首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucocorticoid regulation of the adrenergic enzyme, phenylethanolamine N-methyltransferase (PNMT) was studied in organ cultures of the superior cervical ganglion (SCG) from newborn rats. Although PNMT catalytic activity was present in control ganglia, enzyme levels were too low to allow visualization of PNMT immunofluorescent cells. Addition of dexamethasone (DEX) or corticosterone to the medium resulted in a large increase in PNMT activity and bright PNMT immunoreactive (PNMT-IR) staining in cells resembling small, intensely fluorescent (SIF) cells. Addition of non-glucocorticoid steroids was ineffective. Exposure to a brief, 2-hr pulse of DEX (10(-6) M) in vitro elicited the same increase in PNMT as continual exposure to DEX. Studies using metabolic inhibitors demonstrated that the steroid-dependent increase in PNMT activity required both protein and RNA synthesis. Furthermore, the increase was inhibited by cytochalasin B and by the glucocorticoid receptor antagonists, DEX 21-mesylate and cortisol 21-mesylate. These observations suggest that glucocorticoids increase PNMT protein in SIF cells by interacting with specific steroid receptors that undergo translocation to the nucleus.  相似文献   

2.
3.
4.
5.
6.
Epinephrine (E) and phenylethanolamine N-methyltransferase (PNMT) are endogenous to the rat retina. The retinal enzyme shows substrate specificity and inhibitor sensitivity similar to the PNMT of brain. The E system in the retina may be part of a functional adrenergic system, because amine metabolism of dopamine-containing amacrine cells is inhibited by alpha 2 agonists and stimulated by alpha 2 antagonists.  相似文献   

7.
Inhibitors of phenylethanolamine N-methyltransferase [PNMT, the enzyme that catalyzes the final step in the biosynthesis of epinephrine (Epi)] may be of use in determining the role of Epi in the central nervous system. Here we describe the synthesis and characterization of 7-SCN tetrahydroisoquinoline as an affinity label for human PNMT.  相似文献   

8.
9.
A rapid, highly sensitive assay for phenylethanolamine N-methyltransferase in brain using the natural substrate, norepinephrine, is described. The method is based on the selective adsorption and elution of the reaction product, epinephrine, from alumina. A small but important further lowering of blanks and increase in sensitivity is attained by removal of the radiolabeled substrate, [methyl-3H]-S-adenosylmethionine by precipitation as the reineckate prior to adsorption of norepinephrine to alumina. The assay has a sensitivity of 30 fmole and the PNMT activity could be measured in as little as 1 mg (wet wt) of human locus coeruleus tissue. The sensitivity is enhanced by homogenizing tissue in small volumes and removing potential inhibitors by dialysis. We report for the first time PNMT activity in specific regions of the human cerebral and cerebellar cortex.  相似文献   

10.
11.
12.
To determine whether similar mechanisms regulate adrenergic phenotypic expression in different cellular populations, the superior cervical sympathetic ganglion (SCG) and extra-adrenal chromaffin tissue were studied in the fetal and neonatal rat; results were compared to those previously obtained with the adrenal medulla. Phenylethanolamine N-methyltransferase (PNMT), the enzyme which converts norepinephrine to epinephrine, was used as an index of adrenergic expression. PNMT catalytic activity was initially detectable in the SCG of normal, untreated fetuses at 17.0 days of gestation (E17.0), and increased three- to fourfold until postnatal day 2. Thereafter activity decreased precipitously, and was undetectable 2 weeks after birth. Immunohistochemical studies, using specific antisera to PNMT, were employed to localize the enzyme. Immunoreactivity (PNMT-IR) was undetectable in sympathetic ganglia of control animals, suggesting that this method is less sensitive than the catalytic assay. Following glucocorticoid treatment, cells heavily stained for PNMT-IR were observed in paravertebral sympathetic ganglia, including the SCG, and in the organ of Zuckerkandl. In the SCG, PNMT-IR was present in small cells presumed to be small, intensely fluorescent (SIF) cells and was never observed in principal ganglion neurons. The increase in PNMT-IR after steroid treatment was strikingly age dependent: initiation of treatment at progressively older ages during the first week of life resulted in fewer and fewer PNMT-IR cells. No response was apparent after 1 week. Moreover, treatment of pregnant rats was associated with appearance of PNMT-IR at E18.5, but not at E16.5. After treatment from days 0 to 6 of life, PNMT-IR gradually disappeared. However, retreatment on days 24–30 caused the reappearance of PNMT-IR, suggesting that exposure to steroids at birth causes (a) an immediate increase in PNMT-IR and (b) responsiveness to steroids during adulthood. Consequently, the disappearance of PNMT-IR after exposure to steroids at birth, is not simply due to death of SIF cells. We conclude that proximity to the adrenal cortex is not necessary for initial expression of PNMT. More generally, the expression of PNMT by ganglion SIF cells parallels that in adrenal chromaffin cells since initial expression was not dependent on high local concentrations of glucocorticoids, whereas subsequent development did require high levels of the hormones. Our observations suggest that similar mechanisms regulate expression and development of the adrenergic phenotype in adrenal and sympathetic ganglia.  相似文献   

