首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In adult human subjects, the correlations were determined between the cross-sectional areas of the jaw muscles (measured in CT scans) and a number of facial angles and dimensions (measured from lateral radiographs). Multivariate statistical analysis of the skeletal variables in a group of 50 subjects led to the recognition of six independent factors determining facial shape, i.e., cranial base length, lower facial height, cranial base flexure and prognathism, facial width, mandibular length, and upper facial height. In 29 of these subjects, the cross-sectional areas of the jaw muscles were determined, and correlations between these areas and the scores on the above-mentioned factors were calculated. It appeared that the cross-sectional areas of temporalis and masseter muscles correlated positively with facial width, whereas the areas of masseter and both pterygoid muscles did so with mandibular length. It has been shown experimentally that a decrease in jaw muscle size in various animals likewise has an effect on facial width and mandibular length. Our results therefore support the hypothesis that in man too the jaw muscles affect facial growth and partly determine the final facial dimensions. They also hint that the role of each muscle is different.  相似文献   

2.
A computer assisted three-dimensional model of the jaw, based on linear programming, is presented. The upper and lower attachments of the muscles of mastication have been measured on a single human skull and divided into thirteen independent units on each side--a total of 26 muscle elements. The direction (in three dimensions) and maximum forces that could be developed by each muscle element, the bite reaction and two joint reactions are included in the model. It is shown for symmetrical biting that a model which minimizes the sum of the muscle forces used to produce a given bite force activates muscles in a way which corresponds well with previous observations on human subjects. A model which minimizes the joint reactions behaves differently and is rejected. An analysis of the way the chosen model operates suggests that there are two types of jaw muscles, power muscles and control muscles. Power muscles (superficial masseter, medial pterygoid and some of temporalis) produce the bite force but tend to displace the condyle up or down the articular eminence. This displacement is prevented by control muscles (oblique temporalis and lateral pterygoid) which have very poor moment arms for generating usual bite forces, but are efficient for preventing condylar slide. The model incorporates the concept that muscles consist of elements which can contract independently. It predicts that those muscle elements with longer moment arms relative to the joint are the first to be activated and, as the bite force increases, a ripple of activity spreads into elements with shorter moment arms. In general, the model can be used to study the three-dimensional activity in any system of joints and muscles.  相似文献   

3.
To gain a better understanding of biting and chewing performance, the size and orientation of the masseter and medial pterygoid muscles in living humans were studied. Twenty-seven young males having complete dentition, class I dental occlusion and normal muscle and jaw function were examined using magnetic resonance images of the head between the zygomatic arch and hyoid bone. The sections were parallel to the palatal plane, and the thickness was 3 mm without a gap. A computer software program (Medical Dental Image, MDI) was developed to identify and calculate the area of each cross section of the muscle, and the volume of the muscle was then estimated. The axis of the muscle was determined by connecting the centroids of the sections in the lower and upper 1/3 of the whole muscle. The effective muscle cross section area was then calculated by resectioning the muscle perpendicularly to the muscle axis. It was found that the mean masseter muscle volume was around 31 cm3, and that the mean medial pterygoid muscle volume was 11 cm3. Their mean effective cross section areas were around 6.2 cm2 and 3.5 cm2, respectively. The axis of the masseter muscle was more perpendicular to the palatal plane and parallel to the sagittal plane than was the medial pterygoid muscle. The results suggest that the use of magnetic resonance images (MRI) is an effective noninvasive measurement technique for determining the size and orientation of masseter and medial pterygoid muscles. This technique can be employed in future studies on human bite force evaluation and masticatory function.  相似文献   

4.
Wear facets on molars of the Eocene primate Adapis magnus are described. Striations on these wear facets indicate three separate directions of mandibular movement during mastication. One direction corresponds to a first stage of mastication involving orthal retraction of the mandible. The remaining two directions correspond to buccal and lingual phases of a second stage of mastication involving a transverse movement of the mandible. The mechanics of jaw adduction are analysed for both the orthal retraction and transverse stages of mastication. During the orthal retraction stage the greatest component of bite force is provided by the temporalis muscles acting directly against the food with the mandible functioning as a link rather than as a lever. A geometrical argument suggests that during the transverse stage of mastication bite force is provided by the temporalis muscles of both sides, the ipsilateral medial and lateral pterygoid muscles, and the contralateral masseter muscle.  相似文献   

