首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prior to the contact with their target muscle cells in culture, growth cones of many isolated Xenopus embryonic neurons release acetylcholine (ACh) spontaneously. Using patch clamp techniques, this release can be detected by an outside-out patch of muscle membrane placed near the growth cone. Intracellular recording from innervated muscle cells showed spontaneous miniature endplate potentials (MEPPs) of varying amplitudes. Amplitude histograms showed a skewed distribution with multiple peaks, suggesting the existence of subunits in either the quantal packages of ACh released by the nerve terminal or in the postsynaptic muscle response. In addition to the quantal ACh release reflected by MEPPs, nerve terminal also release a large amount of ACh in a non-quantal fashion. This non-quantal ACh release is revealed by the hyperpolarization of the muscle membrane following extracellular application of curare or alpha-bungarotoxin, as well as by denervation of the muscle cell.  相似文献   

2.
The physiological, morphological and biochemical effects of type A Botulinum toxin (BoTX) were analysed in the electric organ of Torpedo, a modified neuromuscular system. The quantal content of the postsynaptic potential, or electroplaque potential (EPP), was reduced by BoTX but the quantum size remained unchanged till complete failure of the neurally evoked transmission. BoTX also suppressed the occurrence of spontaneous electroplaque potentials (MEPPs) of a quantal size but potentials of a smaller amplitude still kept on occurring in the intoxicated synapses. BoTX inhibited the evoked release of acetylcholine (ACh; biochemically measured) but the rate of spontaneous ACh release transiently increased during the period when evoked release went down. On the other hand, there were no significant change of ACh content, of ACh turnover, of ACh repartition in the vesicular and free compartments, or in the number of synaptic vesicles. Surprisingly, the amount of ATP was reduced to 50% in BoTX treated tissue at the time of transmission failure; also the level of creatine phosphate (CrP) was lowered to less than 20% and the rate of activity of creatine kinase was reduced. It was concluded that, electrophysiologically, BoTX affects synaptic transmission in a very similar way in the electric organ and in the neuromuscular junctions. On the other hand, the shortage of ATP supply found in the present study may play a role in the pathophysiology of intoxication and should be taken into account in investigations designed to see whether BoTX affects various phosphorylations in cholinergic nerve terminals.  相似文献   

3.
Previous work showed that quantal size can be at least doubled at the frog neuromuscular junction by pretreatment with hormones or hypertonic solutions, primarily by the release of more acetylcholine (ACh) per quantum. Once increased, quantal size slowly declined over hours. Quantal size was measured from miniature end-plate potentials (MEPPs) or currents (MEPCs). In the present experiments, preparations in which quantal size had been increased were exposed to 17-25 mM [K+], quantal size decreased within minutes. Release of comparable numbers of quanta by nerve stimulation did not decrease size. K(+)-solutions did not decrease size if Ca2+ was omitted or replaced with Sr2+. The phosphokinase C (PKC) activators phorbol 12,13-diacetate (PDA) and 1-oleoyl-2-acetyl-rac-glycerol (OAG) also decreased quantal size within minutes when applied in a hypertonic solution that increased the rate of spontaneous release. Phorbol 12,13-dideconate, which does not activate PKC, did not decrease quantal size. The size decrease triggered by K(+)-solutions or PKC activators was blocked by 100 microM 1-(5-isoquinolinyl-sulfonyl)-2-methyl-piperazine (H7), a protein kinase inhibitor. Apparently, increasing [K+] elevated intracellular [Ca2+], which activates PKC, and which leads to the down-regulation of quantal size. During the period in which size is decreasing, there appears to be large and normal subpopulations of MEPP sizes, with normal gradually replacing large. This suggests that large quanta are formed by adding additional ACh to preformed quanta shortly before they are available for release.  相似文献   