13.
Norepinephrine is N-methylated to epinephrine by the catalytic effect of the terminal enzyme in catecholamine biosynthesis, phenylethanolamine N-methyltransferase (PNMT). PNMT has been covalently immobilized onto a silica-based liquid chromatographic support, glutaraldehyde-P (Glut-P). The resulting PNMT-Glut-P stationary phase (PNMT-SP) was enzymatically active, stable, and reusable. Standard Michaelis-Menten kinetic studies were performed with both free and immobilized PNMT and known substrates and inhibitors were examined. The results demonstrate that the PNMT-SP can be utilized for the rapid screening of potential PNMT substrates as well as the screening of compounds for PNMT inhibitory activity.  相似文献   

14.
15.
Hybrid density functional theory methods were used to investigate the reaction mechanism of human phenylethanolamine N-methyltransferase (hPNMT). This enzyme catalyzes the S-adenosyl-l-methionine-dependent conversion of norepinephrine to epinephrine, which constitutes the terminal step in the catecholamine biosynthesis. Several models of the active site were constructed based on the X-ray structure. Geometries of the stationary points along the reaction path were optimized and the reaction barrier and energy were calculated and compared to the experimental values. The calculations demonstrate that the reaction takes place via an SN2 mechanism with methyl transfer being rate-limiting, a suggestion supported by mutagenesis studies. Optimal agreement with experimental data is reached using a model in which both active site glutamates are protonated. Overall, the mechanism of hPNMT is more similar to those of catechol O-methyltransferase and glycine N-methyltransferase than to that of guanidinoacetate N-methyltransferase in which methyl transfer is coupled to proton transfer.  相似文献   

16.
Phenylethanolamine N-methyltransferase (PNMT) is a final enzyme in catecholamine synthesizing cascade that converts noradrenaline to adrenaline. Although most profuse in adrenal medulla, PNMT is expressed also in the heart, particularly in cardiac atria and ventricles. In atria, the PNMT mRNA is much more abundant compared to ventricles. In present study we aimed to find out whether there is a difference in modulation of the PNMT gene expression in cardiac atria and ventricles. We used three methodological approaches: cold as a model of mild stress, hypoxia as a model of cardiac ischemic injury, and transgenic rats (TGR) with incorporated mouse renin gene (mREN-2)27, to determine involvement of renin-angiotensin pathway in the PNMT gene expression. We have found that PNMT gene expression was modulated differently in cardiac atria and ventricles. In atria, PNMT mRNA levels were increased by hypoxia, while cold stress decreased PNMT mRNA levels. In ventricles, no significant changes were observed by cold or hypoxia. On the other hand, angiotensin II elevated PNMT gene expression in ventricles, but not in atria. These results suggest that PNMT gene expression is modulated differently in cardiac atria and ventricles and might result in different physiological consequences.  相似文献   

17.
18.
Phenylethanolamine N-methyltransferase (PNMT, EC 2.1.1.28) is the terminal enzyme of the catecholaminergic pathway converting noradrenaline to adrenaline. Although preferentially localized in adrenal medulla, evidence exists that PNMT activity and gene expression are also present in the rat heart, kidney, spleen, lung, skeletal muscle, thymus, retina and different parts of the brain. However, data concerning PNMT gene expression in sympathetic ganglia are still missing. In this study, our effort was focused on identification of PNMT mRNA and/or protein in stellate ganglia and, if present, testing the effect of stress on PNMT mRNA and protein levels in this type of ganglia. We identified both PNMT mRNA and protein in stellate ganglia of rats and mice, although in much smaller amounts compared with adrenal medulla. PNMT gene expression and protein levels were also increased after repeated stress exposure in stellate ganglia of rats and wild-type mice. Similarly to adrenal medulla, the immobilization-induced increase was probably regulated by glucocorticoids, as determined indirectly using corticotropin-releasing hormone knockout mice, where immobilization-induced increase of PNMT mRNA was suppressed. Thus, glucocorticoids might play an important role in regulation of PNMT gene expression in stellate ganglia under stress conditions.  相似文献   

19.
Glucocorticoid receptor regulation   总被引:5,自引:0,他引:5  
F Svec 《Life sciences》1985,36(25):2359-2366
Glucocorticoids, like other classes of steroid hormones, must bind to cellular receptors in order to exert their effects. Because of this central role in mediating hormone action, it is important to elucidate those factors that control receptor content. The purpose of this minireview is to summarize the recent work that explores the mechanisms through which cells modulate their glucocorticoid receptor binding capacity.  相似文献   

20.
1,2,3,4-Tetrahydrobenz[h]isoquinoline (THBQ, 11) is a potent, inhibitor of phenylethanolamine N-methyltransferase (PNMT). Docking studies indicated that the enhanced PNMT inhibitory potency of 11 (hPNMT K(i)=0.49microM) versus 1,2,3,4-tetrahydroisoquinoline (5, hPNMT K(i)=5.8microM) was likely due to hydrophobic interactions with Val53, Met258, Val272, and Val269 in the PNMT active site. These studies also suggested that the addition of substituents to the 7-position of 11 that are capable of forming hydrogen bonds to the enzyme could lead to compounds (14-18) having enhanced PNMT inhibitory potency. However, these compounds are in fact less potent at PNMT than 11. Furthermore, 7-bromo-THBQ (19, hPNMT K(i)=0.22mM), which has a lipophilic 7-substituent that cannot hydrogen bond to the enzyme, is twice as potent at PNMT than 11. This once again illustrates the limitations of docking studies for lead optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号