5.
Physiological cross-section of the human jaw muscles   总被引:2,自引:0,他引:2  
The cross-sectional areas of the masseter, temporalis, medial pterygoid and lateral pterygoid muscles were determined by means of computer tomography in 16 male subjects with healthy dentitions. The physiological cross-section (PCS) of these muscles was predicted from the previously determined relationship between PCS and scan cross-sections. In our subjects, mean total PCS of the jaw muscles was twice as high as in cadavers with few natural teeth. The average distribution of total PCS over the four muscles was the same in the two groups. There was considerable individual variation. Strong correlations in cross-sectional area were only found between the masseter and medial pterygoid muscles. Variation in PCS of these two muscles determines 80% of the variation in combined cross-sectional area.  相似文献   

6.
Models of mastication require knowledge of fiber lengths and physiological cross-sectional area (PCS), a proxy for muscle force. I dissected 36 medial pterygoid and 36 lateral pterygoid muscles from 30 adult females of 3 macaque species (Macaca fascicularis, M. mulatta, M. nemestrina) using gross and chemical techniques and calculated PCS. These macaques have mechanically similar dietary niches and exhibit no significant difference in muscle architecture or fiber length. Fiber length does not scale with body size (mass) for either total pterygoid muscle or for medial pterygoid muscle mass. However, fiber length scales weakly with lateral pterygoid muscle mass. In each case, differences in PCS among species result from differences in muscle mass not fiber length. Medial pterygoid PCS scales isometrically with body size; larger animals have greater force production capabilities. Medial and lateral pterygoid PCS scale positively allometrically with facial size; individuals with more prognathic faces and taller mandibular corpora have greater PCS, and hence force, values. This positive allometry counters the less efficient positioning of masticatory muscles in longer-faced macaques. PCS is only weakly correlated with bone proxies previously used to estimate muscle force. Thus, predictions of muscle force from bone parameters will entail large margins of error and should be used with caution.  相似文献   

7.
We investigated patterns of jaw-muscle coordination during rhythmic mastication in three species of ungulates displaying the marked transverse jaw movements typical of many large mammalian herbivores. In order to quantify consistent motor patterns during chewing, electromyograms were recorded from the superficial masseter, deep masseter, posterior temporalis and medial pterygoid muscles of goats, alpacas and horses. Timing differences between muscle pairs were evaluated in the context of an evolutionary model of jaw-muscle function. In this model, the closing and food reduction phases of mastication are primarily controlled by two distinct muscle groups, triplet I (balancing-side superficial masseter and medial pterygoid and working-side posterior temporalis) and triplet II (working-side superficial masseter and medial pterygoid and balancing-side posterior temporalis), and the asynchronous activity of the working- and balancing-side deep masseters. The three species differ in the extent to which the jaw muscles are coordinated as triplet I and triplet II. Alpacas, and to a lesser extent, goats, exhibit the triplet pattern whereas horses do not. In contrast, all three species show marked asynchrony of the working-side and balancing-side deep masseters, with jaw closing initiated by the working-side muscle and the balancing-side muscle firing much later during closing. However, goats differ from alpacas and horses in the timing of the balancing-side deep masseter relative to the triplet II muscles. This study highlights interspecific differences in the coordination of jaw muscles to influence transverse jaw movements and the production of bite force in herbivorous ungulates.  相似文献   

