首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Mutational analyses of the secreted recombinant insulin receptor extracellular domain have identified a ligand binding site composed of residues located in the L1 domain (amino acids 1-470) and at the C terminus of the alpha subunit (amino acids 705-715). To evaluate the physiological significance of this ligand binding site, we have transiently expressed cDNAs encoding full-length receptors with alanine mutations of the residues forming the functional epitopes of this binding site and determined their insulin binding properties. Insulin bound to wild-type receptors with complex kinetics, which were fitted to a two-component sequential model; the Kd of the high affinity component was 0.03 nM and that of the low affinity component was 0.4 nM. Mutations of Arg14, Phe64, Phe705, Glu706, Tyr708, Asn711, and Val715 inactivated the receptor. Alanine mutation of Asn15 resulted in a 20-fold decrease in affinity, whereas mutations of Asp12, Gln34, Leu36, Leu37, Leu87, Phe89, Tyr91, Lys121, Leu709, and Phe714 all resulted in 4-10-fold decreases. When the effects of the mutations were compared with those of the same mutations of the secreted recombinant receptor, significant differences were observed for Asn15, Leu37, Asp707, Leu709, Tyr708, Asn711, Phe714, and Val715, suggesting that the molecular basis for the interaction of each form of the receptor with insulin differs. We also examined the effects of alanine mutations of Asn15, Gln34, and Phe89 on insulin-induced receptor autophosphorylation. They had no effect on the maximal response to insulin but produced an increase in the EC50 commensurate with their effect on the affinity of the receptor for insulin.  相似文献   

2.
The human insulin receptor is expressed as two isoforms that are generated by alternate splicing of its mRNA; the B isoform has 12 additional amino acids (718-729) encoded by exon 11 of the gene. The isoforms have been reported to have different ligand binding properties. To further characterize their insulin binding properties, we have performed structure-directed alanine-scanning mutagenesis of a major insulin binding site of the receptor, formed from the receptor L1 domain (amino acids 1-470) and amino acids 705-715 at the C terminus of the alpha subunit. Alanine mutants of each isoform were transiently expressed as recombinant secreted extracellular domain in 293 cells, and their insulin binding properties were evaluated by competitive binding assays. Mutation of Arg(86) and Phe(96) of each isoform resulted in receptors that were not secreted. The Kds of unmutated receptors were almost identical for both isoforms. Several new mutations compromising insulin binding were identified. In L1, mutation of Leu(37) decreased affinity 20- to 40-fold and mutations of Val(94), Glu(97), Glu(120), and Lys(121) 3 to 10-fold for each isoform. A number of mutations produced differential effects on the two isoforms. Mutation of Asn(15) in the L1 domain and Phe(714) at the C terminus of the alpha subunit inactivated the A isoform but only reduced the affinity of the B isoform 40- to 60-fold. At the C terminus of the alpha subunit, mutations of Asp(707), Val(713), and Val(715) produced 7- to 16-fold reductions in affinity of the A isoform but were without effect on the B isoform. In contrast, alanine mutations of Tyr(708) and Asn(711) inactivated the B isoform but only reduced the affinities of the A isoform 11- and 6-fold, respectively. In conclusion, alanine-scanning mutagenesis of the insulin receptor A and B isoforms has identified several new side chains contributing to insulin binding and indicates that the energetic contributions of certain side chains differ in each isoform, suggesting that different molecular mechanisms are used to obtain the same affinity.  相似文献   

