首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Beta-thalassemia and sickle cell anemia (SCD) represent the most common hemoglobinopathies caused, respectively, by deficient production or alteration of the beta chain of hemoglobin (Hb). Patients affected by the most severe form of thalassemia suffer from profound anemia that requires chronic blood transfusions and chelation therapies to prevent iron overload. However, patients affected by beta-thalassemia intermedia, a milder form of the disease that does not require chronic blood transfusions, eventually also show elevated body iron content due to increased gastrointestinal iron absorption. Even SCD patients might require blood transfusions and iron chelation to prevent deleterious and painful vaso-occlusive crises and complications due to iron overload. Although definitive cures are presently available, such as bone marrow transplantation (BMT), or are in development, such as correction of the disease through hematopoietic stem cell beta-globin gene transfer, they are potentially hazardous procedures or too experimental to provide consistently safe and predictive clinical outcomes. Therefore, studies that aim to better understand the pathophysiology of the hemoglobinopathies might provide further insight and new drugs to dramatically improve the understanding and current treatment of these diseases. This review will describe how recent discoveries on iron metabolism and erythropoiesis could lead to new therapeutic strategies and better clinical care of these diseases, thereby yielding a much better quality of life for the patients.  相似文献   

2.

Background

The contribution of hypercoagulability to the pathophysiology of sickle cell disease (SCD) remains poorly defined. We sought to evaluate the association of markers of coagulation and platelet activation with specific clinical complications and laboratory variables in patients with SCD.

Design and Methods

Plasma markers of coagulation activation (D-dimer and TAT), platelet activation (soluble CD40 ligand), microparticle-associated tissue factor (MPTF) procoagulant activity and other laboratory variables were obtained in a cohort of patients with SCD. Tricuspid regurgitant jet velocity was determined by Doppler echocardiography and the presence/history of clinical complications was ascertained at the time of evaluation, combined with a detailed review of the medical records.

Results

No significant differences in the levels of D-dimer, TAT, soluble CD40 ligand, and MPTF procoagulant activity were observed between patients in the SS/SD/Sβ0 thalassemia and SC/Sβ+ thalassemia groups. Both TAT and D-dimer were significantly correlated with measures of hemolysis (lactate dehydrogenase, indirect bilirubin and hemoglobin) and soluble vascular cell adhesion molecule-1. In patients in the SS/SD/Sβ0 thalassemia group, D-dimer was associated with a history of stroke (p = 0.049), TAT was associated with a history of retinopathy (p = 0.0176), and CD40 ligand was associated with the frequency of pain episodes (p = 0.039). In multivariate analyses, D-dimer was associated with reticulocyte count, lactate dehydrogenase, NT-proBNP and history of stroke; soluble CD40 ligand was associated with WBC count and platelet count; and MPTF procoagulant activity was associated with hemoglobin and history of acute chest syndrome.

Conclusions

This study supports the association of coagulation activation with hemolysis in SCD. The association of D-dimer with a history of stroke suggests that coagulation activation may contribute to the pathophysiology of stroke in clinically severe forms of SCD. More research is needed to evaluate the contribution of coagulation and platelet activation to clinical complications in SCD.  相似文献   

3.
Sickle cell disease (SCD) is a hereditary blood disorder caused by a single gene. Various blood and urine biomarkers have been identified in SCD which are associated with laboratory and medical history. Biomarkers have been proven helpful in identifying different interconnected disease-causing mechanisms of SCD, including hypercoagulability, hemolysis, inflammation, oxidative stress, vasculopathy, reperfusion injury and reduced vasodilatory responses in endothelium, to name just a few. However, there exists a need to establish a panel of validated blood and urine biomarkers in SCD. This paper reviews the current contribution of biochemical markers associated with clinical manifestation and identification of sub-phenotypes in SCD.  相似文献   