8.
Unilateral electrolytic lesions were made in the left-side facial motor nucleus (FMNu) of six Sprague-Dawley rats at 35 days of age in order to correlate craniofacial sequelae with changed motoneuron function. Experimental and control rats were killed at 22, 32, 42, and 52 days postoperatively to provide muscle weight, brain histology, and dry skull preparations for analyses. Dissection, muscle weight, motoneuron count, and osteometric data revealed that lesion-side facial and masticatory muscles were affected by the lesions. Paired t-tests indicated that significant differences existed between weights of experimental lesion- and nonlesion-side anterior digastric, temporalis, masseteric complex, and medial pterygoid muscles, numbers of facial and trigeminal motoneurons, and several skeletal dimensions of the skull. Basi-cranial dimensions of experimental animals were least affected by the lesion, whereas zygomatic arch, dorsal facial region, and mandibular condyle dimensions were most affected. Statistical analyses also detected significant differences between experimental and control groups for several skeletal dimensions of the skull. Data indicated that damage to the trigeminal motor nucleus (TMNu) was secondary to the primary lesion in the FMNu. Motoneurons within the facial and trigeminal neuromuscular complexes (FNC and TNC) play an important role in craniofacial growth and development.  相似文献   

9.
The lack of specific data correlating activity in the human medial pterygoid muscle with displacement of the jaw during mastication, and the hint of possible differences in function between certain mammalian species, prompted a study of unilateral mastication in six adult subjects. Muscle activity in the medial pterygoid, masseter, and anterior temporal muscles was recorded simultaneously with three-dimensional movement of an incisor point on the mandible. Signals from muscles and displacement transducer were sampled by a disc-based computer system programmed to analyze data averaged over 30 chewing cycles on each side and in some instances over 30 open-close and clench cycles. Patterns of medial pterygoid activity were consistent for the group as a whole, demonstrating activation of both muscles early in the closing cycle with strong ipsilateral muscle activity before and throughout the intercuspal phase of mastication. By contrast contralateral activity ceased during the crushing phase of the cycle, reappearing in some subjects just before the end of intercuspation. Medial pterygoid activity mirrored masseter and anterior temporal activity only during certain phases of the closing cycle, suggesting that these muscles should be considered as being selectively coactivated with, rather than synergists of, the major elevators of the jaw. The muscles were active during horizontal components of movement of the incisor teeth in chewing, but were inactive during the open-close and clench task despite vigorous contraction of the masseter muscles. Overall, the observations complement previous reports of medial pterygoid muscle activity in humans. They also confirm, for these muscles at least, a general similarity between man and the little brown bat, a relationship hitherto suspected but unsubstantiated.  相似文献   

10.
Beavers are well-known for their ability to fell large trees through gnawing. Yet, despite this impressive behavior, little information exists on their masticatory musculature or the biomechanics of their jaw movements. It was hypothesized that beavers would have a highly efficient arrangement of the masticatory apparatus, and that gnawing efficiency would be maintained at large gape. The head of an American beaver, Castor canadensis, was dissected to reveal the masticatory musculature. Muscle origins and insertions were noted, the muscles were weighed and fiber lengths measured. Physiological cross-sectional areas were determined, and along with the muscle vectors, were used to calculate the length of the muscle moment arms, the maximum incisor bite force, and the proportion of the bite force projected along the long axis of the lower incisor, at occlusion and 30° gape. Compared to other sciuromorph rodents, the American beaver was found to have large superficial masseter and temporalis muscles, but a relatively smaller anterior deep masseter. The incisor bite force calculated for the beaver (550–740 N) was much higher than would be predicted from body mass or incisor dimensions. This is not a result of the mechanical advantage of the muscles, which is lower than most other sciuromorphs, but is likely related to the very high percentage (>96 %) of bite force directed along the lower incisor long axis. The morphology of the skull, mandible and jaw-closing muscles enable the beaver to produce a very effective and efficient bite, which has permitted beavers to become highly successful ecosystem engineers.  相似文献   