4.
In mature and newly formed neuromuscular synapses of mouse skeletal muscles, miniature endplate potentials (MEPPs) and multiquantal endplate potentials (EPPs) evoked by a single stimulation of the nerve were recorded using intracellular microelectrode technique. The mechanisms underlying the changes in spontaneous and evoked acetylcholine (ACh) release caused by the activation of PAR1-type muscle receptors induced by their peptide agonist TRAP6-NH2 were studied. It has been shown for the first time that, in either mature or newly formed motor synapses, the activation of PAR1 that lack presynaptic localization causes a sustained increase in the MEPP amplitude due to the increase in the ACh quantal size at the presynaptic level. It was found that phospholipase C (PLC) participates in the signaling mechanism triggered by the PAR1 activation. Exogenously applied brain-derived neurotrophic factor (BDNF) mimics the effect of activation of PAR1 by TRAP6-NH2. Moreover, an increase in the MEPP amplitude caused by the peptide PAR1 agonist was fully prevented by blocking the BDNF receptors–tropomyosin receptor kinases B (TrkB). Thus, it has been shown for the first time that the increase in ACh quantal size due to the activation of PAR1 in motor synapses is mediated by a complex signaling cascade that starts at the postsynaptic level of the motor synapse and ends at the presynaptic level. It is expected that the activation of PAR1 at the muscle fiber membrane followed by the PLC upregulation results in the release of neurotrophin BDNF as a retrograde signal. Its effect on the presynaptic TrkB receptors triggers the cascade leading to an increase in the quantal size of ACh.  相似文献   

5.
The effects of nicardipine, a dihydropyridine Ca2(+)-channel antagonist, on neuromuscular transmission and impulse-evoked release of acetylcholine were compared with those of nifedipine. In the isolated mouse phrenic nerve diaphragm, nicardipine (50 microM), but not nifedipine (100 microM), induced neuromuscular block, fade of tetanic contraction, and dropout or all-or-none block of end-plate potentials. Nicardipine had no significant effect on the resting membrane potential and the amplitude of miniature end-plate potentials but increased the frequency and caused the appearance of large size miniature potentials. The quantal contents of evoked end-plate potentials were increased. In the presence of tubocurarine, however, nicardipine depressed the amplitude of end-plate potentials. The compound nerve action potential was also decreased. It is concluded that nicardipine blocks neuromuscular transmission by acting on Na+ channels and inhibits axonal conduction. Nicardipine appeared to affect the evoked release of acetylcholine by dual mechanisms, i.e., an enhancement presumably by an agonist action on Ca2+ channels, like Bay K 8644 and nifedipine, and inhibition by an effect on Na+ channels, like verapamil and diltiazem. In contrast with its inactivity on the amplitude of miniature end-plate potentials, depolarization of the end plate in response to succinylcholine was greatly depressed. The contractile response of baby chick biventer cervicis muscle to exogenous acetylcholine was noncompetitively antagonized by nicardipine (10 microM), but was unaffected by nifedipine (30 microM). These results may implicate that nicardipine blocks the postsynaptic acetylcholine receptor channel by enhancing receptor desensitization or by a use-dependent effect.  相似文献   

6.
P2X7 receptors are present in presynaptic membranes of motor synapses, but their regulatory role in modulation of neurotransmitter release remains poorly understood. P2X7 receptors may interact with pannexin 1 channels to form a purinergic signaling unit. The potential mechanism of P2X7 receptor-dependent modulation of acetylcholine (ACh) release was investigated by recording miniature endplate potentials (MEPPs) and evoked endplate potentials (EPPs) in neuromuscular junctions of wild-type (WT) and pannexin 1 knockout (Panx1?/?) mice. Modulation of P2X7 receptors with the selective inhibitor A740003 or the selective agonist BzATP did not alter the parameters of either spontaneous or evoked ACh release in WT mice. In Panx1?/? mice, BzATP-induced activation of P2X7 receptors resulted in a uniformly increased quantal content of EPPs during a short stimulation train. This effect was accompanied by an increase in the size of the readily releasable pool, while the release probability did not change. Inhibition of calmodulin by W-7 or of calcium/calmodulin-dependent kinase II (CaMKII) by KN-93 completely prevented the potentiating effect of BzATP on the EPP quantal content. The blockade of L-type calcium channels also prevented BzATP action on evoked synaptic activity. Thus, the activation of presynaptic P2X7 receptors in mice lacking pannexin 1 resulted in enhanced evoked ACh release. Such enhanced release was provoked by triggering the calmodulin- and CaMKII-dependent signaling pathway, followed by activation of presynaptic L-type calcium channels. We suggest that in WT mice, this pathway is downregulated due to pannexin 1-dependent tonic activation of inhibitory presynaptic purinergic receptors, which overcomes P2X7-mediated effects.  相似文献   