3.
The high resolution crystal structure of an N-terminal fragment of the IGF-I receptor, has been reported. While this fragment is itself devoid of ligand binding activity, mutational analysis has indicated that its N terminus (L1, amino acids 1-150) and the C terminus of its cysteine-rich domain (amino acids 190-300) contain ligand binding determinants. Mutational analysis also suggests that amino acids 692-702 from the C terminus of the alpha subunit are critical for ligand binding. A fusion protein, formed from these fragments, binds IGF-I with an affinity similar to that of the whole extracellular domain, suggesting that these are the minimal structural elements of the IGF-I binding site. To further characterize the binding site, we have performed structure directed and alanine-scanning mutagenesis of L1, the cysteine-rich domain and amino acids 692-702. Alanine mutants of residues in these regions were transiently expressed as secreted recombinant receptors and their affinity was determined. In L1 alanine mutants of Asp(8), Asn(11), Tyr(28), His(30), Leu(33), Leu(56), Phe(58), Arg(59), and Trp(79) produced a 2- to 10-fold decrease in affinity and alanine mutation of Phe(90) resulted in a 23-fold decrease in affinity. In the cysteine-rich domain, mutation of Arg(240), Phe(241), Glu(242), and Phe(251) produced a 2- to 10-fold decrease in affinity. In the region between amino acids 692 and 702, alanine mutation of Phe(701) produced a receptor devoid of binding activity and alanine mutations of Phe(693), Glu(693), Asn(694), Leu(696), His(697), Asn(698), and Ile(700) exhibited decreases in affinity ranging from 10- to 30-fold. With the exception of Trp(79), the disruptive mutants in L1 form a discrete epitope on the surface of the receptor. Those in the cysteine-rich domain essential for intact affinity also form a discrete epitope together with Trp(79).  相似文献   

4.
Current evidence supports a binding model in which the insulin molecule contains two binding surfaces, site 1 and site 2, which contact the two halves of the insulin receptor. The interaction of these two surfaces with the insulin receptor results in a high affinity cross-linking of the two receptor alpha subunits and leads to receptor activation. Evidence suggests that insulin-like growth factor-I (IGF-I) may activate the IGF-I receptor in a similar mode. So far IGF-I residues structurally corresponding to the residues of the insulin site 1 together with residues in the C-domain of IGF-I have been found to be important for binding of IGF-I to the IGF-I receptor (e.g. Phe(23), Tyr(24), Tyr(31), Arg(36), Arg(37), Val(44), Tyr(60), and Ala(62)). However, an IGF-I second binding surface similar to site 2 of insulin has not been identified yet. In this study, we have analyzed whether IGF-I residues corresponding to the six residues of the insulin site 2 have a role in high affinity binding of IGF-I to the IGF-I receptor. Six single-substituted IGF-I analogues were produced, each containing an alanine substitution in one of the following positions (corresponding insulin residues in parentheses): Glu(9) (His(B10)), Asp(12) (Glu(B13)), Phe(16) (Leu(B17)), Asp(53) (Ser(A12)), Leu(54) (Leu(A13)), and Glu(58) (Glu(A17)). In addition, two analogues with 2 and 3 combined alanine substitutions were also produced (E9A,D12A IGF-I and E9A,D12A,E58A IGF-I). The results show that introducing alanine in positions Glu(9), Asp(12), Phe(16), Leu(54), and Glu(58) results in a significant reduction in IGF-I receptor binding affinity, whereas alanine substitution at position 53 had no effect on IGF-I receptor binding. The multiple substitutions resulted in a 33-100-fold reduction in IGF-I receptor binding affinity. These data suggest that IGF-I, in addition to the C-domain, uses surfaces similar to those of insulin in contacting its cognate receptor, although the relative contribution of the side chains of homologous residues varies.  相似文献   

