首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yu C  Zavaljevski N  Desai V  Reifman J 《Proteins》2009,74(2):449-460
In this article, we present a new method termed CatFam (Catalytic Families) to automatically infer the functions of catalytic proteins, which account for 20-40% of all proteins in living organisms and play a critical role in a variety of biological processes. CatFam is a sequence-based method that generates sequence profiles to represent and infer protein catalytic functions. CatFam generates profiles through a stepwise procedure that carefully controls profile quality and employs nonenzymes as negative samples to establish profile-specific thresholds associated with a predefined nominal false-positive rate (FPR) of predictions. The adjustable FPR allows for fine precision control of each profile and enables the generation of profile databases that meet different needs: function annotation with high precision and hypothesis generation with moderate precision but better recall. Multiple tests of CatFam databases (generated with distinct nominal FPRs) against enzyme and nonenzyme datasets show that the method's predictions have consistently high precision and recall. For example, a 1% FPR database predicts protein catalytic functions for a dataset of enzymes and nonenzymes with 98.6% precision and 95.0% recall. Comparisons of CatFam databases against other established profile-based methods for the functional annotation of 13 bacterial genomes indicate that CatFam consistently achieves higher precision and (in most cases) higher recall, and that (on average) CatFam provides 21.9% additional catalytic functions not inferred by the other similarly reliable methods. These results strongly suggest that the proposed method provides a valuable contribution to the automated prediction of protein catalytic functions. The CatFam databases and the database search program are freely available at http://www.bhsai.org/downloads/catfam.tar.gz.  相似文献   

2.
The metabolic network is an important biological network which consists of enzymes and chemical compounds. However, a large number of metabolic pathways remains unknown, and most organism-specific metabolic pathways contain many missing enzymes. We present a novel method to identify the genes coding for missing enzymes using available genomic and chemical information from bacterial genomes. The proposed method consists of two steps: (a) estimation of the functional association between the genes with respect to chromosomal proximity and evolutionary association, using supervised network inference; and (b) selection of gene candidates for missing enzymes based on the original candidate score and the chemical reaction information encoded in the EC number. We applied the proposed methods to infer the metabolic network for the bacteria Pseudomonas aeruginosa from two genomic datasets: gene position and phylogenetic profiles. Next, we predicted several missing enzyme genes to reconstruct the lysine-degradation pathway in P. aeruginosa using EC number information. As a result, we identified PA0266 as a putative 5-aminovalerate aminotransferase (EC 2.6.1.48) and PA0265 as a putative glutarate semialdehyde dehydrogenase (EC 1.2.1.20). To verify our prediction, we conducted biochemical assays and examined the activity of the products of the predicted genes, PA0265 and PA0266, in a coupled reaction. We observed that the predicted gene products catalyzed the expected reactions; no activity was seen when both gene products were omitted from the reaction.  相似文献   

3.
BACKGROUND: Hundreds of genes lacking homology to any protein of known function are sequenced every day. Genome-context methods have proved useful in providing clues about functional annotations for many proteins. However, genome-context methods detect many biological types of functional associations, and do not identify which type of functional association they have found. RESULTS: We have developed two new genome-context-based algorithms. Algorithm 1 extends our previous algorithm for identifying missing enzymes in predicted metabolic pathways (pathway holes) to use genome-context features. The new algorithm has significantly improved scope because it can now be applied to pathway reactions to which sequence similarity methods cannot be applied due to an absence of known sequences for enzymes catalyzing the reaction in other organisms. The new method identifies at least one known enzyme in the top ten hits for 58% of EcoCyc reactions that lack enzyme sequences in other organisms. Surprisingly, the addition of genome-context features does not improve the accuracy of the algorithm when sequences for the enzyme do exist in other organisms. Algorithm 2 uses genome-context methods to predict three distinct types of functional relationships between pairs of proteins: pairs that occur in the same protein complex, the same pathway, or the same operon. This algorithm performs with varying degrees of accuracy on each type of relationship, and performs best in predicting pathway and protein complex relationships.  相似文献   