7.
Transmitter release was studied with respect to the presynaptic acetylcholine (ACh) content at a central identified inhibitory synapse (Cl- conductance) of Aplysia californica. Statistical analysis of the synaptic noise evoked by sustained depolarization of the presynaptic neuron allowed us to calculate the quantal parameters of the postsynaptic responses. Loading of the presynaptic neurone with injected ACh led to an increase in the postsynaptic responses whereas the calculated miniature postsynaptic current (MPSC) was unmodified. Destruction of choline by choline oxidase either applied extracellularly and coupled to intense stimulations of the presynaptic cell or injected into the presynaptic neuron induced a depression of the postsynaptic response although the amplitude of the calculated MPSC remained constant. As the size of the MPSC, i.e. the size of the quantum, did not change in these experiments, it was concluded that the presynaptic ACh content controls the number of quanta released by a given presynaptic depolarization. As additional evidence, effects of abrupt increase in tonicity of the external medium were studied. The observed transient enhancement of the quantal content of the postsynaptic response could be attributed to an increase in the presynaptic concentration of ACh, resulting from the reduction in cellular volume.  相似文献   

8.
When a quantum of transmitter is released into a synaptic cleft, the magnitude of the subsynaptic response depends upon how much transmitter becomes bound to receptors. Theoretical considerations lead to the conclusion that if receptor density is normally high enough that most of the quantal transmitter is captured, subsynaptic quantal responses may be insensitive to receptor blockade. The effectiveness of receptor blockers in depressing the subsynaptic response should be diminished by interference with processes that normally dispose of transmitter, but increased if receptor density is reduced. In conformity with equations derived from a simple mathematical model, the apparent potency of (+)- tubocurarine (dTC) to depress the peak height of miniature end-plate currents (MEPCs) in mouse diaphragm was substantially reduced by poisoning of acetylcholinesterase (AChE) and increased by partial blockade of receptors by immunoglobulin G from patients with myasthenia gravis or alpha-bungarotoxin. We calculated from the data that normally capture of quantal acetylcholine (ACh) by receptors is approximately 75% of what it would be if there were no loss of ACh by hydrolysis or diffusion of ACh form the synaptic cleft. This fraction is increased to approximately 90% by poisoning of AChE. Conversely, it normally requires blockade of approximately 80% of receptors-and after AChE poisoning, approximately 90% of receptors-to reduce ACh capture (and MEPC height) by 50%. The apparent potency of dTC to alter MEPC time- course (after AChE poisoning) and to depress responses to superperfused carbachol was much greater than its apparent potency to depress MEPC height, but corresponded closely with the potency of dTC to block receptors as calculated from the action of dTC on MEPC height. These results indicate that the amplitude of the response to nerve-applied acetylcholine does not give a direct measure of receptor blockade; it is, in general, to be expected that an alteration of subsynaptic receptor density may not be equally manifest in responses to exogenous and endogenous neurotransmitter.  相似文献   