5.
Mutations in the insulin receptor gene can cause insulin resistance. Previously, we have identified a mutation substituting glutamic acid for lysine at position 460 in the alpha-subunit of the insulin receptor in a patient with a genetic form of insulin resistance. In the present work, we have investigated the effect upon receptor function of amino acid substitutions at position 460. Decreasing the pH from 8.0 to 5.5 caused a progressive acceleration of the dissociation of 125I-insulin from the wild-type insulin receptor. Substitution of acidic amino acids (Glu or Asp) for Lys460 decreased the ability of acid pH to accelerate dissociation of 125I-insulin. In contrast, substitution of Arg or neutral amino acids (Val, Met, Thr, or Gln) had no effect upon the sensitivity to acid pH. Correlated with decreased sensitivity to acid pH, substitution of Glu or Asp at position 460 retarded the dissociation of 125I-insulin from intracellular receptors subsequent to receptor-mediated endocytosis. Furthermore, retardation of dissociation of 125I-insulin from the internalized receptor was associated with a decreased half-life of the receptor. In summary, the Glu460 mutation appears to cause insulin resistance by accelerating receptor degradation and, thereby, decreasing the number of insulin receptors on the cell surface. Additional studies suggested that Lys460 may provide the amino groups whereby disuccinimidyl suberate cross-links the two alpha-subunits to each other. Consistent with the hypothesis that Lys460 is located at the interface between adjacent alpha-subunits, substitutions at position 460 impair cooperative interactions among insulin binding sites. The Glu460 mutation decreases positively cooperative binding interactions; the Arg460 mutation impairs negative cooperativity. Mutations at position 460 in the alpha-subunit did not decrease the ability of insulin to stimulate receptor tyrosine kinase.  相似文献   

6.
Mutation of Asp(2.61(98)) at the extracellular boundary of transmembrane helix 2 of the gonadotropin-releasing hormone (GnRH) receptor decreased the affinity for GnRH. Using site-directed mutagenesis, ligand modification, and computational modeling, different side chain interactions of Asp(2.61(98)) that contribute to high-affinity binding were investigated. The conservative Asp(2. 61(98))Glu mutation markedly decreased the affinity for a series of GnRH analogues containing the native His(2) residue. This mutant showed smaller decreases in affinity for His(2)-substituted ligands. The loss of preference for His(2)-containing ligands in the mutant receptor shows that Asp(2.61(98)) determines the specificity for His(2). Analysis of the affinities of a series of position 2-substituted ligands suggests that a hydrogen bond forms between Asp(2.61(98)) and the delta NH group of His(2) and that Asp(2. 61(98)) forms a second hydrogen bond with the ligand. Substitution of Asp(2.61(98)) with an uncharged residue further decreased the affinity for all ligands and also decreased receptor expression. Computational modeling indicates an intramolecular ionic interaction of Asp(2.61(98)) with Lys(3.32(121)) in transmembrane helix 3. The uncharged, Lys(3.32(121))Gln mutation also markedly decreased agonist affinity. The modeling and the similar phenotypes of mutants with uncharged substitutions for Asp(2.61(98)) or Lys(3.32(121)) are consistent with the presence of this helix 2-helix 3 interaction. These studies support a dual role for Asp(2.61(98)): formation of an interhelical interaction with Lys(3.32(121)) that contributes to the structure of the agonist binding pocket and an interaction with His(2) of GnRH that helps stabilize agonist complexing.  相似文献   

7.
CD69 is the earliest leukocyte activation antigen playing a pivotal role in cellular signaling. Here, we show that a globular C-terminal domain of CD69 belonging to C-type lectins binds calcium through Asp 171, Glu 185, and Glu 187 with K(d) approximately 54 microM. Closure of the calcium-binding site results in a conformational shift of Thr 107 and Lys 172. Interestingly, structural changes in all of these amino acids lead to the formation of high-affinity binding sites for N-acetyl-D-glucosamine. Similarly, a structural change in Glu 185 and Glu 187 contributes to a high-affinity site for N-acetyl-D-galactosamine. Site-directed mutagenesis and molecular modeling allowed us to describe the structural details of binding sites for both carbohydrates. These studies explain the importance of calcium for recognition of carbohydrates by CD69 and provide an important paradigm for the role of weak interactions in the immune system.  相似文献   