4.
5.
MetaCyc (http://metacyc.org) contains experimentally determined biochemical pathways to be used as a reference database for metabolism. In conjunction with the Pathway Tools software, MetaCyc can be used to computationally predict the metabolic pathway complement of an annotated genome. To increase the breadth of pathways and enzymes, more than 60 plant-specific pathways have been added or updated in MetaCyc recently. In contrast to MetaCyc, which contains metabolic data for a wide range of organisms, AraCyc is a species-specific database containing only enzymes and pathways found in the model plant Arabidopsis (Arabidopsis thaliana). AraCyc (http://arabidopsis.org/tools/aracyc/) was the first computationally predicted plant metabolism database derived from MetaCyc. Since its initial computational build, AraCyc has been under continued curation to enhance data quality and to increase breadth of pathway coverage. Twenty-eight pathways have been manually curated from the literature recently. Pathway predictions in AraCyc have also been recently updated with the latest functional annotations of Arabidopsis genes that use controlled vocabulary and literature evidence. AraCyc currently features 1,418 unique genes mapped onto 204 pathways with 1,156 literature citations. The Omics Viewer, a user data visualization and analysis tool, allows a list of genes, enzymes, or metabolites with experimental values to be painted on a diagram of the full pathway map of AraCyc. Other recent enhancements to both MetaCyc and AraCyc include implementation of an evidence ontology, which has been used to provide information on data quality, expansion of the secondary metabolism node of the pathway ontology to accommodate curation of secondary metabolic pathways, and enhancement of the cellular component ontology for storing and displaying enzyme and pathway locations within subcellular compartments.  相似文献   

6.
Alignment of metabolic pathways   总被引:3,自引:0,他引:3  
  相似文献   

7.
MOTIVATION: Despite advances in the gene annotation process, the functions of a large portion of gene products remain insufficiently characterized. In addition, the in silico prediction of novel Gene Ontology (GO) annotations for partially characterized gene functions or processes is highly dependent on reverse genetic or functional genomic approaches. To our knowledge, no prediction method has been demonstrated to be highly accurate for sparsely annotated GO terms (those associated to fewer than 10 genes). RESULTS: We propose a novel approach, information theory-based semantic similarity (ITSS), to automatically predict molecular functions of genes based on existing GO annotations. Using a 10-fold cross-validation, we demonstrate that the ITSS algorithm obtains prediction accuracies (precision 97%, recall 77%) comparable to other machine learning algorithms when compared in similar conditions over densely annotated portions of the GO datasets. This method is able to generate highly accurate predictions in sparsely annotated portions of GO, where previous algorithms have failed. As a result, our technique generates an order of magnitude more functional predictions than previous methods. A 10-fold cross validation demonstrated a precision of 90% at a recall of 36% for the algorithm over sparsely annotated networks of the recent GO annotations (about 1400 GO terms and 11,000 genes in Homo sapiens). To our knowledge, this article presents the first historical rollback validation for the predicted GO annotations, which may represent more realistic conditions than more widely used cross-validation approaches. By manually assessing a random sample of 100 predictions conducted in a historical rollback evaluation, we estimate that a minimum precision of 51% (95% confidence interval: 43-58%) can be achieved for the human GO Annotation file dated 2003. AVAILABILITY: The program is available on request. The 97,732 positive predictions of novel gene annotations from the 2005 GO Annotation dataset and other supplementary information is available at http://phenos.bsd.uchicago.edu/ITSS/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

8.
The Metabolic Reaction Analysis Database (MRAD) is a relational database based on the Entity-Relationship (ER) model which combines information about organisms, biochemical pathways, reactions, enzymes, substrates, products and genes. It describes 244,596 genes in 79 organisms, 6,552 enzymes, and 3,552 reactions, 3,100 substrates, 2,866 products and 118 metabolic pathways. The MRAD graphical user interface allows for the identification of metabolic reactions which are similar and dissimilar in multiple organisms, reactions in a pathway which are missing in an organism and using any combination between one to six of the biological entities of organisms, genes, pathways, enzymes, substrates and products to determine metabolic reactions. MRAD provides a powerful and efficient tool for the construction of flux balance models for metabolic engineering applications.  相似文献   