9.
Phencyclidine (1-(1-phenylcyclohexyl)piperidine [PCP]), a behaviorally active analogue (1-(1-m-aminophenylcyclohexyl)piperidine [m-amino-PCP]), and two behaviorally inactive analogues (1-(1-m-nitrophenylcyclohexyl)piperidine and 1-piperidinocyclohexanecarbonitrile) block neuromuscular transmission, depress the amplitude and rate of rise of directly elicited action potentials in frog sartorius muscle, and cause voltage- and concentration-dependent decreases of the peak end-plate current amplitude. This implies that all four compounds block the ion channel of the acetylcholine (ACh) receptors. Only PCP and m-amino-PCP prolong the action potential, block delayed rectification, potentiate muscle twitch, increase quantal content of end-plate potentials, and block K+-induced 86Rb+ efflux from rat brain synaptosomes. PCP also possesses central and peripheral antimuscarinic activity but is much less potent than 3-quinuclidinyl benzilate (QNB). Atropine, scopolamine, and QNB require much higher concentrations to induce behavioral alterations than to block muscarinic receptors. Thus PCP and some of its behaviorally active and inactive derivatives share two common effects, blockade of the nicotinic ACh receptor-ion channel complex and blockade of central and peripheral muscarinic receptors. The feature that apparently separates behaviorally active from inactive derivatives of PCP is their ability to block K+ conductance (gK) and thereby potentiate muscle twitch and increase the release of transmitters from central and peripheral synapses. The similarity between PCP-induced behavioral alterations and primary schizophrenia in humans raises the possibility of involvement of an altered gK in the human disease.  相似文献   

10.
R B Langdon  R S Jacobs 《Life sciences》1983,32(11):1223-1228
The effects of a structurally novel paralytic substance (lophotoxin) on quantal transmission parameters and the time course of synaptic potentials have been examined. This substance completely abolished potentials by reducing quantal size without affecting the release of quanta. Nerve conduction, membrane potential, and the passive electrical properties of the muscle end-plate remained unaffected. Lophotoxin appears to act directly on the acetylcholine receptor-channel complex, although perhaps not the cholinoreceptive site itself, as suggested by the unusual chemistry and onset kinetics of this toxin.  相似文献   

11.
The role of pannexin 1 in the release to the extracellular space of ATP/adenosine modulating the acetylcholine (ACh) secretion was studied in mouse diaphragm motor synapses. Using neuromuscular preparations obtained from wild-type and pannexin-1 knockout mice, the miniature endplate potential (MEPPs) and evoked endplate potentials (EPPs) were recorded in combination with pharmacological modulation of P2-type ATP receptors and A1-type adenosine receptors. Selective inhibition of A1 receptors with DPCPX or P2 receptors with PPADS increased quantal content of EPPs in wild-type mice. MRS 2211, selective antagonist of P2Y13 receptors, produced the same effect. Activation of receptors A1 or P2Y13 by their agonists (2-CADO and IDP, respectively) decreased the EPP quantal content. It means that the activity of endogenous ATP and adenosine is synergistic and directed to depression of the ACh release. ARL67156, an inhibitor of synaptic ecto-ATPases, which blocks the hydrolysis of ATP to adenosine and increases the level of ATP in the synaptic cleft, prolonged EPPs without changing their quantal content. In pannexin-1 knockout mice there were no changes in the EPP quantal content and in other parameters of synaptic transmission as compared to wildtype mice. However, downregulation of purinergic effects with antagonists of A1 or P2 receptors (DPCPX, PPADS, MRS 2211) did not change EPP quantal content and any other parameters of spontaneous or evoked ACh release in all cases. ARL67156 did not alter the temporal parameters of EPPs, either. Nevertheless, 2-CADO, the A1-type receptor agonist, decreased the EPP quantal content, while the agonist of P2Y13 receptors decreased the MEPP amplitude. Thus, in mice lacking pannexin 1, procedures revealing the presence and regulatory activity of synaptic ATP/adenosine did not change the parameters of synaptic transmission. The obtained data substantiate a mandatory role of pannexin 1 in the purinergic regulation of motor synapse activity by endogenous ATP/adenosine.  相似文献   