8.
The effects of cationic polyamino acids on insulin binding to soluble insulin receptor preparations were studied. Incubation of partially or fully purified receptor preparations with polylysine (pLys) increased by several-fold the amount of [125I]insulin that remained associated with the receptor, as determined both by precipitation of receptor-insulin complexes by polyethylene glycol or by separation of the complexes from the free hormone by gel filtration. This elevation in the amount of bound insulin resulted from increased number of insulin binding sites, and could not be attributed to an increased affinity of the receptors to insulin. In fact, pLys reduced 2-3-fold the affinity of insulin binding to its receptor as determined by equilibrium binding studies, and by monitoring the rate of exchange of bound [125I]insulin with unlabeled hormone. pLys induced specific interactions between insulin and its native receptor since other basic compounds such as histone, spermidine, polymixin B, compound 48/80, lysine, and arginine failed to reproduce its effects. pLys did not interact with the free ligand, nor did it promote interactions between insulin and denatured receptor forms. Furthermore, pLys did not induce binding of insulin to other proteins present in the partially purified receptor preparations. The effects of pLys were time and dose-dependent and were proportional to the pLys chain length. The longer the chain, the greater was the effect. Enhanced insulin binding and receptor beta-subunit autophosphorylation (in the presence of insulin) exhibited a similar dependency on the chain length of pLys. pLys effects on insulin binding were associated with formation of large protein aggregates that remained trapped at the top of Sephacryl S-300 columns. These aggregates contained substantial amounts of receptor-insulin complexes. Our results suggest that pLys induces formation of receptor clusters that create de novo insulin binding sites among adjacent receptor tetramers. Alternatively, formation of receptor aggregates might facilitate insulin binding to a soluble receptor subfraction that otherwise fails to bind the hormone.  相似文献   

9.
Burendahl S  Treuter E  Nilsson L 《Biochemistry》2008,47(18):5205-5215
The liver receptor homologue 1 (LRH-1 (NR5A2)) belongs to the orphan nuclear receptor family, indicating that initially no ligand was known. Although recent studies have shown that ligand binding can be obtained, the biological relevance remains elusive. Here, we modify the observed X-ray ligand into a biologically more significant phospholipid (phosphatidylserine, PS) present in human, to study, by molecular dynamics (MD) simulations, the impact of the ligand on the receptor and the interaction with different cofactor peptides. Furthermore, we characterize the interactions between receptor and the cofactor peptides of DAX-1 (NR0B1), Prox1 and SHP LXXLL box 1 and 2 (NR0B2) in terms of specificity. Our MD simulation results show different interaction patterns for the SHP box2 compared to DAX-1, PROX1 and SHP box1. SHP box2 shows specific interactions at its more C-terminal end while the other investigated peptides show specific interactions at several positions but particularly at the +2 site. The peptide +2 side chain interacts with a charged amino acid of the receptor, in hLRH-1 Asp372. Together with the charge clamp residues Arg361 and Glu534, Asp372 forms a triangle shaped charge clamp responsible for peptide orientation and increased affinity. The binding of the PS ligand causes no overall structural changes of the receptor but affects the interactions with cofactor peptides. The cofactor peptides from SHP decrease its interaction with the receptor upon ligand binding while DAX-1 and PROX1 are unchanged or increase. The diverse ligand binding response of the cofactor provides an opportunity for drug design with the possibility to create agonist ligands to modify cofactor interaction.  相似文献   

10.
Katancik JA  Sharma A  de Nardin E 《Cytokine》2000,12(10):1480-1488
The objective of this investigation was to determine the amino acid residues of the human neutrophil CXC chemokine receptor-2 (CXCR2) that are critical for binding the ligands interleukin 8 (IL-8), neutrophil-activating peptide-2 (NAP-2), and growth-related protein alpha (GROalpha) and critical for receptor-mediated signal transduction. Charged residues of the amino terminus and the first extracellular loop of CXCR2 were targeted for point mutagenesis studies. Seven separate CXCR2 mutants (Glu7, Asp9, Glu12, Asp13, Lys108, Asn110, and Lys120, all to Ala) were generated. Based on the Scatchard analysis of radioligand binding studies, the following amino acids were deemed critical for ligand binding: (i) Asp9, Glu12, Lys108, and Lys120 for IL-8 and (ii) Glu7, Asp9, and Glu12 for GROalpha. Point mutations in the amino terminus domain (Asp9 and Glu12) and the first extracellular loop (Lys108, Asn110, and Lys120) of CXCR2 reduced cell activation to all three ligands as measured by changes in intracellular calcium concentration. In conclusion, high-affinity binding of IL-8, NAP-2, and GROalpha to CXCR2 involves interaction with specific and different amino acid residues of CXCR2. Furthermore, we propose that the CXCR2 amino acid residues required for cell activation are not necessarily the same residues required for ligand binding.  相似文献   

