首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 320 毫秒
1.
The naturalization of an introduced species is a key stage during the invasion process. Therefore, identifying the traits that favor the naturalization of non-native species can help understand why some species are more successful when introduced to new regions. The ability and the requirement of a plant species to form a mutualism with mycorrhizal fungi, together with the types of associations formed may play a central role in the naturalization success of different plant species. To test the relationship between plant naturalization success and their mycorrhizal associations we analysed a database composed of mycorrhizal status and type for 1981 species, covering 155 families and 822 genera of plants from Europe and Asia, and matched it with the most comprehensive database of naturalized alien species across the world (GloNAF). In mainland regions, we found that the number of naturalized regions was highest for facultative mycorrhizal, followed by obligate mycorrhizal and lowest for non-mycorrhizal plants, suggesting that the ability of forming mycorrhizas is an advantage for introduced plants. We considered the following mycorrhizal types: arbuscular, ectomycorrhizal, ericoid and orchid mycorrhizal plants. Further, dual mycorrhizal species were those that included observations of arbuscular mycorrhizas as well as observations of ectomycorrhizas. Naturalization success (based on the number of naturalized regions) was highest for arbuscular mycorrhizal and dual mycorrhizal plants, which may be related to the low host specificity of arbuscular mycorrhizal fungi and the consequent high availability of arbuscular mycorrhizal fungal partners. However, these patterns of naturalization success were erased in islands, suggesting that the ability to form mycorrhizas may not be an advantage for establishing self-sustaining populations in isolated regions. Taken together our results show that mycorrhizal status and type play a central role in the naturalization process of introduced plants in many regions, but that their effect is modulated by other factors.  相似文献   

2.
  • 1. The establishment of new botanic gardens in tropical regions highlights a need for weed risk assessment tools suitable for tropical ecosystems. The relevance of plant traits for invasion into tropical rainforests has not been well studied.
  • 2. Working in and around four botanic gardens in Indonesia where 590 alien species have been planted, we estimated the effect of four plant traits, plus time since species introduction, on: (a) the naturalization probability and (b) abundance (density) of naturalized species in adjacent native tropical rainforests; and (c) the distance that naturalized alien plants have spread from the botanic gardens.
  • 3. We found that specific leaf area (SLA) strongly differentiated 23 naturalized from 78 non‐naturalized alien species (randomly selected from 577 non‐naturalized species) in our study. These trends may indicate that aliens with high SLA, which had a higher probability of naturalization, benefit from at least two factors when establishing in tropical forests: high growth rates and occupation of forest gaps. Naturalized aliens had high SLA and tended to be short. However, plant height was not significantly related to species'' naturalization probability when considered alongside other traits.
  • 4. Alien species that were present in the gardens for over 30 years and those with small seeds also had higher probabilities of becoming naturalized, indicating that garden plants can invade the understorey of closed canopy tropical rainforests, especially when invading species are shade tolerant and have sufficient time to establish.
  • 5. On average, alien species that were not animal dispersed spread 78 m further into the forests and were more likely to naturalize than animal‐dispersed species. We did not detect relationships between the measured traits and estimated density of naturalized aliens in the adjacent forests.
  • 6. Synthesis: Traits were able to differentiate alien species from botanic gardens that naturalized in native forest from those that did not; this is promising for developing trait‐based risk assessment in the tropics. To limit the risk of invasion and spread into adjacent native forests, we suggest tropical botanic gardens avoid planting alien species with fast carbon capture strategies and those that are shade tolerant.
  相似文献   

