首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human herpesvirus 7 (HHV-7), which belongs to the betaherpesvirus subfamily, infects mainly CD4+ T cells in vitro and infects children during infancy. After the primary infection, HHV-7 becomes latent. HHV-7 contains two genes (U12 and U51) that encode putative homologs of cellular G-protein-coupled receptors. To analyze the biological function of the U12 gene, we cloned the gene and expressed the U12 protein in cells. The U12 gene encoded a calcium-mobilizing receptor for the EBI1 ligand chemokine-macrophage inflammatory protein 3beta (ELC/MIP-3beta) but not for other chemokines, suggesting that the chemokine selectivity of the U12 gene product is distinct from that of the known mammalian chemokine receptors. These studies revealed that U12 activates distinct transmembrane signaling pathways that may mediate biological functions by binding with a beta-chemokine, ELC/MIP-3beta.  相似文献   

2.
3.
Human herpesvirus-8-encoded signalling ligands and receptors   总被引:4,自引:0,他引:4  
Analysis of the genome of human herpesvirus 8 (HHV-8) led to the discovery of several novel genes, unique among the characterized gammaherpesviruses. These include cytokines (interleukin-6 and chemokine homologues), two putative signal-transducing transmembrane proteins encoded by genes K1 and K15 at the genome termini, and an OX-2 (CD200) receptor homologue that had not previously been identified in a gammaherpesvirus. HHV-8 also specifies a diverged version of the gammaherpesvirus-conserved G protein-coupled chemokine receptor (vGCR) and a latently expressed protein unique to HHV-8 specified by open reading frame (ORF) K12. These cytokine and receptor homologues mediate signal transduction or modulate the activities of other endogenous cytokines and receptors to enhance viral productive replication, regulate latent-lytic switching, evade host attack, or mediate cell survival. The viral signalling ligands and receptors are also potential contributors to virus-associated diseases, Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease, and so represent potentially important targets for therapeutic and antiviral drugs. Understanding these proteins' modes of action and functions in viral biology and disease is therefore of considerable importance, and the subject of this review.  相似文献   

4.
C C Li  K V Shah  A Seth    R V Gilden 《Journal of virology》1987,61(9):2684-2690
Genital warts (condylomata acuminata) are among the most frequent sexually transmitted infections. Human papillomavirus type 6 (HPV-6), which is etiologically related to a majority of these lesions, has not been propagated in tissue culture. We generated two forms of HPV-6 viral antigens: a chemically synthesized oligopeptide (referred to as the C-terminal synthetic peptide) corresponding to residues 482 to 495 of the 500-amino-acid-long L1 open reading frame (ORF), and a bacterially expressed 54-kilodalton (kDa) fusion protein containing the N-terminal 13 amino acids encoded by the lambda bacteriophage cII gene followed by one vector-insert junctional residue and 462 amino acids of the L1 ORF sequence (residues 39 to 500). The cII-L1 fusion protein was specifically recognized by an antipeptide serum directed against the N-terminal 13 amino acids derived from the cII gene, an antiserum raised against the C-terminal synthetic peptide, and a genus-specific serum prepared by immunization with disrupted viral capsids. The 54-kDa fusion protein was purified, and the sequence of its first 36 amino acids was determined and found to be as predicted by the DNA sequence. Both the genus-specific anticapsid serum and the antiserum raised against the fusion protein identified authentic L1 ORF proteins in HPV-1-induced (58 kDa) and HPV-6/11-induced (56 kDa) papillomas. The synthetic peptide antiserum recognized the 56- to 58-kDa protein in HPV-6-induced warts, but not in HPV-1- or HPV-11-infected specimens. Using the fusion protein as antigen in immunoassays, we were able to detect the corresponding antibodies in human sera.  相似文献   