9.
Metabolic pathway analysis, one of the most important fields in biochemistry, is pivotal to understanding the maintenance and modulation of the functions of an organism. Good comprehension of metabolic pathways is critical to understanding the mechanisms of some fundamental biological processes. Given a small molecule or an enzyme, how may one identify the metabolic pathways in which it may participate? Answering such a question is a first important step in understanding a metabolic pathway system. By utilizing the information provided by chemical-chemical interactions, chemical-protein interactions, and protein-protein interactions, a novel method was proposed by which to allocate small molecules and enzymes to 11 major classes of metabolic pathways. A benchmark dataset consisting of 3,348 small molecules and 654 enzymes of yeast was constructed to test the method. It was observed that the first order prediction accuracy evaluated by the jackknife test was 79.56% in identifying the small molecules and enzymes in a benchmark dataset. Our method may become a useful vehicle in predicting the metabolic pathways of small molecules and enzymes, providing a basis for some further analysis of the pathway systems.  相似文献   

10.
Yeasts are known to have versatile metabolic traits, while how these metabolic traits have evolved has not been elucidated systematically. We performed integrative evolution analysis to investigate how genomic evolution determines trait generation by reconstructing genome‐scale metabolic models (GEMs) for 332 yeasts. These GEMs could comprehensively characterize trait diversity and predict enzyme functionality, thereby signifying that sequence‐level evolution has shaped reaction networks towards new metabolic functions. Strikingly, using GEMs, we can mechanistically map different evolutionary events, e.g. horizontal gene transfer and gene duplication, onto relevant subpathways to explain metabolic plasticity. This demonstrates that gene family expansion and enzyme promiscuity are prominent mechanisms for metabolic trait gains, while GEM simulations reveal that additional factors, such as gene loss from distant pathways, contribute to trait losses. Furthermore, our analysis could pinpoint to specific genes and pathways that have been under positive selection and relevant for the formulation of complex metabolic traits, i.e. thermotolerance and the Crabtree effect. Our findings illustrate how multidimensional evolution in both metabolic network structure and individual enzymes drives phenotypic variations.  相似文献   

11.
MOTIVATION: There is an imperative need to integrate functional genomics data to obtain a more comprehensive systems-biology view of the results. We believe that this is best achieved through the visualization of data within the biological context of metabolic pathways. Accordingly, metabolic pathway reconstruction was used to predict the metabolic composition for Medicago truncatula and these pathways were engineered to enable the correlated visualization of integrated functional genomics data. Results: Metabolic pathway reconstruction was used to generate a pathway database for M. truncatula (MedicCyc), which currently features more than 250 pathways with related genes, enzymes and metabolites. MedicCyc was assembled from more than 225,000 M. truncatula ESTs (MtGI Release 8.0) and available genomic sequences using the Pathway Tools software and the MetaCyc database. The predicted pathways in MedicCyc were verified through comparison with other plant databases such as AraCyc and RiceCyc. The comparison with other plant databases provided crucial information concerning enzymes still missing from the ongoing, but currently incomplete M. truncatula genome sequencing project. MedicCyc was further manually curated to remove non-plant pathways, and Medicago-specific pathways including isoflavonoid, lignin and triterpene saponin biosynthesis were modified or added based upon available literature and in-house expertise. Additional metabolites identified in metabolic profiling experiments were also used for pathway predictions. Once the metabolic reconstruction was completed, MedicCyc was engineered to visualize M. truncatula functional genomics datasets within the biological context of metabolic pathways. Availability: freely accessible at http://www.noble.org/MedicCyc/  相似文献   

12.
ABSTRACT: BACKGROUND: Increasingly biological text mining research is focusing on the extraction of complex relationships relevant to the construction and curation of biological networks and pathways. However, one important category of pathway - metabolic pathways - has been largely neglected. Here we present a relatively simple method for extracting metabolic reaction information from free text that scores different permutations of assigned entities (enzymes and metabolites) within a given sentence based on the presence and location of stemmed keywords. This method extends an approach that has proved effective in the context of the extraction of protein-protein interactions. RESULTS: When evaluated on a set of manually-curated metabolic pathways using standard performance criteria, our method performs surprisingly well. Precision and recall rates are comparable to those previously achieved for the well-known protein-protein interaction extraction task. CONCLUSIONS: We conclude that automated metabolic pathway construction is more tractable than has often been assumed, and that (as in the case of protein-protein interaction extraction) relatively simple text-mining approaches can prove surprisingly effective. It is hoped that these results will provide an impetus to further research and act as a useful benchmark for judging the performance of more sophisticated methods that are yet to be developed.  相似文献   