12.
Inhibition of packing of acetylcholine into quanta by ammonium   总被引:3,自引:0,他引:3  
Soaking frog motor nerve terminals in a hypertonic solution produces an increase in the size of miniature end plate potentials (mepp's) and miniature end plate currents (mepc's) after the preparations are returned to normal Ringer's solution. There is substantial evidence that the size increase occurs because additional acetylcholine (ACh+) is incorporated into the quanta. It has been proposed that ACh+ loading into synaptic vesicles requires a proton gradient. As a step in testing this hypothesis the effects of millimolar concentrations of NH4+, methylamine+, or trimethylamine+ in the extracellular solution on the increase in quantal size were measured. These substances would be expected to accumulate in acid intracellular compartments, which would diminish the acidity. The increase in quantal size was blocked by these substances, in agreement with the idea that the proton gradient is involved in ACh+ accumulation. Tetanic stimulation in solutions containing 5 mM NH4Cl also produces a decrease in quantal size, not seen in controls in NH4+-free solution. The inhibition of transmitter packaging by ammonia may play a role in the neural sequelae of hepatic failure.  相似文献   

13.
Here we analyze the problem of determining whether experimentally measured spontaneous miniature end-plate currents (MEPCs) indicate that quanta are composed of subunits. The properties of MEPCs at end plates with or without secondary clefts at the neuromuscular junction are investigated, using both stochastic and deterministic models of the action of a quantum of transmitter. It is shown that as the amount of transmitter in a quantum is increased above about 4000 acetylcholine (ACh) molecules there is a linear increase in the size of the MEPC. It is possible to then use amplitude-frequency histograms of such MEPCs to detect a subunit structure, as there is little potentiation effect above 4000 ACh molecules. Autocorrelation and power spectral analyses of such histograms establish that their subunit structure can be detected if the coefficient of variation of the subunit size is less than about 0.12 or, if electrical noise is added, about 0.1. Positive gradients relate the rise time and half-decay times of MEPCs to their amplitude, even in the absence of potentiating effects; these gradients are shallower at motor nerve terminals that possess secondary clefts. The effect of asynchronous release of subunits is also investigated. The criteria determined by this analysis for identifying a subunit composition in the quantum are applied to an amplitude-frequency histogram of MEPCs recorded from a small group of active zones at a visualized amphibian motor-nerve terminal. This did not provide evidence for a subunit structure.  相似文献   

14.
In the Torpedo electric organ, a modified nerve-muscle system, type A botulinum toxin blocked the release of acetylcholine (ACh) quanta, both neurally evoked and spontaneous. At the same time, the toxin increased the release of a class of small miniature potentials (the subminiature potentials), reduced the ATP and more the creatine phosphate content of the tissue, and impaired the activity of creatine kinase (CK). Thus, we compared this pattern of changes with those provoked by 1-fluoro-2,4-dinitrobenzene (FDNB), an efficient inhibitor of CK. As expected, FDNB rapidly inactivated CK, which resulted in a profound depletion of ATP whereas the stores of creatine phosphate were preserved. In addition, FDNB caused conspicuous morphological alterations of nerve endings and ACh depletion. This agent also suppressed evoked and spontaneous quantal release whereas the occurrence of subminature potentials was markedly increased. Diamide, a penetrating thiol oxidizing substance, provoked first a transient rise in quantal ACh release and then blockade of transmission with, again, production of a large number of subminiature potentials. Creatine phosphate was depleted in the tissue by diamide, the ATP content reduced, and CK activity partly inhibited. The morphology of nerve terminals did not show obvious changes with either diamide or botulinum toxin at the stage of transmission failure. Although the three poisons acted by different mechanisms, this resulted in a rather similar pattern of physiological changes: failure of quantal release and enhancement of subquantal release. These results and experiments on synaptosomes indicated that CK inhibition was probably a crucial mechanism for FDNB but not for diamide or botulinum intoxication.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
翟进  马如纯 《生理学报》1990,42(1):29-36
本文应用细胞内记录技术,观察了钙通道阻滞剂硝苯吡啶(nifedipine)对离体豚鼠腹腔神经节突触传递的影响,硝苯吡啶(0.1-10umol/L)不影响所检细胞的静息膜电位,膜电阻及细胞内刺激引起的动作电位,但能显著阻断N-型胆碱能的突触传递,并且这种作用可被低钙模拟、高钙拮抗,硝苯吡啶(10umol/L)也不影响突触后膜对乙酰胆碱(ACh)的敏感性;但在高钾克氏液中,能减少微小兴奋性突触后电位(mEPSPs)的频率;在低钙和高镁克氏液中,能减少量子含量,而对量子大小无影响。结果表明,治疗量的硝苯吡啶(0.1umol/L)通过阻滞突触前膜钙内流及ACh的量子性释放,产生突触阻断作用。这可能是硝苯吡啶降压机理的一个组成部分。  相似文献   