5.
6.
Human herpesvirus 6 (HHV-6) is a ubiquitous T-lymphotropic betaherpesvirus that encodes two G protein-coupled receptor homologs, U12 and U51. HHV-6A U51 has been reported to bind to CC chemokines including RANTES, but the biological function of U51 remains uncertain. In this report, we stably expressed short interfering RNAs (siRNAs) specific for U51 in human T cells and then infected these cells with HHV-6. Viral DNA replication was reduced 50-fold by the U51 siRNA, and virally induced cytopathic effects were also inhibited. In contrast, viral replication and syncytium formation were unaltered in cells that expressed a scrambled derivative of the siRNA or an irrelevant siRNA and were restored to normal when a human codon-optimized derivative of U51 was introduced into cells containing the U51 siRNA. To examine the mechanism whereby U51 might contribute to viral replication, we explored the signaling characteristics of U51. None of the chemokines and opioids tested was able to induce G protein coupling by U51, and no evidence for opioid ligand binding by U51 was obtained. The effect of U51 on cell-cell fusion was also evaluated; these studies showed that U51 enhanced cell fusion mediated by the G protein of vesicular stomatitis virus. However, a U51-specific antiserum had no virus-neutralizing activity, suggesting that U51 may not be involved in the initial interaction between the virus particle and host cell. Overall, these studies suggest that HHV-6 U51 is a positive regulator of virus replication in vitro, perhaps because it may promote membrane fusion and facilitates cell-cell spread of this highly cell-associated virus.  相似文献   

7.
8.
9.
The genes encoding the glycoproteins H (gH) and L (gL) of human herpesvirus 7 (HHV-7) have been identified. The gH open reading frame (ORF) was 2,070 base pairs in length and encoded a predicted 690 amino-acid protein. The gH contained characteristics of a transmembrane glycoprotein including 10 consensus N-linked glycosylation sites, 12 cysteine residues, a potential amino-terminal signal sequence and a predicted transmembrane segment located near the carboxyl terminus. The gL ORF was 738 base pairs in length and encoded a predicted 246 amino-acid protein. Four possible N-glycosylation sites and 6 cysteine residues existed within gL. The predicted amino-acid sequences of the HHV-7 gH and human herpesvirus 6 variant A (HHV-6A) gH gene products exhibited 23.6% identity to each other, and those of the gL gene products had 26.0% identity. Upon in vitro translation of the gL gene, the addition of microsomal membranes resulted in two modified products with molecular weights of 32 kDa and 35 kDa from the unmodified initial translation product of 26 kDa. An amino-terminal portion of gH and the full length of gL were expressed as glutathione S-transferase fusion proteins, and these proteins were used to raise immune sera in mice. Lysates of cells infected with HHV-7 were subjected to immunoprecipitation analysis. Approximate molecular weights of 33, 37, 80 and 90 kDa polypeptides were immunoprecipitated with antibodies against the gH protein. Antibodies against the gL protein polypeptides with the same molecular weights were also precipitated, and were observed with the antibodies against the gH protein. These results suggest that HHV-7 gH and gL may form a heterodimeric complex with each other in HHV-7 infected cells, as has been reported for other herpesviruses.  相似文献   

10.
CD46 and CD134 mediate attachment of Human Herpesvirus 6A (HHV-6A) and HHV-6B to host cell, respectively. But many cell types interfere with viral infection through rapid degradation of viral DNA. Hence, not all cells expressing these receptors are permissive to HHV-6 DNA replication and production of infective virions suggesting the involvement of additional factors that influence HHV-6 propagation. Here, we used a proteomics approach to identify other host cell proteins necessary for HHV-6 binding and entry. We found host cell chaperone protein GP96 to interact with HHV-6A and HHV-6B and to interfere with virus propagation within the host cell. In human peripheral blood mononuclear cells (PBMCs), GP96 is transported to the cell surface upon infection with HHV-6 and interacts with HHV-6A and -6B through its C-terminal end. Suppression of GP96 expression decreased initial viral binding but increased viral DNA replication. Transient expression of human GP96 allowed HHV-6 entry into CHO-K1 cells even in the absence of CD46. Thus, our results suggest an important role for GP96 during HHV-6 infection, which possibly supports the cellular degradation of the virus.  相似文献   

11.
Infection with human herpesvirus (HHV)-6B alters cell cycle progression and stabilizes tumor suppressor protein p53. In this study, we have analyzed the activity of p53 after stimulation with p53-dependent and -independent DNA damaging agents during HHV-6B infection. Microarray analysis, Western blotting and confocal microscopy demonstrated that HHV-6B-infected cells were resistant to p53-dependent arrest and cell death after γ irradiation in both permissive and non-permissive cell lines. In contrast, HHV-6B-infected cells died normally through p53-independet DNA damage induced by UV radiation. Moreover, we identified a viral protein involved in inhibition of p53 during HHV-6B-infection. The protein product from the U19 ORF was able to inhibit p53-dependent signaling following γ irradiation in a manner similar to that observed during infection. Similar to HHV-6B infection, overexpression of U19 failed to rescue the cells from p53-independent death induced by UV radiation. Hence, infection with HHV-6B specifically blocks DNA damage-induced cell death associated with p53 without inhibiting the p53-independent cell death response. This block in p53 function can in part be ascribed to the activities of the viral U19 protein.  相似文献   