3.
Invasive aliens on tropical East Asian islands   总被引:1,自引:0,他引:1  
Tropical East Asia (TEA) has numerous islands, both continental and oceanic. This study uses information on invasive aliens in terrestrial habitats on these islands to test the generality of the continental-oceanic contrast in invasibility, assess the conservation impacts of invasive species, and suggest ways to mitigate these. The continental islands of Hong Kong and Singapore are worst-case scenarios for continental invasibility and alien species often dominate in chronically disturbed sites, but very few have successfully invaded closed forests, with the exception of birds in Hong Kong. On other, less densely populated, continental islands, closed-canopy forests appear to resist invasions by all taxa, with few known exceptions. Forests on oceanic islands isolated by <100 km during the last glacial maximum appear no more susceptible to plant and invertebrate invasions than those on continental islands, but invasions by mammals are widespread. Snake invasions may be under-recognized. The remote oceanic Ogasawara (Bonin) Islands, >1000 km from the nearest continent, have a native biota of largely tropical East Asian origin and are suffering from alien forest invasions across the taxonomic spectrum. These patterns of invasibility are consistent with the idea that alien invasion is facilitated by the absence of native species in the same functional group. Alien invasives are not yet a major conservation problem in TEA, except on remote islands, but their dominance on disturbed sites may slow or prevent recovery of native biodiversity. Strict quarantine is impractical in TEA, although some major introduction routes could be blocked. Management efforts should focus on early recognition and immediate control of potential problem species.  相似文献   

4.
In order to understand invasions, it is important to know how alien species exploit opportunities in unfamiliar ecosystems. For example, are aliens concentrated in niches under-exploited by native communities, or widely distributed across the ecological spectrum? To explore this question, we compared the niches occupied by 394 naturalized alien plants with a representative sample from the native flora of Mediterranean islands. When niche structure was described by a functional group categorization, the distribution of native and alien species was remarkably similar, although “succulent shrubs” and “trees with specialized animal pollination mechanisms” were under-represented in the native species pool. When niche structure was described by Grime’s CSR strategy, the positioning of aliens and natives differed more strongly. Stress-tolerance was much rarer amongst the aliens, and a competitive strategy was more prevalent at the habitat level. This pattern is similar to previous findings in temperate Europe, although in those regions it closely reflects patterns of native diversity. Stressed environments are much more dominant in the Mediterranean. We discuss a number of factors which may contribute to this difference, e.g., competitive and ruderal niches are often associated with anthropogenic habitats, and their high invasibility may be due partly to introduction patterns rather than to a greater efficiency of aliens at exploiting them. Thus far, the reasons for invasion success amongst introduced species have proved difficult to unravel. Despite some differences, our evidence suggests that alien species naturalize across a wide range of niches. Given that their ecologies therefore vary greatly, one may ask why such species should be expected to share predictable traits at all?  相似文献   

5.
Aim   Our aims were: (1) to characterize the linear relationship between the proportion of woody dicotyledonous species with entire-margined leaves ( E ) and mean annual temperature (MAT) from a southern temperate flora that still harbours many lineages that originated under warmer climates; (2) to compare this relationship with those developed from floras of different regions of the world; and (3) to contrast temperature predictions based on leaf margins of the native southern flora versus the naturalized alien flora, mostly of boreal origin.
Location   The temperate forest of southern South America (TFSA).
Methods   At each 1° latitudinal band, we estimated E based on species latitudinal ranges and MAT from both an isotherm map and a global temperature grid. We also calculated E from five local floras located between 40 and 43° S, and from the naturalized alien flora of Nahuel Huapi National Park in southern Argentina.
Results   We found a close relationship between E and MAT for the TFSA. Equations developed from floras of the Northern Hemisphere overestimated extant temperatures of this biome by 6–10 °C at both geographical and local spatial scales. On the other hand, MAT predictions from leaf margins of the alien flora were similar to the actual MAT. A published regression between E and MAT from tropical South America was remarkably similar to the one we estimated from the TFSA. This tropical equation predicted accurately the temperatures observed for this temperate biome based on leaf margins of the native flora.
Main conclusions   Despite massive plant extinction due to environmental cooling and biogeographical isolation during the Tertiary, leaf-margin analysis reveals that the flora of the TFSA still reflects its original development under the warmer conditions of western Gondwana and its past connections with low-latitude forest floras of tropical South America.  相似文献   