13.
Given a compounds-forming system, i.e., a system consisting of some compounds and their relationship, can it form a biologically meaningful pathway? It is a fundamental problem in systems biology. Nowadays, a lot of information on different organisms, at both genetic and metabolic levels, has been collected and stored in some specific databases. Based on these data, it is feasible to address such an essential problem. Metabolic pathway is one kind of compounds-forming systems and we analyzed them in yeast by extracting different (biological and graphic) features from each of the 13,736 compounds-forming systems, of which 136 are positive pathways, i.e., known metabolic pathway from KEGG; while 13,600 were negative. Each of these compounds-forming systems was represented by 144 features, of which 88 are graph features and 56 biological features. "Minimum Redundancy Maximum Relevance" and "Incremental Feature Selection" were utilized to analyze these features and 16 optimal features were selected as being able to predict a query compounds- forming system most successfully. It was found through Jackknife cross-validation that the overall success rate of identifying the positive pathways was 74.26%. It is anticipated that this novel approach and encouraging result may give meaningful illumination to investigate this important topic.  相似文献   

14.
Genome-wide association studies (GWAS) are designed to identify the portion of single-nucleotide polymorphisms (SNPs) in genome sequences associated with a complex trait. Strategies based on the gene list enrichment concept are currently applied for the functional analysis of GWAS, according to which a significant overrepresentation of candidate genes associated with a biological pathway is used as a proxy to infer overrepresentation of candidate SNPs in the pathway. Here we show that such inference is not always valid and introduce the program SNP2GO, which implements a new method to properly test for the overrepresentation of candidate SNPs in biological pathways.  相似文献   

15.
Beta oxidation is the principal metabolic pathway for fatty acid degradation. The pathway is virtually universally present throughout eukaryotes yet displays different forms in enzyme architecture, substrate specificity, and subcellular location. In this review, we examine beta oxidation across the fungal kingdom by conducting a large-scale in silico screen and localization prediction for all relevant enzymes in >50 species. The survey reveals that fungi exhibit an astounding diversity of beta oxidation pathways and shows that the combined presence of distinct mitochondrial and peroxisomal pathways is the prevailing and likely ancestral type of beta oxidation in fungi. In addition, the available information indicates that the mitochondrial pathway was lost in the common ancestor of Saccharomycetes. Finally, we infer the existence of a hybrid peroxisomal pathway in several Sordariomycetes, including Neurospora crassa. In these cases, a typically mitochondrion-located enzyme compensates for the lack of a peroxisomal one. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Predicting new protein-protein interactions is important for discovering novel functions of various biological pathways. Predicting these interactions is a crucial and challenging task. Moreover, discovering new protein-protein interactions through biological experiments is still difficult. Therefore, it is increasingly important to discover new protein interactions. Many studies have predicted protein-protein interactions, using biological features such as Gene Ontology (GO) functional annotations and structural domains of two proteins. In this paper, we propose an augmented transitive relationships predictor (ATRP), a new method of predicting potential protein interactions using transitive relationships and annotations of protein interactions. In addition, a distillation of virtual direct protein-protein interactions is proposed to deal with unbalanced distribution of different types of interactions in the existing protein-protein interaction databases. Our results demonstrate that ATRP can effectively predict protein-protein interactions. ATRP achieves an 81% precision, a 74% recall and a 77% F-measure in average rate in the prediction of direct protein-protein interactions. Using the generated benchmark datasets from KUPS to evaluate of all types of the protein-protein interaction, ATRP achieved a 93% precision, a 49% recall and a 64% F-measure in average rate. This article is part of a Special Issue entitled: Computational Methods for Protein Interaction and Structural Prediction.  相似文献   

17.
Industrial biotechnology provides an efficient, sustainable solution for chemical production. However, designing biochemical pathways based solely on known reactions does not exploit its full potential. Enzymes are known to accept non‐native substrates, which may allow novel, advantageous reactions. We have previously developed a computational program named Biological Network Integrated Computational Explorer (BNICE) to predict promiscuous enzyme activities and design synthetic pathways, using generalized reaction rules curated from biochemical reaction databases. Here, we use BNICE to design pathways synthesizing propionic acid from pyruvate. The currently known natural pathways produce undesirable by‐products lactic acid and succinic acid, reducing their economic viability. BNICE predicted seven pathways containing four reaction steps or less, five of which avoid these by‐products. Among the 16 biochemical reactions comprising these pathways, 44% were validated by literature references. More than 28% of these known reactions were not in the BNICE training dataset, showing that BNICE was able to predict novel enzyme substrates. Most of the pathways included the intermediate acrylic acid. As acrylic acid bioproduction has been well advanced, we focused on the critical step of reducing acrylic acid to propionic acid. We experimentally validated that Oye2p from Saccharomyces cerevisiae can catalyze this reaction at a slow turnover rate (10?3 s?1), which was unknown to occur with this enzyme, and is an important finding for further propionic acid metabolic engineering. These results validate BNICE as a pathway‐searching tool that can predict previously unknown promiscuous enzyme activities and show that computational methods can elucidate novel biochemical pathways for industrial applications. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:303–311, 2016  相似文献   