12.
Human herpesvirus 7 (HHV-7), which belongs to the betaherpesvirus subfamily and infects mainly CD4+ T cells in vitro, infects children during infancy. HHV-7 contains two genes, U12 and U51, that encode putative homologs of cellular G-protein-coupled receptors. To analyze the biological function of the U12 and U51 genes, we cloned these genes and expressed the proteins in cells. U12 and U51 encoded functional calcium-mobilizing receptors for beta-chemokines, which include thymus and activation-regulated chemokine (TARC), macrophage-derived chemokine (MDC), EBI1-ligand chemokine (ELC), and secondary lymphoid-tissue chemokine (SLC), but not for other chemokines, suggesting that the chemokine selectivities of the U12 and U51 products were distinct from those of the known mammalian chemokine receptors. ELC and SLC induced migration in Jurkat cells stably expressing U12, but TARC and MDC did not. In contrast, none of these chemokines induced migration in Jurkat cells stably expressing U51. Together, these data indicate that the products of U12 and U51 may play important and different roles in the pathogenesis of HHV-7 through transmembrane signaling.  相似文献   

13.
The human herpesvirus 6 (HHV-6) variant A U100 gene encodes the third component of the glycoprotein H (gH)-glycoprotein L (gL)-containing complex. Glycosidase digestion analysis showed that the U100 gene products are glycoproteins consisting of an 80-kDa protein with complex N-linked oligosaccharides and a 74-kDa protein with immature, high-mannose N-linked oligosaccharides. Based on these characteristics, we designated the U100 gene products glycoprotein Q (gQ). Only the 80-kDa form of gQ was coimmunoprecipitated with an anti-gH antibody, suggesting that the 80-kDa protein associates with the gH-gL complex in HHV-6-infected cells. Furthermore, the complex was detected in purified virions, suggesting that it may play an important role in viral entry.  相似文献   

14.
To better understand the pathogenesis of human herpesvirus 6 (HHV-6), it is important to elucidate the functional aspects of immediate-early (IE) genes at the initial phase of the infection. To study the functional role of the HHV-6B IE gene encoding U95, we generated a U95-Myc fusion protein and screened a pretransformed bone marrow cDNA library for U95-interacting proteins, using yeast-two hybrid analysis. The most frequently appearing U95-interacting protein identified was GRIM-19, which belongs to the family of genes associated with retinoid-interferon mortality and serves as an essential component of the oxidative phosphorylation system. This interaction was verified by both coimmunoprecipitation and confocal microscopic coimmunolocalization. Short-term HHV-6B infection of MT-4 T-lymphocytic cells induced syncytial formation, resulted in decreased mitochondrial membrane potential, and led to progressively pronounced ultrastructural changes, such as mitochondrial swelling, myelin-like figures, and a loss of cristae. Compared to controls, RNA interference against U95 effectively reduced the U95 mRNA copy number and abrogated the loss of mitochondrial membrane potential. Our results indicate that the high affinity between U95 early viral protein and GRIM-19 may be closely linked to the detrimental effect of HHV-6B infection on mitochondria. These findings may explain the alternative cell death mechanism of expiration, as opposed to apoptosis, observed in certain productively HHV-6B-infected cells. The interaction between U95 and GRIM-19 is thus functionally and metabolically significant in HHV-6B-infected cells and may be a means through which HHV-6B modulates cell death signals by interferon and retinoic acid.  相似文献   