4.
Allogeneic hematopoietic cell transplantation (HCT) is currently the only treatment with curative potential for sickle cell disease (SCD) and beta-thalassemia. HCT was first used to treat SCD and thalassemia more than two decades ago, and with increasing experience this treatment modality has shifted from being an experimental intervention to one in which selected patient populations are targeted for treatment. Recent multicenter clinical studies show an event-free survival (EFS) of 85% after human leukocyte antigen (HLA)-identical sibling transplantation for SCD, using conventional myeloablative conditioning with a backbone of busulfan (BU) and cyclophosphamide (CY) [1-3]. Results of HCT for thalassemia show very similar outcomes, with EFS probabilities that range from 81%-87% [4,5]. However, the risk of graft failure, recurrent disease, graft-versus-host-disease (GVHD), infections, and long-term sequelae of chronic GVHD and endocrinopathies related to Fe overload and myeloablative BU limit broader application of this therapy. Non-myeloablative conditioning regimens may offer a lower risk of toxicity, and investigations to identify a regimen that is sufficiently immunosuppressive to ensure stable engraftment of donor cells are ongoing. Alternative sources of donor hematopoietic cells that include HLA-matched unrelated donor (URD) and umbilical cord blood (UCB), are being pursued for hemoglobinopathies, with promising initial results. This review discusses the successes, challenges and future direction of HCT for SCD and thalassemia.  相似文献   

5.
Sickle cell disease (SCD) is a debilitating hemolytic genetic disorder with high morbidity and mortality affecting millions of individuals worldwide. Although SCD was discovered more than a century ago, no effective mechanism-based prevention and treatment are available due to poorly understood molecular basis of sickling, the fundamental pathogenic process of the disease. SCD patients constantly face hypoxia. One of the best-known signaling molecules to be induced under hypoxic conditions is adenosine. Recent studies demonstrate that hypoxia-mediated elevated adenosine signaling plays an important role in normal erythrocyte physiology. In contrast, elevated adenosine signaling contributes to sickling and multiple life threatening complications including tissue damage, pulmonary dysfunction and priapism. Here, we summarize recent research on the role of adenosine signaling in normal and sickle erythrocytes, progression of the disease and therapeutic implications. In normal erythrocytes, both genetic and pharmacological studies demonstrate that adenosine can enhance 2,3-bisphosphoglycerate (2,3-BPG) production via A(2B) receptor (ADORA2B) activation, suggesting that elevated adenosine has an unrecognized role in normal erythrocytes to promote O(2) release and prevent acute ischemic tissue injury. However, in sickle erythrocytes, the beneficial role of excessive adenosine-mediated 2,3-BPG induction becomes detrimental by promoting deoxygenation, polymerization of sickle hemoglobin and subsequent sickling. Additionally, adenosine signaling via the A(2A) receptor (ADORA2A) on invariant natural killer T (iNKT) cells inhibits iNKT cell activation and attenuates pulmonary dysfunction in SCD mice. Finally, elevated adenosine coupled with ADORA2BR activation is responsible for priapism, a dangerous complication seen in SCD. Overall, the research reviewed here reveals a differential role of elevated adenosine in normal erythrocytes, sickle erythrocytes, iNK cells and progression of disease. Thus, adenosine signaling represents a potentially important therapeutic target for the treatment and prevention of disease.  相似文献   

6.
7.
During the current formidable COVID-19 pandemic, it is appealing to address ideas that may invoke therapeutic interventions. Clotting disorders are well recognized in patients infected with severe acute respiratory syndrome (SARS) caused by a novel coronavirus (SARS-CoV-2), which lead to severe complications that worsen the prognosis in these subjects.Increasing evidence implicate Heparan sulfate proteoglycans (HSPGs) and Heparanase in various diseases and pathologies, including hypercoagulability states. Moreover, HSPGs and Heparanase are involved in several viral infections, in which they enhance cell entry and release of the viruses.Herein we discuss the molecular involvement of HSPGs and heparanase in SARS-CoV-2 infection, namely cell entry and release, and the accompanied coagulopathy complications, which assumedly could be blocked by heparanase inhibitors such as Heparin and Pixatimod.  相似文献   

8.
Stearoyl-CoA desaturase (SCD), a central enzyme in lipid metabolism that synthesizes monounsaturated fatty acids, has been linked to tissue metabolism and body adiposity regulation. Recent studies showed that SCD has the ability to reprogram cardiac metabolism, thereby regulating heart function. In the heart, the lack of SCD1 enhances glucose transport and metabolism at the expense of fatty acid (FA) uptake and oxidation. The metabolic changes associated with SCD1 deficiency protect cardiac myocytes against both necrotic and apoptotic cell death and improve heart function. Furthermore, SCD4, a heart-specific isoform of SCD, is specifically repressed by leptin and the lack of SCD1 function in leptin-deficient ob/ob mice results in a decrease in the accumulation of neutral lipids and ceramide and improves the systolic and diastolic function of a failing heart. Large-population human studies showed that the plasma SCD desaturation index is positively associated with heart rate, and cardiometabolic risk factors are modulated by genetic variations in SCD1. The current findings indicate that SCD may be used to reprogram myocardial metabolism to improve cardiac function. Here, we review recent advances in understanding the role of SCD in the control of heart metabolism and its involvement in the pathogenesis of lipotoxic cardiomyopathies.  相似文献   

