (Oryzias dancena) β-actin promoter was clearly stronger than cytomegalovirus (CMV) promoter when the vectors were transfected to Epithelioma papulosum cyprini (EPC) cells or injected into the muscle of olive flounder, suggesting that marine medaka β-actin promoter would be more appropriate promoter for DNA vaccines in olive flounder than CMV promoter. Olive flounder immunized with the Δalr Δasd E. tarda harboring viral hemorrhagic septicemia virus (VHSV) DNA vaccine vector driven by the marine medaka β-actin promoter showed significantly higher serum neutralization titer and higher survival rates against challenge with VHSV than fish immunized with the bacteria carrying VHSV DNA vaccine vector driven by CMV promoter. These results indicate that auxotrophic E.?tarda mutant harboring marine medaka β-actin promoter-driven DNA vaccine vectors would be a potential system for prophylactics of infectious diseases in olive flounder.  相似文献   

10.
Philasterides dicentrarchi is a histophagous scuticociliate infecting Korean olive flounder farms in Jeju Island, South Korea, where it causes significant economic losses. However, the route of entry of these parasites in olive flounder is currently unknown. In the present study, we attempted experimental infection with different doses (concentrations) of P. dicentrarchi by intraperitoneal (IP) injection; maximum cumulative mortality of 95% was recorded on the administration of 2.1×10(8) ciliates/ml. In small size group (3 cm length, 24±2 gwt) the ciliates were found in connective tissues of muscle, fins, and nervous tissue while in large size group (5 cm length, 47±3 gwt), the ciliates were predominantly occurred with associated symptoms of liquefaction in the central nervous system. The major clinico-pathological manifestations were loss of scales, appearance of bleached spots that coalesced to form brownish patches, hemorrhagic, and severe dermal necrotic lesion. In addition there was degeneration of muscle fibers, necrosis of the hepatic parenchyma, and severe edema of the intestinal walls, extensive fouling, necrotic degeneration and hyperplasia in the gill bronchial epithelium. In this study, many ciliates were found in the blood vessel, brain, dorsal fins, muscle, kidney, and vertebra of infected flounder. The histopathological investigations are of significant importance in view of possible routes of entry into the host and doses of ciliates that trigger fast infection for potential utility of drugs as a strategy for the control of P. dicentrarchi in farmed olive flounder.  相似文献   

11.
Unmethylated CpG oligodinucleotides (CpG-ODN) flanked by specific bases found in bacterial DNA are known to stimulate innate immune responses. In this study, synthetic CpG-ODNs were evaluated for their in vitro stimulation of leukocyte and in vivo protection against Salmonella enteritidis (SE) in neonatal chickens. Our studies showed that CpG-ODN stimulated bactericidal activities, releasing granules (degranulation) and generating reactive oxygen species (oxidative burst), in chicken heterophils and up regulated nitric oxide production in chicken peripheral blood monocytes. When day-old chickens were given (i.p.) synthetic CpG-ODNs followed by oral challenge of SE, a significant reduction (p<0.05) of organ invasion by SE was observed in chickens pretreated with CpG-ODN containing the immunostimulatory GTCGTT motif. This CpG-OND also significantly reduced mortality of chickens with acute peritoneal infection of SE. Our study provides evidence that immunostimulatory CpG-ODN stimulated innate immune activities and enhanced the resistance to infectious pathogens in neonatal chickens.  相似文献   