16.
T. Akasu  K. Koketsu 《Life sciences》1980,27(23):2261-2267
The desensitization of the muscarinic receptor, of which activation is known to depress the ionic K+ and Ca2+ currents generated during action potentials of bullfrog sympathetic ganglion cells, was studied. The depression of these voltage-dependent K+ and Ca2+ currents by muscarinic action of acetylcholine (ACh) was gradually restored to a certain extent when an application of ACh was sustained. After removal of ACh, the sensitivity of the muscarinic receptor was still depressed for an extended period, while resting and action potentials were apparently observed to be of normal level and size, respectively. These results indicate that desensitization of muscarinic receptors developed during a sustained application of ACh. It was suggested that the muscarinic receptor controlling these voltage-dependent currents of ganglion cells may be part of receptor-ionic channel complex (RICC) the nature of which was comparable to that of the RICC of the nicotinic receptor of the end-plate.  相似文献   

17.
We have examined the physiological properties of transmission at newly formed synapses between sympathetic preganglionic neurons and sympathetic ganglion neurons in vitro. Chick neurons were labeled with fluorescent carbocyanine dyes before they were placed into culture (Honig and Hume, 1986), and were studied by making intracellular recordings during the first 2 weeks of coculture. Evoked monosynaptic excitatory postsynaptic potentials (EPSPs) were not observed until 48 h of coculture. Beyond this time, the frequency with which connected pairs could be found did not vary greatly with time. With repetitive stimulation, the evoked monosynaptic EPSPs fluctuated in amplitude from trial to trial and showed depression at frequencies as low as 1 Hz. To gain further information about the quantitative properties of transmission at newly formed synapses, we analyzed the pattern of fluctuations of delayed release EPSPs. In mature systems, delayed release EPSPs are known to represent responses to single quanta, or to the synchronous release of a small number of quanta. For more than half of the connections we studied, the histograms of delayed release EPSPs were extremely broad. This result suggested that either quantal responses are drawn from a continuous distribution that has a large coefficient of variation or that there are several distinct size classes of quantal responses. The pattern of fluctuations of monosynaptic EPSPs was consistent with both of these possibilities, and was inconsistent with the possibility that monosynaptic EPSPs are composed of quantal subunits with very little intrinsic variation. Although variation in the size of responses to single quanta might arise in a number of ways, one attractive explanation for our results is that the density and type of acetylcholine receptors varies among the different synaptic sites on the surface of developing sympathetic ganglion neurons.  相似文献   

18.
A hypothesis that desensitized acetylcholine (ACh) receptors are responsible for postsynaptic potentiation (PSP) was verified in experiments performed on the sartorial muscle of the frog using a voltage-clamp recording technique. The PSP was estimated, at active and inhibited acetylcholinesterase, with the use of paired stimulation of the motor nerve at various interpulse intervals, according to an increase in the time constant () of the second end-plate current (EPC) relative to that of the first EPC. The appearance of desensitized receptors on the postsynaptic membrane, caused by the application of a promoter of desensitization proadiphen or by application of exogenous ACh, was followed by acceleration of the decay of the first EPC and by a decrease in its amplitude. However, this did not intensify PSP, which even decreased in the presence of proadiphen under the influence of ACh and membrane hyperpolarization. A sharp increase in calcium concentration after certain period of ACh influence, which increased quantum ACh release, did not enhance PSP, which allows us to suggest the role of the presynaptic factor to be insignificant. The results provide arguments against the direct involvement of desensitized acetylcholine receptors in the PSP development.Neirofiziologiya/Neurophysiology, Vol. 27, No. 5/6, pp. 361–367, September–December, 1995.  相似文献   