11.
The cDNA of the human CXCR4/fusin was isolated from a human HeLa cell cDNA library by PCR and functionally expressed in Sf9 insect cells. The recombinant receptor was found to bind its natural ligand SDF-1alpha with an affinity comparable to that of the native receptor. Sequence-specific antibodies against each of the four extracellular domains were generated and used to investigate the interactions between the different domains of the receptor and the ligand. Each of the four antibodies was found to be able to inhibit ligand binding. CXCR4 was shown to be a glycoprotein. The role of N-glycosylation of CXCR4 in ligand binding was investigated in the insect cells overexpressed with recombinant CXCR4. Two potential N-glycosylation sites (Asn-11 and Asn-176) were either singly or doubly mutated to a leucine residue. Both single mutant receptors exhibited a significant decrease in ligand binding activity and affinity. The double mutant receptor showed little binding activity. Our data suggest that all of the extracellular domains are involved in ligand-receptor interactions and that N-glycosylation is required to maintain high-affinity ligand binding.  相似文献   

12.
The human C3a anaphylatoxin receptor (C3aR) is a G protein-coupled receptor (GPCR) composed of seven transmembrane alpha-helices connected by hydrophilic loops. Previous studies of chimeric C3aR/C5aR and loop deletions in C3aR demonstrated that the large extracellular loop2 plays an important role in noneffector ligand binding; however, the effector binding site for C3a has not been identified. In this study, selected charged residues in the transmembrane regions of C3aR were replaced by Ala using site-directed mutagenesis, and mutant receptors were stably expressed in the RBL-2H3 cell line. Ligand binding studies demonstrated that R161A (helix IV), R340A (helix V), and D417A (helix VII) showed no binding activity, although full expression of these receptors was established by flow cytometric analysis. C3a induced very weak intracellular calcium flux in cells expressing these three mutant receptors. H81A (helix II) and K96A (helix III) showed decreased ligand binding activity. The calcium flux induced by C3a in H81A and K96A cells was also consistently reduced. These findings suggest that the charged transmembrane residues Arg161, Arg340, and Asp417 in C3aR are essential for ligand effector binding and/or signal coupling, and that residues His81 and Lys96 may contribute less directly to the overall free energy of ligand binding. These transmembrane residues in C3aR identify specific molecular contacts for ligand interactions that account for C3a-induced receptor activation.  相似文献   

13.
We have studied the interaction of 35S-labeled recombinant IL-3 with the acute myelogenous leukemia cell line, KG-1. 35S-IL-3 bound to these cells in a time dependent, saturable, and specific manner at 4 degrees C. Scatchard transformation of binding isotherms demonstrated the existence of a small number (200) of binding sites, with an apparent dissociation constant of 70-105 pM. After a temperature shift from 4 degrees C to 37 degrees C, surface-bound 35S-IL-3 was rapidly internalized and processed into a trichloroacetic acid soluble form that was released into the medium. Experiments to address the specificity of the IL-3 binding site revealed that neither human IL-2, M-CSF, erythropoietin, transferrin, bovine insulin, nor murine nerve growth factor compete with IL-3 for binding to KG-1 cells. Both human and gibbon recombinant IL-3 and, surprisingly, human recombinant GM-CSF effectively competed the binding of the labeled IL-3 to these cells at 4 degrees C. The competition by GM-CSF was found to be concentration dependent, but much higher concentrations were required to achieve the levels obtained with IL-3. These results suggest that GM-CSF may also interact with the high-affinity IL-3 binding site on KG-1 cells or, alternatively, that GM-CSF binding to its own receptor may decrease the affinity of the IL-3 receptor for its ligand.  相似文献   