9.
Endothelial cells (EC) form the inner lining of blood vessels and are positioned between circulating lymphocytes and tissues. Hypotheses have formed that EC may act as antigen presenting cells based on the intimate interactions with T cells, which are seen in diseases like multiple sclerosis, cerebral malaria (CM) and viral neuropathologies. Here, we investigated how human brain microvascular EC (HBEC) interact with and support the proliferation of T cells. We found HBEC to express MHC II, CD40 and ICOSL, key molecules for antigen presentation and co-stimulation and to take up fluorescently labeled antigens via macropinocytosis. In co-cultures, we showed that HBEC support and promote the proliferation of CD4+ and CD8+ T cells, which both are key in CM pathogenesis, particularly following T cell receptor activation and co-stimulation. Our findings provide novel evidence that HBEC can trigger T cell activation, thereby providing a novel mechanism for neuroimmunological complications of infectious diseases.  相似文献   

10.
The extrinsic coagulation is recognized as an 'inducible' signalling cascade resulting from tissue factor (TF) upregulation by exposure to clotting zymogen FVII upon inflammation or tissue injury. Following the substantial initiation, an array of proteolytic activation generates mediating signals (active serine proteases: FVIIa, FXa and FIIa) that lead to hypercoagulation with fibrin overproduction manifesting thrombosis. In addition, TF upregulation plays a central role in driving a thrombosis-inflammation circuit. Coagulant mediators (FVIIa, FXa and FIIa) and endproduct (fibrin) are proinflammatory, eliciting tissue necrosis factor, interleukins, adhesion molecules and many other intracellular signals in different cell types. Such resulting inflammation could ensure 'fibrin' thrombosis via feedback upregulation of TF. Alternatively, the resulting inflammation triggers platelet/leukocyte/polymononuclear cell activation thus contributing to 'cellular' thrombosis. TF is very vulnerable to upregulation resulting in hypercoagulability and subsequent thrombosis and inflammation, either of which presents cardiovascular risks. The prevention and intervention of TF hypercoagulability are of importance in cardioprotection. Blockade of inflammation reception and its intracellular signalling prevents TF expression from upregulation. Natural (activated protein C, tissue factor pathway inhibitor, or antithrombin III) or pharmacological anticoagulants readily offset the extrinsic hypercoagulation mainly through FVIIa, FXa or FIIa inhibition. Therefore, anticoagulants turn off the thrombosis-inflammation circuit, offering not only antithrombotic but anti-inflammatory significance in the prevention of cardiovascular complications.  相似文献   

11.
The thromboxane synthase converts prostaglandin H2 to thromboxane A2 and malondialdehyde (MDA) in approximately equimolar amounts. A reactive dicarbonyl, MDA forms covalent adducts of amino groups, including the ε-amine of lysine, but the importance of this reaction in platelets was unknown. Utilizing a novel LC/MS/MS method for analysis of one of the MDA adducts, the dilysyl-MDA cross-link, we demonstrated that dilysyl-MDA cross-links in human platelets are formed following platelet activation via the cyclooxygenase (COX)-1/thromboxane synthase pathway. Salicylamine and analogs of salicylamine were shown to react with MDA preferentially, thereby preventing formation of lysine adducts. Dilysyl-MDA cross-links were measured in two diseases known to be associated with increased platelet activation. Levels of platelet dilysyl-MDA cross-links were increased by 2-fold in metabolic syndrome relative to healthy subjects, and by 1.9-fold in sickle cell disease (SCD). In patients with SCD, the reduction of platelet dilysyl-MDA cross-links following administration of nonsteroidal anti-inflammatory drug provided evidence that MDA modifications of platelet proteins in this disease are derived from the COX pathway. In summary, MDA adducts of platelet proteins that cross-link lysines are formed on platelet activation and are increased in diseases associated with platelet activation. These protein modifications can be prevented by salicylamine-related scavengers.  相似文献   