6.
The success of alien species on oceanic islands is considered to be one of the classic observed patterns in ecology. Explanations for this pattern are based on lower species richness on islands and the lower resistance of species‐poor communities to invaders, but this argument needs re‐examination. The important difference between islands and mainland is in the size of species pools, not in local species richness; invasibility of islands should therefore be addressed in terms of differences in species pools. Here I examine whether differences in species pools can affect invasibility in a lottery model with pools of identical native and exotic species. While in a neutral model with all species identical, invasibility does not depend on the species pool, a model with non‐zero variation in population growth rates predicts higher invasibility of communities of smaller pools. This is because of species sampling; drawing species from larger pools increases the probability that an assemblage will include fast growing species. Such assemblages are more likely to exclude random invaders. This constitutes a mechanism through which smaller species pools (such as those of isolated islands) can directly underlie differences in invasibility.  相似文献   

7.
CONTENTS: Summary 383 I. Introduction 383 II. The introduction-naturalization-invasion continuum for conceptualizing biological invasions 384 III. The biogeographical background for studying naturalization: variation among populations and regions 385 IV. Factors determining naturalization in plants 388 Acknowledgements 392 References 392 SUMMARY: The literature on biological invasions is biased in favour of invasive species - those that spread and often reach high abundance following introduction by humans. It is, however, also important to understand previous stages in the introduction-naturalization-invasion continuum ('the continuum'), especially the factors that mediate naturalization. The emphasis on invasiveness is partly because most invasions are only recognized once species occupy large adventive ranges or start to spread. Also, many studies lump all alien species, and fail to separate introduced, naturalized and invasive populations and species. These biases impede our ability to elucidate the full suite of drivers of invasion and to predict invasion dynamics, because different factors mediate progression along different sections of the continuum. A better understanding of the determinants of naturalization is important because all naturalized species are potential invaders. Processes leading to naturalization act differently in different regions and global biogeographical patterns of plant invasions result from the interaction of population-biological, macroecological and human-induced factors. We explore what is known about how determinants of naturalization in plants interact at various scales, and how their importance varies along the continuum. Research that is explicitly linked to particular stages of the continuum can generate new information that is appropriate for improving the management of biological invasions if, for example, potentially invasive species are identified before they exert an impact.  相似文献   

8.
Aim   To quantify the occurrence of floristic change in the vascular flora of Chile. We test whether continental areas have experienced floristic modification leading to either homogenization, differentiation or tracking.
Location   Continental Chile.
Methods   On the basis of the geographical distribution of native (1806 species) and naturalized plants (552 species) in continental Chile, we quantified change between two floristic stages: (1) pre-European flora, including native extant and extinct species; and (2) current flora, including native and naturalized species, but excluding extinct plants. We compared changes in compositional similarity (calculated by Jaccard's index, Δ J ) between pairs of regions, and similarity decay with respect to geographical distance. Additionally, by means of Whittaker's index, we examined species turnover, distinguishing between native and naturalized plants.
Results   Between floristic stages (pre-European vs. current flora) no significant changes in floristic similarity were noted at national or regional scales. Similarity decay showed no statistical differences between pre-European and current flora. Analysing patterns of geographical turnover, we found that species turnover of naturalized plants over their geographical range is similar to that of native plants.
Conclusions   The composition of the continental flora of Chile does not show significant modifications in similarity patterns after considering naturalized species, thus indicating floristic tracking. The causes of this phenomenon may be related to the current geographical distribution of naturalized plants, which closely parallels that of native plants. Our results differ from those obtained in Northern Hemisphere continents, thus indicating that trends of biotic change may differ between hemispheres.  相似文献   