14.
The anticoagulant human plasma serine protease, activated protein C (APC), inhibits blood coagulation by specific inactivation of the coagulation cofactors factor Va (FVa) and factor VIIIa. Site-directed mutagenesis of residues in three surface loops of a positive exosite located on APC was used to identify residues that play a significant role in binding to FVa. Eighteen different residues were mutated to alanine singly, in pairs, or in triple mutation combinations. Mutant APC proteins were purified and characterized for their inactivation of FVa. Three APC residues were identified that provide major contributions to FVa interactions: Lys(193), Arg(229), and Arg(230). In addition, four residues made significant minor contributions to FVa interactions: Lys(191), Lys(192), Asp(214), and Glu(215). All of these residues primarily contribute to APC cleavage at Arg(506) in FVa and play a small role in the interaction of APC with the Arg(306) cleavage site. In conjunction with previously published work, these results define an extensive FVa binding site in the positive exosite of APC that is primarily involved in binding and cleaving at Arg(506) on FVa.  相似文献   

15.
We have identified two basic residues that are important for the recognition of secretin and vasoactive intestinal peptide (VIP) by their respective receptors. These two peptides containing an Asp residue at position 3 interacted with an arginine residue in transmembrane helix 2 (TM2) of the receptor, and the lysine residue in extracellular loop 1 (ECL1) stabilized the active receptor conformation induced by the ligand. The glucagon receptor possesses a Lys instead of an Arg in TM2, and an Ile instead of Lys in ECL1; it markedly prefers a Gln side chain in position 3 of the ligand. Our results suggested that, in the wild-type receptor, the Ile side chain prevented access to the TM2 Lys side chain, but oriented the glucagon Gln(3) side chain to its proper binding site. In the double mutant, the ECL1 Lys allowed an interaction between negatively charged residues in position 3 of glucagon and the TM2 Arg, resulting in efficient receptor activation by [Asp(3)]glucagon as well as by glucagon.  相似文献   

16.
Previously, we determined the crystal structures of the dimeric ligand binding region of the metabotropic glutamate receptor subtype 1. Each protomer binds l-glutamate within the crevice between the LB1 and LB2 domains. We proposed that the two different conformations of the dimer interface between the two LB1 domains define the activated and resting states of the receptor protein. In this study, the residues in the ligand-binding site and the dimer interface were mutated, and the effects were analyzed in the full-length and truncated soluble receptor forms. The variations in the ligand binding activities of the purified truncated receptors are comparable with those of the full-length form. The mutated full-length receptors were also analyzed by inositol phosphate production and Ca(2+) response. The magnitude of the ligand binding capacities and the amplitude of the intracellular signaling were almost correlated. Alanine substitutions of four residues, Thr(188), Asp(208), Tyr(236), and Asp(318), which interact with the alpha-amino group of glutamate in the crystal, abolished their responses both to glutamate and quisqualate. The mutations of the Tyr(74), Arg(78), and Gly(293) residues, which interact with the gamma-carboxyl group of glutamate, lost their responsiveness to glutamate but not to quisqualate. Furthermore, a mutant receptor containing alanine instead of isoleucine at position 120 located within an alpha helix constituting the dimer interface showed no intracellular response to ligand stimulation. The results demonstrate the crucial role of the dimer interface in receptor activation.  相似文献   