12.
Sickle cell disease vasculopathy: a state of nitric oxide resistance   总被引:5,自引:0,他引:5  
Sickle cell disease (SCD) is a hereditary hemoglobinopathy characterized by microvascular vaso-occlusion with erythrocytes containing polymerized sickle (S) hemoglobin, erythrocyte hemolysis, vasculopathy, and both acute and chronic multiorgan injury. It is associated with steady state increases in plasma cell-free hemoglobin and overproduction of reactive oxygen species (ROS). Hereditary and acquired hemolytic conditions release into plasma hemoglobin and other erythrocyte components that scavenge endothelium-derived NO and metabolize its precursor arginine, impairing NO homeostasis. Overproduction of ROS, such as superoxide, by enzymatic (xanthine oxidase, NADPH oxidase, uncoupled eNOS) and nonenzymatic pathways (Fenton chemistry), promotes intravascular oxidant stress that can likewise disrupt NO homeostasis. The synergistic bioinactivation of NO by dioxygenation and oxidation reactions with cell-free plasma hemoglobin and ROS, respectively, is discussed as a mechanism for NO resistance in SCD vasculopathy. Human physiological and transgenic animal studies provide experimental evidence of cardiovascular and pulmonary resistance to NO donors and reduced NO bioavailability that is associated with vasoconstriction, decreased blood flow, platelet activation, increased endothelin-1 expression, and end-organ injury. Emerging epidemiological data now suggest that chronic intravascular hemolysis is associated with certain clinical complications: pulmonary hypertension, cutaneous leg ulcerations, priapism, and possibly stroke. New therapeutic strategies to limit intravascular hemolysis and ROS generation and increase NO bioavailability are discussed.  相似文献   

13.
The role of stearoyl-CoA desaturase in the control of metabolism   总被引:6,自引:0,他引:6  
Since obesity is becoming increasingly prevalent worldwide, much effort is being devoted to understanding its pathogenesis and treatment. In recent years, several candidate genes have been proposed as therapeutic targets. However, stearoyl-CoA desaturase 1 (SCD1) is of special significance, because it is the major gene target of leptin-a central mediator of energy homeostasis. There is evidence that SCD1 deficiency activates metabolic pathways that promote beta-oxidation and decrease lipogenesis in liver and skeletal muscles. One mechanism is via increased activation of AMP-activated protein kinase. SCD1 mutation results also in global changes in expression of genes involved in lipid metabolism. SCD1 deficient mice have increased energy expenditure, reduced body adiposity, and are resistant to diet-induced obesity. In this review, we examine data from our laboratory and others suggesting that SCD1 is an important component in the regulation of body metabolism.  相似文献   

14.
Substantial evidence indicates that compartmentalized infiltrates of T lymphocytes are central to the pathogenesis of autoimmune diseases such as rheumatoid arthritis, but the mechanisms by which such cells become activated remain unknown. To define surface components of activation pathways important in the function of these cells, we have generated mAb against a rheumatoid synovial T cell line. One such antibody, termed anti-UM4D4, reacts with an Ag, termed UM4D4, which is strongly expressed on most rheumatoid synovial T cell lines and clones, and on a subset of peripheral blood T cells, resting or activated. Anti-UM4D4 is mitogenic in soluble form for PBMC and certain T cell clones, and is comitogenic with the phorbol ester PMA for purified resting T lymphocytes. These functional effects are similar to those previously observed with antibodies to epitopes of CD2 and CD3, surface Ag involved in two well defined pathways of human T cell activation. Binding of anti-UM4D4 to T cells is not, however, blocked by antibodies directed at various epitopes of CD2 and CD3. Moreover, UM4D4 does not comodulate with CD3, and is expressed on a T cell line that lacks CD2, CD3, and CD28. The data, therefore, indicate that anti-UM4D4 identifies a T cell activation pathway, distinct from those previously described, that could play a role in the pathogenesis of T cell-mediated autoimmune diseases.  相似文献   

15.
Invariant Natural Killer T (iNKT) cells are a T cell subset expressing an invariant T Cell Receptor (TCR) that recognizes glycolipid antigens rather than peptides. The cells have both innate-like rapid cytokine release, and adaptive-like thymic positive selection. iNKT cell activation has been implicated in the pathogenesis of allergic asthma and inflammatory diseases, while reduced iNKT cell activation promotes infectious disease, cancer and certain autoimmune diseases such as Type 1 diabetes (T1D). Therapeutic means to reduce or deplete iNKT cells could treat inflammatory diseases, while approaches to promote their activation may have potential in certain infectious diseases, cancer or autoimmunity. Thus, we developed invariant TCR-specific monoclonal antibodies to better understand the role of iNKT cells in disease. We report here the first monoclonal antibodies specific for the mouse invariant TCR that by modifying the Fc construct can specifically deplete or activate iNKT cells in vivo in otherwise fully immuno-competent animals. We have used both the depleting and activating version of the antibody in the NOD model of T1D. As demonstrated previously using genetically iNKT cell deficient NOD mice, and in studies of glycolipid antigen activated iNKT cells in standard NOD mice, we found that antibody mediated depletion or activation of iNKT cells respectively accelerated and retarded T1D onset. In BALB/c mice, ovalbumin (OVA) mediated airway hyper-reactivity (AHR) was abrogated with iNKT cell depletion prior to OVA sensitization, confirming studies in knockout mice. Depletion of iNKT cells after sensitization had no effect on AHR in the conducting airways but did reduce AHR in the lung periphery. This result raises caution in the interpretation of studies that use animals that are genetically iNKT cell deficient from birth. These activating and depleting antibodies provide a novel tool to assess the therapeutic potential of iNKT cell manipulation.  相似文献   