12.
Bacterial DNA activates the innate immune system via interactions with Toll-like receptor 9 (TLR9). This receptor recognizes CpG-oligodeoxynucleotides (CpG-ODNs) mimicking the CpG dinucleotides in certain sequence contexts characterizing this DNA. Most studies have shown increased osteoclast differentiation by TLR ligands. We found that activation of TLRs (specifically TLR4 and TLR9) in early osteoclast precursors results in inhibition of receptor activator of NF-kappaB ligand (RANKL)-induced osteoclast differentiation. Our objective is to identify the mechanism leading to this inhibitory effect of a TLR ligand. Since both RANKL-RANK and CpG-ODN-TLR9 interactions result in NF-kappaB activation, p38 and ERK phosphorylation, and TNF-alpha synthesis (all implicated in osteoclastogenesis), we hypothesized that CpG-ODN (but not RANKL) in addition induces the synthesis of an anti-osteoclastogenic factor. Control osteoclast precursors, and cells treated with RANKL, CpG-ODN, or their combination were studied using DNA arrays (GEArray Q Series Mouse NF-kappaB Signaling Pathway Gene Array, MM-016, SuperArray). We found a marked increase in the mRNA levels of the osteoclastogenesis inhibitor interleukin-12 (IL-12) in osteoclast precursors treated with CpG-ODN and CpG-ODN + RANKL. Northern and Western analyses, together with ELISA, confirmed the DNA array studies. In correlation with these findings, IL-12 inhibited RANKL-induced osteoclast differentiation and specific anti-IL-12-antibodies inhibited the anti-osteoclastogenic effect of CpG-ODN. In conclusion, activation of TLR9 by its ligand, CpG-ODN, results in synthesis and release of IL-12 opposing RANKL-induced osteoclast differentiation.  相似文献   

13.
Streptococcus iniae is the major etiological agent of streptococcosis, which is responsible for hemorrhagic septicemia in fish, particularly olive flounder (Paralichthys olivaceus). In the present study, we sought to understand the pathogenicity and immunogenicity of S. iniae in order to develop a vaccine for streptococcosis. Immunoproteomics, a technique involving two-dimensional gel electrophoresis (2-DE) followed by immunoblotting, was employed to investigate the pathogenicity and immunogenicity of two S. iniae isolates, Jeju-13 and Jeju-45, in olive flounder. The virulence of Jeju-13 was moderate whereas that of Jeju-45 was high. A vaccination trial with formalin-killed Jeju-45 demonstrated relatively low protection against the homologous isolate compared with the heterologous isolate. A significant difference in the secretion of extracellular products (ECPs) was noticed between the two S. iniae isolates. ECP antigens were highly immunogenic compared to those from whole cell lysates as determined by 2-DE immunoblot assay of Jeju-13 and Jeju-45 anti-sera collected from post-challenge survival fish. Furthermore, there were differences in the appearance of antigenic spots on 2-DE immunoblot profiles of ECPs of the respective sera. Interestingly, the mixture of killed-cells and concentrated ECPs from Jeju-45 led to significant protection against the homologous isolate of S. iniae in olive flounder. The present study demonstrates the usefulness of immunoproteomics in understanding the pathogenicity of S. iniae to aid the development of a vaccine for fish streptococcosis.  相似文献   

14.
In order to test whether immobilization antigens (i-antigens) of Philasterides dicentrarchi could be suitable antigenic targets against scuticociliatosis, polyclonal olive flounder (Paralichthys olivaceus) sera were raised against P. dicentrarchi by immunization with lysates of ciliates grown using chinook salmon epithelial (CHSE) cells, and the ability of the immune sera to kill the ciliates via classical complement pathway was analyzed in relation to agglutination activity. The immune sera showed clear agglutination activity against the CHSE-cultured ciliates. However, the agglutinated ciliates were not killed but escaped from the agglutinated mass within a few hours. Ciliates isolated from fish artificially infected with the same population of CHSE-cultured ciliates were not agglutinated by the immune sera even at the lowest dilution. In antibody-dependent complement-mediated killing (ADCK), the immune sera completely killed the CHSE-cultured ciliates at relatively higher serum dilutions (showing low or no agglutination activity). However, CHSE-cultured ciliates were not killed completely at lower immune serum dilutions (showing high agglutination activity). In contrast to CHSE-cultured ciliates, the ciliates isolated from infected fish were killed at lower dilutions of the immune sera in spite of no agglutination response. Considering the presence of various i-antigen types, ability to change i-antigen type in response to corresponding antibody, and relatively low ADCK activity at high agglutination titer, i-antigens of P. dicentrarchi may not be good targets for subunit vaccine development. To develop subunit vaccines against scuticociliatosis, other surface antigens expressed constitutively or expressed specifically under the infection state for survival of the ciliates in the host fish might be more favorable to elicit protective antibodies than the surface i-antigens.  相似文献   