18.
The Gene Ontology (GO) is a collaborative effort that provides structured vocabularies for annotating the molecular function, biological role, and cellular location of gene products in a highly systematic way and in a species-neutral manner with the aim of unifying the representation of gene function across different organisms. Each contributing member of the GO Consortium independently associates GO terms to gene products from the organism(s) they are annotating. Here we introduce the Reference Genome project, which brings together those independent efforts into a unified framework based on the evolutionary relationships between genes in these different organisms. The Reference Genome project has two primary goals: to increase the depth and breadth of annotations for genes in each of the organisms in the project, and to create data sets and tools that enable other genome annotation efforts to infer GO annotations for homologous genes in their organisms. In addition, the project has several important incidental benefits, such as increasing annotation consistency across genome databases, and providing important improvements to the GO's logical structure and biological content.  相似文献   

19.
Zhang B  Watts KM  Hodge D  Kemp LM  Hunstad DA  Hicks LM  Odom AR 《Biochemistry》2011,50(17):3570-3577
Antimicrobial drug resistance is an urgent problem in the control and treatment of many of the world's most serious infections, including Plasmodium falciparum malaria, tuberculosis, and healthcare-associated infections with Gram-negative bacteria. Because the non-mevalonate pathway of isoprenoid biosynthesis is essential in eubacteria and P. falciparum and this pathway is not present in humans, there is great interest in targeting the enzymes of non-mevalonate metabolism for antibacterial and antiparasitic drug development. Fosmidomycin is a broad-spectrum antimicrobial agent currently in clinical trials of combination therapies for the treatment of malaria. In vitro, fosmidomycin is known to inhibit the deoxyxylulose phosphate reductoisomerase (DXR) enzyme of isoprenoid biosynthesis from multiple pathogenic organisms. To define the in vivo metabolic response to fosmidomycin, we developed a novel mass spectrometry method to quantitate six metabolites of non-mevalonate isoprenoid metabolism from complex biological samples. Using this technique, we validate that the biological effects of fosmidomycin are mediated through blockade of de novo isoprenoid biosynthesis in both P. falciparum malaria parasites and Escherichia coli bacteria: in both organisms, metabolic profiling demonstrated a block of isoprenoid metabolism following fosmidomycin treatment, and growth inhibition due to fosmidomycin was rescued by media supplemented with isoprenoid metabolites. Isoprenoid metabolism proceeded through DXR even in the presence of fosmidomycin but was inhibited at the level of the downstream enzyme, methylerythritol phosphate cytidyltransferase (IspD). Overexpression of IspD in E. coli conferred fosmidomycin resistance, and fosmidomycin was found to inhibit IspD in vitro. This work has validated fosmidomycin as a biological reagent for blocking non-mevalonate isoprenoid metabolism and suggests a second in vivo target for fosmidomycin within isoprenoid biosynthesis, in two evolutionarily diverse pathogens.  相似文献   

20.
The advent of fully sequenced genomes opens the ground for the reconstruction of metabolic pathways on the basis of the identification of enzyme-coding genes. Here we describe PRIAM, a method for automated enzyme detection in a fully sequenced genome, based on the classification of enzymes in the ENZYME database. PRIAM relies on sets of position-specific scoring matrices ('profiles') automatically tailored for each ENZYME entry. Automatically generated logical rules define which of these profiles is required in order to infer the presence of the corresponding enzyme in an organism. As an example, PRIAM was applied to identify potential metabolic pathways from the complete genome of the nitrogen-fixing bacterium Sinorhizobium meliloti. The results of this automated method were compared with the original genome annotation and visualised on KEGG graphs in order to facilitate the interpretation of metabolic pathways and to highlight potentially missing enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号