16.
R S Balgir 《HOMO》2006,57(2):163-176
Tribal communities in India constitute the largest tribal population in the world. There are about 635 biological isolates (tribes and subtribes), which constituted 8.08% (about 84.3 million) of the total population of India as per the 2001 census. Out of 635 scheduled tribes (aborigines), 62 live in the state of Orissa alone forming about 10.8% of the tribal population of India. Orissa state occupies an important place, being the 3rd in rank for the highest concentration of tribal population in the country. In India, tribal communities are highly vulnerable to hereditary diseases and have a high degree of malnutrition, morbidity and mortality. The sickle cell haemoglobinopathy and glucose-6-phosphate dehydrogenase (G6PD) enzyme deficiency are important genetic and public health problems in Central-Eastern part of India. In order to map out these genetic disorders among the tribal people, a cross-section of 15 major tribal communities from different parts of Orissa was randomly screened for haemoglobin variants and G6PD deficiency. The high frequency of sickle cell haemoglobinopathy (0-22.4%) and G6PD deficiency (4.3-17.4%), with beta-thalassemia trait (0-8.5%) taking almost an intermediate position, was observed. For G6PD deficiency, hemizygous males as well as female heterozygotes and female homozygotes were detected. Twelve cases showed compound heterozygosity for sickle cell haemoglobinopathy and G6PD deficiency. There seems to be a trend towards an inverse relationship between the sickle cell allele and G6PD deficiency, and sickle cell and beta-thalassemia allele in a cross-section of malaria endemic (Plasmodium falciparum) tribal communities in Orissa. When the frequency of sickle cell allele decreases in a cross-section of malaria endemic tribal population, the frequency of G6PD enzyme deficiency and beta-thalassemia allele increases and vice versa. Natural selection had played a major role in favour of sickle cell, beta-thalassemia and G6PD mutation alleles so that they had probably evolved as a protective mechanism against the lethal effects of malaria in this part of the country. However, the calculated values of 0.074, 0.218 and 0.337, respectively, of Pearson's correlation co-efficient (r), showed no correlation between sickle cell disorders and G6PD deficiency, sickle cell disorders and beta-thalassemia, and G6PD deficiency and beta-thalassemia.  相似文献   

17.
Lung cancer is the most frequent form of cancer. The survival rate for patients with metastatic lung cancer is ∼5%, hence alternative therapeutic strategies to treat this disease are critically needed. Recent studies suggest that lipid biosynthetic pathways, particularly fatty acid synthesis and desaturation, are promising molecular targets for cancer therapy. We have previously reported that inhibition of stearoylCoA desaturase-1 (SCD1), the enzyme that produces monounsaturated fatty acids (MUFA), impairs lung cancer cell proliferation, survival and invasiveness, and dramatically reduces tumor formation in mice. In this report, we show that inhibition of SCD activity in human lung cancer cells with the small molecule SCD inhibitor CVT-11127 reduced lipid synthesis and impaired proliferation by blocking the progression of cell cycle through the G1/S boundary and by triggering programmed cell death. These alterations resulting from SCD blockade were fully reversed by either oleic (18:1n-9), palmitoleic acid (16:1n-7) or cis-vaccenic acid (18:1n-7) demonstrating that cis-MUFA are key molecules for cancer cell proliferation. Additionally, co-treatment of cells with CVT-11127 and CP-640186, a specific acetylCoA carboxylase (ACC) inhibitor, did not potentiate the growth inhibitory effect of these compounds, suggesting that inhibition of ACC or SCD1 affects a similar target critical for cell proliferation, likely MUFA, the common fatty acid product in the pathway. This hypothesis was further reinforced by the observation that exogenous oleic acid reverses the anti-growth effect of SCD and ACC inhibitors. Finally, exogenous oleic acid restored the globally decreased levels of cell lipids in cells undergoing a blockade of SCD activity, indicating that active lipid synthesis is required for the fatty acid-mediated restoration of proliferation in SCD1-inhibited cells. Altogether, these observations suggest that SCD1 controls cell cycle progression and apoptosis and, consequently, the overall rate of proliferation in cancer cells through MUFA-mediated activation of lipid synthesis.  相似文献   