11.
Between weaning and adulthood, the length and height of the facial skull of the New Zealand rabbit (Oryctolagus cuniculus) double, whereas much less growth occurs in the width of the face and in the neurocranium. There is a five-fold increase in mass of the masticatory muscles, caused mainly by growth in cross-sectional area. The share of the superficial masseter in the total mass increases at the cost of the jaw openers. There are changes in the direction of the working lines of a few muscles. A 3-dimensional mechanical model was used to predict bite forces at different mandibular positions. It shows that young rabbits are able to generate large bite forces at a wider range of mandibular positions than adults and that the forces are directed more vertically. In young and adult animals, the masticatory muscles differ from each other with respect to the degree of gape at which optimum sarcomere length is reached. Consequently, bite force can be maintained over a range of gapes, larger than predicted on basis of individual length-tension curves. Despite the considerable changes in skull shape and concurrent changes in the jaw muscles, the direction of the resultant force of the closing muscles and its mechanical advantage remain stable during growth. Observed phenomena suggest that during development the possibilities for generation of large bite forces are increased at the cost of a restriction of the range of jaw excursion.  相似文献   

12.
Rosette strain gage, electromyography (EMG), and cineradiographic techniques were used to analyze loading patterns and jaw movements during mastication in Macaca fascicularis. The cineradiographic data indicate that macaques generally swallow frequently throughout a chewing sequence, and these swallows are intercalated into a chewing cycle towards the end of a power stroke. The bone strain and jaw movement data indicate that during vigorous mastication the transition between fast close and the power stroke is correlated with a sharp increase in masticatory force, and they also show that in most instances the jaws of macaques are maximally loaded prior to maximum intercuspation, i.e. during phase I (buccal phase) occlusal movements. Moreover, these data indicate that loads during phase II (lingual phase) occlusal movements are ordinarily relatively small. The bone strain data also suggest that the duration of unloading of the jaw during the power stroke of mastication is largely a function of the relaxation time of the jaw adductors. This interpretation is based on the finding that the duration from 100% peak strain to 50% peak strain during unloading closely approximates the half-relaxation time of whole adductor jaw muscles of macaques. The EMG data of the masseter and medial pterygoid muscles have important implications for understanding both the biomechanics of the power stroke and the external forces responsible for the "wishboning" effect that takes place along the mandibular symphysis and corpus during the power stroke of mastication. Although both medial pterygoid muscles reach maximum EMG activity during the power stroke, the activity of the working-side medial pterygoid peaks after the balancing-side medial pterygoid. Associated with the simultaneous increase of force of the working-side medial pterygoid and the decrease of force of the balancing-side medial pterygoid is the persistently high level of EMG activity of the balancing-side deep masseter (posterior portion). This pattern is of considerable significance because the direction of force of both the working-side medial pterygoid and the balancing-side deep masseter are well aligned to aid in driving the working-side lower molars across the upper molars in the medial direction during unilateral mastication.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
In musculoskeletal models of the human temporomandibular joint (TMJ), muscles are typically represented by force vectors that connect approximate muscle origin and insertion centroids (centroid-to-centroid force vectors). This simplification assumes equivalent moment arms and muscle lengths for all fibers within a muscle even with complex geometry and may result in inaccurate estimations of muscle force and joint loading. The objectives of this study were to quantify the three-dimensional (3D) human TMJ muscle attachment morphometry and examine its impact on TMJ mechanics. 3D muscle attachment surfaces of temporalis, masseter, lateral pterygoid, and medial pterygoid muscles of human cadaveric heads were generated by co-registering measured attachment boundaries with underlying skull models created from cone-beam computerized tomography (CBCT) images. A bounding box technique was used to quantify 3D muscle attachment size, shape, location, and orientation. Musculoskeletal models of the mandible were then developed and validated to assess the impact of 3D muscle attachment morphometry on joint loading during jaw maximal open-close. The 3D morphometry revealed that muscle lengths and moment arms of temporalis and masseter muscles varied substantially among muscle fibers. The values calculated from the centroid-to-centroid model were significantly different from those calculated using the ‘Distributed model’, which considered crucial 3D muscle attachment morphometry. Consequently, joint loading was underestimated by more than 50% in the centroid-to-centroid model. Therefore, it is necessary to consider 3D muscle attachment morphometry, especially for muscles with broad attachments, in TMJ musculoskeletal models to precisely quantify the joint mechanical environment critical for understanding TMJ function and mechanobiology.  相似文献   