15.
Several types of CpG-oligodeoxynucleotides (ODN) have been recently characterized. In mice, type A(D) CpG-ODNs primarily stimulate macrophages and dendritic cells, but fail to stimulate B cells. On the contrary, type B(K) CpG-ODNs are excellent B cell activators. Type C CpG-ODNs combine features of both types A(D) and B(K) CpG-ODNs. Despite cell type preferences, all CpG-ODNs require the presence of TLR9 for activation. In this study, we show that a subset of B cells from lupus mice responds to type A(D) CpG-ODN stimulation vigorously and directly with increased CD25 and CD86 expression and IL-10 secretion. Furthermore, these CpG-ODNs induce high surface IgM expression and promote 50- to 100-fold higher IgM and IgG3 secretion in lupus B cells than in controls. This response is similar to that seen with bacterial DNA stimulation of B cells. Type A(D)-responsive cells are enriched within lupus B cells with the marginal zone (MZ) phenotype. These cells are at least twice more numerous in lupus mice than in controls. The ability of lupus B cells to respond to type A(D) CpG-ODN stimulation is not due to differential TLR9 expression. Therefore, type A(D) CpG-ODNs may contribute to the lupus pathogenesis by inducing MZ-B cell activation, costimulatory molecule expression, and polyclonal Ig secretion. Through increased IL-10 secretion, MZ-B cells may also modify the activity of other cell types, particularly dendritic cells and macrophages.  相似文献   

16.
Unmethylated CpG oligodeoxynucleotides (CpG-ODNs) interact with Toll-like receptor (TLR) 9 to activate macrophage/microglia in central nervous system (CNS). Here, we investigated the potential involvement of the chemokine CCL9 and its receptor CCR1 in the effects of CpG-ODNs on macrophage/microglial cells. CpG-ODNs enhanced the expression of TLR9 mRNA of RAW264.7 macrophage and BV2 microglia cells time dependently. The expression of CCL9 of macrophages/microglia showed different responsiveness upon stimulation with a variety of CpG-ODN sequences. The CpG-ODNs-mediated induction of CCL9 was TLR9/MyD88 dependent and associated with activation of stress kinases, particularly ERK, p38 MAPK and PI3K. The expression of CCR1 was also significantly increased by CpG-ODNs that increased CCL9 expression. These results reveal the potential involvement of CCL9 and CCR1 in regulation of macrophage and microglial cells by CpG-ODNs and may help improving our understanding about the role of the chemokine/chemokine receptor pairs in macrophage/microglia under physiologic and pathologic conditions.  相似文献   

17.
18.
19.
20.
The effect of five probiotics, Lactobacillus plantarum, Lactobacillus acidophilus, Lactobacillus sakei, Bacillus subtilis, and Saccharomyces cerevisiae as individual and mixed enriched diet on the seasonal prevalence, activity and intensity of Uronema marinum infection in olive flounder Paralichthys olivaceus is reported. The growth performance, feed efficiency, blood biochemistry, survival rate, and non-specific immune response of U. marinum infected olive flounder on week 0, 1, 2, 4, 6, and 8 were quantified. The prevalence and infection intensity reached a peak from June to December and then it declined from December to March. The scuticocidal activity in the serum was significantly higher when fed with L. plantarum, L. acidophilus, and S. cerevisiae diets on weeks 2-8. All enriched diets significantly enhanced the weight gain significantly between week 6 and 8; the feed efficiency registered a significantly increase from week 4 to 8 when compared to infected fish fed with control diet. Infected fish fed with L. plantarum-supplemented diet had higher survival rate than with other enriched diets. The serum aspartate aminotransferase (GOT) and alanine aminotransferase (GPT) levels significantly increased when fed with L. plantarum, L. acidophilus or S. cerevisiae-supplemented diet. Total protein (TP) and glucose (GLU) level significantly increased with any enriched diet from week 4 to 8. The superoxide anion production and serum lysozyme activity registered a significant increase when fed with L. plantarum, L. acidophilus, and S. cerevisiae-supplemented diet from week 4-8. The present study concludes that L. plantarum, L. acidophilus, and S. cerevisiae-supplemented diets act as immunostimulants enhancing the growth, feed efficiency, blood biochemistry, survival rate, and non-specific immune response in U. marinum infected olive flounder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号