17.
Binding of insulin to the insulin receptor plays a central role in the hormonal control of metabolism. Here, we investigate possible contact sites between the receptor and the conserved non-polar surface of the B-chain. Evidence is presented that two contiguous sites in an alpha-helix, Val(B12) and Tyr(B16), contact the receptor. Chemical synthesis is exploited to obtain non-standard substitutions in an engineered monomer (DKP-insulin). Substitution of Tyr(B16) by an isosteric photo-activatable derivative (para-azido-phenylalanine) enables efficient cross-linking to the receptor. Such cross-linking is specific and maps to the L1 beta-helix of the alpha-subunit. Because substitution of Val(B12) by larger side-chains markedly impairs receptor binding, cross-linking studies at B12 were not undertaken. Structure-function relationships are instead probed by side-chains of similar or smaller volume: respective substitution of Val(B12) by alanine, threonine, and alpha-aminobutyric acid leads to activities of 1(+/-0.1)%, 13(+/-6)%, and 14(+/-5)% (relative to DKP-insulin) without disproportionate changes in negative cooperativity. NMR structures are essentially identical with native insulin. The absence of transmitted structural changes suggests that the low activities of B12 analogues reflect local perturbation of a "high-affinity" hormone-receptor contact. By contrast, because position B16 tolerates alanine substitution (relative activity 34(+/-10)%), the contribution of this neighboring interaction is smaller. Together, our results support a model in which the B-chain alpha-helix, functioning as an essential recognition element, docks against the L1 beta-helix of the insulin receptor.  相似文献   

18.
We used fluorescence correlation spectroscopy to examine the binding of insulin, insulin-like growth factor 1 (IGF1) and anti-receptor antibodies to insulin receptors (IR) and IGF1 receptors (IGF1R) on individual 2H3 rat basophilic leukemia cells. Experiments revealed two distinct classes of insulin binding sites with K(D) of 0.11 nM and 75 nM, respectively. IGF1 competes with insulin for a portion of the low-affinity insulin binding sites with K(D) of 0.14 nM and for the high-affinity insulin binding sites with K(D) of 10 nM. Dissociation rate constants of insulin and IGF1 were determined to be 0.015 min(-1) and 0.013 min(-1), respectively, allowing estimation of ligand association rate constants. Combined, our results suggest that, in addition to IR and IGF1R homodimers, substantial numbers of hybrid IR-IGF1R heterodimers are present on the surface of these cells.  相似文献   

19.
Faithful genetic code translation requires that each aminoacyl-tRNA synthetase recognise its cognate amino acid ligand specifically. Aspartyl-tRNA synthetase (AspRS) distinguishes between its negatively-charged Asp substrate and two competitors, neutral Asn and di-negative succinate, using a complex network of electrostatic interactions. Here, we used molecular dynamics simulations and site-directed mutagenesis experiments to probe these interactions further. We attempt to decrease the Asp/Asn binding free energy difference via single, double and triple mutations that reduce the net positive charge in the active site of Escherichia coli AspRS. Earlier, Glutamine 199 was changed to a negatively-charged glutamate, giving a computed reduction in Asp affinity in good agreement with experiment. Here, Lysine 198 was changed to a neutral leucine; then, Lys198 and Gln199 were mutated simultaneously. Both mutants are predicted to have reduced Asp binding and improved Asn binding, but the changes are insufficient to overcome the initial, high specificity of the native enzyme, which retains a preference for Asp. Probing the aminoacyl-adenylation reaction through pyrophosphate exchange experiments, we found no detectable activity for the mutant enzymes, indicating weaker Asp binding and/or poorer transition state stabilization. The simulations show that the mutations' effect is partly offset by proton uptake by a nearby histidine. Therefore, we performed additional simulations where the nearby Histidines 448 and 449 were mutated to neutral or negative residues: (Lys198Leu, His448Gln, His449Gln), and (Lys198Leu, His448Glu, His449Gln). This led to unexpected conformational changes and loss of active site preorganization, suggesting that the AspRS active site has a limited structural tolerance for electrostatic modifications. The data give insights into the complex electrostatic network in the AspRS active site and illustrate the difficulty in engineering charged-to-neutral changes of the preferred ligand.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号