14.
Wombats are unique among marsupials in having one pair of upper incisors, and hypsodont molars for processing tough, abrasive vegetation. Of the three extant species, the most abundant, the common wombat (Vombatus ursinus), has had the least attention in terms of masticatory muscle morphology, and has never been thoroughly described. Using MRI and digital dissection to compliment traditional gross dissections, the major jaw adductor muscles, the masseter, temporalis and pterygoids, were described. The masseter and medial pterygoid muscles are greatly enlarged compared to other marsupials. This, in combination with the distinctive form and function of the dentition, most likely facilitates processing a tough, abrasive diet. The broad, flat skull and large masticatory muscles are well suited to generate a very high bite force. MRI scans allow more detail of the muscle morphology to be observed and the technique of digital dissections greatly enhances the knowledge obtained from gross dissections.  相似文献   

15.
We hypothesized that the anterior component of occlusal force (ACF) generated by mandibular molars was a function of molar inclination, height of the transverse condylar axis above the occlusal plane, steepness of the occlusal plane, gape, molar root dimensions, interproximal tooth contact force when not biting, and bite force. Our research aim was to identify those biomechanical factors which determine ACF. Mandibular second molars were axially loaded with a 90 N force (10 mm second molar gape) in 15 subjects, and the resulting ACF was measured at the mandibular first molar-second premolar contact using a recording technique based on interproximal frictional forces. Morphologic measurements were obtained from lateral cephalometric radiographs of each subject and included: Frankfort mandibular plane angle, occlusal plane angle, angles formed by the longitudinal axis of the second molar and the occlusal and mandibular planes, perpendicular distance from the top of the condyle to the occlusal plane, and second molar root width and root length. For ten subjects, ACF resulting from axial loads of 50, 100, 150, and 200 N was measured. For ten subjects, ACF resulting from an axial load of 50 N and second molar gapes of 10 mm, 14 mm, 18 mm, and 22 mm were measured. ACF increased with increasing gape and increased proportionally to increasing bite force. Correlation and stepwise regression analyses revealed that ACF varies with interproximal tooth contact force when not biting (contact ‘tightness’) and molar root width (model R2 = 0.71, p < 0.01). The hypothesis that ACF is a function of bite force, gape, molar root width, and interproximal contact tightness has been supported, and the hypothesis that ACF is a function of molar inclination, occlusal plane steepness, condylar axis height, and root length was rejected.  相似文献   

16.
A review is given of what is known about the functional significance of variation of the morphology of the human mandible and jaw muscles. First, the mandible is a lever transferring muscular forces to the teeth. The angle between corpus and ramus and the width of the ramus are particularly relevant in this respect as they determine the mechanical advantage of the lever system and the capacity for sagittal (open-close) movement. The stability of the mandible in asymmetric bites is especially affected by the ratio between the intermolar and intercondylar distances. The repertoire of bite forces that can be generated at any tooth and the loading pattern of the temporomandibular joint are strongly dependent on the relative size of the masseter, temporalis and medial pterygoid muscles. Second, executing its function as a lever, the mandible is subjected to shearing, bending and torsional forces. The bony parts harbouring the teeth, joints and muscle attachments serve to counter these forces; additional strength is needed in three areas i.e. in the symphysis, the condylar neck and in the transition area between corpus and ramus. In human populations there are clear-cut patterns of correlation between some facial skeletal traits, jaw joint morphology and strength and line of action of the jaw muscles. As a result, facial morphologies can be distinguished with marked differences in mechanical performance of their masticatory apparatus. It is suggested that they emerge as a result of diverging environmental influences during postnatal growth.  相似文献   