19.
Changes in parameters of spontaneous acetylcholine (ACh) quantal secretion caused by prolonged high-frequency burst activity of neuromuscular junctions and possible involvement of endogenous calcitonin gene-related peptide (CGRP) and its receptors in these changes were studied. With this purpose, miniature endplate potentials (MEPPs) were recorded using standard microelectrode technique in isolated neuromuscular preparations of m. EDL–n. peroneus after a prolonged high-frequency nerve stimulation (30 Hz for 2 min). An increase in the MEPP amplitudes and time course was observed in the postactivation period that reached maximum 20–30 min after nerve stimulation and progressively faded in the following 30 min of recording. Inhibition of vesicular ACh transporter with vesamicol (1 μM) fully prevented this “wave” of the MEPP enhancement. This indicates the presynaptic origin of the MEPP amplitude increase, possibly mediated via intensification of synaptic vesicle loading with ACh and subsequent increase of the quantal size. Competitive antagonist of the CGRP receptor, truncated peptide isoform CGRP8–37 (1 μM), had no effect on spontaneous secretion parameters by itself but was able to prevent the appearance of enhanced MEPPs in the postactivation period. This suggests the involvement of endogenous CGRP and its receptors in the observed MEPP enhancement after an intensive nerve stimulation. Ryanodine in high concentration (1 μM) that blocks ryanodine receptors and stored calcium release did not influence spontaneous ACh secretion but prevented the increase of the MEPP parameters in the postactivation period. Altogether, the data indicate that an intensive nerve stimulation, which activates neuromuscular junctions and muscle contractions, leads to a release of endogenous CGRP into synaptic cleft and this release strongly depends on the efflux of stored calcium. The released endogenous CGRP is able to exert an acute presynaptic effect on nerve terminals, which involves its specific receptor action and intracellular cascades leading to intensification of ACh loading into synaptic vesicles and an increase in the ACh quantal size.  相似文献   

20.
We have examined the physiological properties of transmission at newly formed synapses between sympathetic preganglionic neurons and sympathetic ganglion neurons in vitro. Chick neurons were labeled with fluorescent carbocyanine dyes before they were placed into culture (Honig and Hume, 1986), and were studied by making intracellular recordings during the first 2 weeks of coculture. Evoked monosynaptic excitatory postsynaptic potentials (EPSPs) were not observed until 48 h of coculture. Beyond this time, the frequency with which connected pairs could be found did not vary greatly with time. With repetitive stimulation, the evoked monosynaptic EPSPs fluctuated in amplitude from trial to trial and showed depression at frequencies as low as 1 Hz. To gain further information about the quantitative properties of transmission at newly formed synapses, we analyzed the pattern of fluctuations of delayed release EPSPs. In mature systems, delayed release EPSPs are known to represent responses to single quanta, or to the synchronous release of a small number of quanta. For more than half of the connections we studied, the histograms of delayed release EPSPs were extremely broad. This result suggested that either quantal reponses are drawn from a continuous distribution that has a large coefficient of variation or that there are several distinct size classes of quantal responses. The pattern of fluctuation of monosynaptic EPSPs was consistent with both of these possibilities, and was inconsistent with the possibility that monosynaptic EPSPs are composed of quantal subunits with very little intrinsic variation. Although variation in the size of responses to single quanta might arise in a number of ways, one attractive explanation for our results is that the density and type of acetylcholine receptors varies among the different synaptic sites on the surface of developing sympathetic ganglion neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号