15.
16.
Leukotropic human herpesvirus 6 (HHV-6) establishes a persistent infection associated with inflammatory diseases and encodes chemokines that could chemoattract leukocytes for infection or inflammation. HHV-6 variant A encodes a distant chemokine homolog, U83A, and a polymorphism promoting a secreted form was identified. U83A and three N-terminal modifications were expressed and purified, and activities were compared with a spliced truncated isoform, U83A-Npep. U83A efficiently and potently induced calcium mobilization in cells expressing single human CCR1, CCR4, CCR6, or CCR8, with EC50 values <10 nM. U83A also induced chemotaxis of Th2-like leukemic cells expressing CCR4 and CCR8. High-affinity binding, 0.4 nM, was demonstrated to CCR1 and CCR5 on monocytic/macrophage cells, and pretreatment with U83A or modified forms could block responses for endogenous ligands. U83A-Npep acted only as antagonist, efficiently blocking binding of CCL3 to CCR1 or CCR5 on differentiated monocytic/macrophage leukemic cells. Furthermore, CCL3 induction of calcium signaling via CCR1 and CCL1 induced chemotaxis via CCR8 in primary human leukocytes was inhibited. Thus, this blocking by the early expressed U83A-Npep could mediate immune evasion before finishing the replicative cycle. However, late in infection, when full-length U83A is made, chemoattraction of CCR1-, CCR4-, CCR5-, CCR6-, and CCR8-bearing monocytic/macrophage, dendritic, and T lymphocyte cells can facilitate dissemination via lytic and latent infection of these cells. This has further implications for neuroinflammatory diseases such as multiple sclerosis, where both cells bearing CCR1/CCR5 plus their ligands, as well as HHV-6A, have been linked. Applications also discussed include novel vaccines/immunotherapeutics for cancer and HIV as well as anti-inflammatories.  相似文献   

17.
The protein encoded by the U69 open reading frame (ORF) of human herpesvirus 6 (HHV-6) has been predicted to be a protein kinase. To investigate its functional properties, we have expressed the U69 ORFs from both HHV-6 variants, A and B, by using recombinant baculoviruses (BV6AU69 and BV6BU69). Nickel agarose and antibody affinity chromatography was used to purify the proteins to homogeneity and when incubated with [gamma-32P]ATP, both U69 proteins became phosphorylated on predominantly serine residues. These data strongly suggest that U69 is a protein kinase which autophosphorylates. The phosphorylation reaction was optimal at physiological pH and low NaCl concentrations. It required the presence of Mg2+ or Mn2+, and Mg2+ was able to support phosphorylation over a wider range of concentrations than Mn2+. Both ATP and GTP could donate phosphate in the protein kinase assay and the former was more efficient. U69 was capable of phosphorylating histone and casein (serine/threonine kinase substrates) but not enolase (a tyrosine kinase substrate). For the autophosphorylation reaction, the Michaelis constants for ATP of baculovirus-expressed HHV-6A and HHV-6B U69 were calculated to be 44 and 11 microM, respectively. U69 is a homologue of the UL97 gene encoded by human cytomegalovirus which has been shown to phosphorylate the antiviral drug ganciclovir (GCV). We analyzed whether the U69 ORF alone was capable of conferring GCV sensitivity on baculoviruses BV6AU69 and BV6BU69. In plaque reduction experiments, these baculoviruses displayed a GCV-sensitive phenotype compared to a control baculovirus (BVLacZ). The 50% inhibitory concentrations (IC50) of BV6AU69 and BV6BU69 were calculated to be 0.35 and 0.26 mM, respectively, whereas the control baculovirus had an IC50 of >1.4 mM. This shows that the U69 gene product is the only one required to confer GCV sensitivity on baculovirus.  相似文献   

18.
19.
Herpesviruses have evolved numerous immune evasion strategies to facilitate establishment of lifelong persistent infections. Many herpesviruses encode gene products devoted to preventing viral antigen presentation as a means of escaping detection by cytotoxic T lymphocytes. The human herpesvirus-7 (HHV-7) U21 gene product, for example, is an immunoevasin that binds to class I major histocompatibility complex molecules and redirects them to the lysosomal compartment. Virus infection can also induce the upregulation of surface ligands that activate NK cells. Accordingly, the herpesviruses have evolved a diverse array of mechanisms to prevent NK cell engagement of NK-activating ligands on virus-infected cells. Here we demonstrate that the HHV-7 U21 gene product interferes with NK recognition. U21 can bind to the NK activating ligand ULBP1 and reroute it to the lysosomal compartment. In addition, U21 downregulates the surface expression of the NK activating ligands MICA and MICB, resulting in a reduction in NK-mediated cytotoxicity. These results suggest that this single viral protein may interfere both with CTL-mediated recognition through the downregulation of class I MHC molecules as well as NK-mediated recognition through downregulation of NK activating ligands.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号