17.
The functional significance of masticatory muscle direction was estimated using a mechanical model in two murid rodents: the Japanese field mouse (Apodemus speciosus) and the gray red-backed vole (Clethrionomys rufocanus). Theoretical analyses of the data suggest that a balancing mechanism among the muscle forces occurs during incisal power stroke. The activation of the large deep masseter in both murids results in marked tensile separation of two hemimandibles at the flexible mandibular symphysis. Activation of the internal pterygoid decreases this large tensile force at the symphysis more efficiently than other muscles. The lines of action of the deep masseter and internal pterygoid are aligned to produce such a balancing function in both species studied here. The resultant force generated by the deep masseter on both sides is opposite in direction to the reaction force at the lower incisor tip. Therefore, the large deep masseter forms an effective mandibular support mechanism when the reaction forces during biting push the mandible downward. Because of the area of insertion and the line of action, the posterior temporalis appears to have an important role in stabilizing the position of the mandibular condyle in the glenoid fossa during incisal biting. J. Morphol. 236:49–56, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
Models of mastication require knowledge of fiber lengths and physiological cross-sectional area (PCS): a proxy for muscle force. Yet only a small number of macaques of various species, ages, and sexes inform the previous standards for masseter muscle architecture. I dissected 36 masseters from 30 adult females of 3 macaque species—Macaca fascicularis, M. mulatta, M. nemestrina—using gross and chemical techniques and calculated PCS. These macaques have mechanically similar dietary niches and exhibit no significant difference in masseter architecture or fiber length. Intramuscular tendons effectively compartmentalize macaque masseters from medial to lateral. Fiber lengths vary by muscle subsection but are relatively conservative among species. Fiber length does not scale with body size (mass) or masseter muscle mass. However, PCS scales isometrically with body size; larger animals have greater force production capabilities. PCS scales positively allometrically with facial size; animals with more prognathic faces and taller mandibular corpora have greater PCS, and hence force, values. This positive allometry counters the less efficient positioning of masseter muscles in longer-faced animals. In each case, differences in PCS among species result from differences in muscle mass not fiber length. Masseter PCS is only weakly correlated with bone proxies previously used to estimate muscle force. Thus predictions of muscle force from bone parameters will entail large margins of errors and should be used with caution.  相似文献   

19.
Objective: To determine, using computer tomography (CT), whether the retention of a small number of teeth in the older adult used to support overdentures could affect the cross‐sectional area (CSA) and X‐ray density of two jaw closing muscles. Design: Cross‐sectional study of a group of older patients subdivided into dentate, edentulous and those wearing overdentures supported by two to five teeth. Subjects: The sample consisted of 24 subjects aged 55–68 years. Outcome measures: CSA and X‐ray density of two jaw closing muscles, masseter and medial pterygoid were measured and evaluated using CT. Results: There were no significant differences between left and right jaw muscles, but the CSA of the masseter muscles were significantly larger than the medial pterygoid muscles. The CSA of the masseter and medial pterygoid muscles was significantly smaller in edentulous subjects compared with dentate subjects but no significant difference was observed between subjects wearing overdentures and those with a natural dentition. No significant differences were observed with the X‐ray density between different muscles or dental states. Conclusion: The retention of a small number of teeth in the older adult used to support overdentures appears to sustain the CSA of two jaw closing muscles and therefore could enhance these patients’ masticatory ability compared with those who were edentulous.  相似文献   

20.
Cranial musculature, dental function and mandibular movement patterns in Eremotherium laurillardi were reconstructed from the examination of crania and dentitions. Size, shape and pattern of muscle divisions were reconstructed from the examination of bony rugosities indicating muscle attachments. Details of masticatory muscle structure and function were based on dissections of the tree sloths Bradypus and Choloepus. Among sloths, masticatory muscles in E. laurillardi demonstrate a different synergist–antagonist pattern, reflecting greater emphasis on mediolateral mandibular movements. Eight cranial character complexes (anterior facial, zygomatic arch, superficial masseter, deep masseter–zygomaticomandibularis, pterygoid, temporal, occipital and occlusal) determined by interrelated contributions of each component made to group functions were identified. An elongate anterior face and predental spout in E. laurillardi allowed protrusion of a long narrow tongue at small degrees of gape, reflecting a probably ancestral xenarthran condition. Gape minimisation, in conjunction with the mediolaterally directed masticatory stroke in E. laurillardi, was a unique solution to increase masticatory efficiency by permitting molariform tooth shearing surfaces to remain in or near occlusion for a greater percentage of each chewing cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号