18.
Mismatch between the uptake and utilization of long-chain fatty acids in the myocardium leads to abnormally high intracellular fatty acid concentration, which ultimately induces myocardial dysfunction. Stearoyl-Coenzyme A desaturase-1 (SCD1) is a rate-limiting enzyme that converts saturated fatty acids (SFAs) to monounsaturated fatty acids. Previous studies have shown that SCD1-deficinent mice are protected from insulin resistance and diet-induced obesity; however, the role of SCD1 in the heart remains to be determined. We examined the expression of SCD1 in obese rat hearts induced by a sucrose-rich diet for 3 months. We also examined the effect of SCD1 on myocardial energy metabolism and apoptotic cell death in neonatal rat cardiac myocytes in the presence of SFAs. Here we showed that the expression of SCD1 increases 3.6-fold without measurable change in the expression of lipogenic genes in the heart of rats fed a high-sucrose diet. Forced SCD1 expression augmented palmitic acid-induced lipid accumulation, but attenuated excess fatty acid oxidation and restored reduced glucose oxidation. Of importance, SCD1 substantially inhibited SFA-induced caspase 3 activation, ceramide synthesis, diacylglycerol synthesis, apoptotic cell death, and mitochondrial reactive oxygen species (ROS) generation. Experiments using SCD1 siRNA confirmed these observations. Furthermore, we showed that exposure of cardiac myocytes to glucose and insulin induced SCD1 expression. Our results indicate that SCD1 is highly regulated by a metabolic syndrome component in the heart, and such induction of SCD1 serves to alleviate SFA-induced adverse fatty acid catabolism, and eventually to prevent SFAs-induced apoptosis.  相似文献   

19.
With the advent of the era of International Space Station (ISS) and Mars exploration, it is important more than ever to develop means to cure genetic and acquired diseases, which include cancer and AIDS, for these diseases hamper human activities. Thus, our ultimate goal is to develop protocols for gene therapy, which are suitable to humans on the earth as well as in space. Specifically, we are trying to cure the hemoglobinopathies, beta-thalassemia (Cooley's anemia) and sickle cell anemia, by gene therapy. These well-characterized molecular diseases serve as models for developing ex vivo gene therapy, which would apply to other disorders as well. For example, the procedure may become directly relevant to treating astronauts for space-anemia, immune suppression and bone marrow derived tumors, e.g. leukemia. The adeno-associated virus serotype 2 (AAV2) is a non-pathogenic human parvovirus with broad host-range and tissue specificity. Exploiting these characteristics we have been developing protocols for recombinant AAV2 (rAAV)-based gene therapy. With the rAAV constructs and hematopoietic stem cell (HSC) culture systems in hand, we are currently attempting to cure the mouse model of beta-thalassemia [C57BL/6- Hbbth/Hbbth, Hb(d-minor)] by HSC transplantation (HST) as well as by gene therapy. This paper describes the current status of our rAAV-gene therapy research.  相似文献   

20.
Hypoxia can act as an initial trigger to induce erythrocyte sickling and eventual end organ damage in sickle cell disease (SCD). Many factors and metabolites are altered in response to hypoxia and may contribute to the pathogenesis of the disease. Using metabolomic profiling, we found that the steady-state concentration of adenosine in the blood was elevated in a transgenic mouse model of SCD. Adenosine concentrations were similarly elevated in the blood of humans with SCD. Increased adenosine levels promoted sickling, hemolysis and damage to multiple tissues in SCD transgenic mice and promoted sickling of human erythrocytes. Using biochemical, genetic and pharmacological approaches, we showed that adenosine A(2B) receptor (A(2B)R)-mediated induction of 2,3-diphosphoglycerate, an erythrocyte-specific metabolite that decreases the oxygen binding affinity of hemoglobin, underlies the induction of erythrocyte sickling by excess adenosine both in cultured human red blood cells and in SCD transgenic mice. Thus, excessive adenosine signaling through the A(2B)R has a pathological role in SCD. These findings may provide new therapeutic possibilities for this disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号