9.
Aim Recent works have found the presence of native congeners to have a small effect on the naturalization rates of introduced plants, some suggesting a negative interaction (as proposed by Charles Darwin in The Origin of Species), and others a positive association. We assessed this question for a new biogeographic region, and discuss some of the problems associated with data base analyses of this type. Location Islands of the Mediterranean basin. Methods Presence or absence of congeners was assessed for all naturalized alien plants species at regional, local and habitat scales. Using general linear models, we attempted to explain the abundance of the species (as measured by the number of islands where recorded) from their congeneric status, and assessed whether the patterns could be alternatively accounted for by a range of biological, geographical and anthropogenic factors. A simulation model was also used to investigate the impact of a simple bias on a comparable but hypothetical data set. Results Data base analyses addressing Darwin's hypothesis are prone to bias from a number of sources. Interaction between invaders and congenerics may be overestimated, as they often do not co‐occur in the same habitats. Furthermore, intercorrelations between naturalization success and associated factors such as introduction frequency, which are also not independent from relatedness with the native flora, may generate an apparent influence of congenerics without implying a biological interaction. We detected no true influence from related natives on the successful establishment of alien species of the Mediterranean. Rarely‐introduced species tended to fare better in the presence of congeners, but it appears that this effect was generated because species introduced accidentally into highly invasible agricultural and ruderal habitats have many relatives in the region, due to common evolutionary origins. Main conclusions Relatedness to the native flora has no more than a marginal influence on the invasion success of alien plants in the Mediterranean, although apparent trends can easily be generated through artefacts of the data base.  相似文献   

10.
Questions: Are island vegetation communities more invaded than their mainland counterparts? Is this pattern consistent among community types? Location: The coastal provinces of Catalonia and the para‐oceanic Balearic Islands, both in NE Spain. These islands were connected to the continent more than 5.35 million years ago and are now located <200 km from the coast. Methods: We compiled a database of almost 3000 phytosociological relevés from the Balearic Islands and Catalonia and compared the level of invasion by alien plants in island versus mainland communities. Twenty distinct plant community types were compared between island and mainland counterparts. Results: The percentage of plots with alien species, number, percentage and cover percentage of alien species per plot was greater in Catalonia than in the Balearic Islands in most communities. Overall, across communities, more alien species were found in the mainland (53) compared to the islands (only nine). Despite these differences, patterns of the level of invasion in communities were highly consistent between the islands and mainland. The most invaded communities were ruderal and riparian. Main conclusion: Our results indicate that para‐oceanic island communities such as the Balearic Islands are less invaded than their mainland counterparts. This difference reflects a smaller regional alien species pool in the Balearic Islands than in the adjacent mainland, probably due to differences in landscape heterogeneity and propagule pressure.  相似文献   

11.
Aim To provide the first comparative overview on the current numbers of alien species that invade representative European terrestrial and freshwater habitats for a range of taxonomic groups. Location Europe. Methods Numbers of naturalized alien species of plants, insects, herptiles, birds and mammals occurring in 10 habitats defined according to the European Nature Information System (EUNIS) were obtained from 115 regional data sets. Only species introduced after ad 1500 were considered. Data were analysed by ANCOVA and regression trees to assess whether differences exist among taxonomic groups in terms of their habitat affinity, and whether the pattern of occurrence of alien species in European habitats interacts with macroecological factors such as insularity, latitude or area. Results The highest numbers of alien plant and insect species were found in human‐made, urban or cultivated habitats; if controlled for habitat area in the region, wetland and riparian habitats appeared to support relatively high numbers of alien plant species too. Invasions by vertebrates were more evenly distributed among habitats, with aquatic and riparian, woodland and cultivated land most invaded. Mires, bogs and fens, grassland, heathland and scrub were generally less invaded. Habitat and taxonomic group explained most variation in the proportions of alien species occurring in individual habitats related to the total number of alien species in a region, and the basic pattern determined by these factors was fine‐tuned by geographical variables, namely by the mainland–island contrast and latitude, and differed among taxonomic groups. Main conclusions There are two ecologically distinct groups of alien species (plants and insects versus vertebrates) with strikingly different habitat affinities. Invasions by these two contrasting groups are complementary in terms of habitat use, which makes an overall assessment of habitat invasions in Europe possible. Since numbers of naturalized species in habitats are correlated among taxa within these two groups, the data collected for one group of vertebrates, for example, could be used to estimate the habitat‐specific numbers of alien species for other vertebrate groups with reasonable precision, and the same holds true for insects and plants.  相似文献   

12.
In this study we provide the first comprehensive assessment of the environmental and anthropogenic factors driving bryophyte invasions worldwide. We compiled data of alien bryophyte distributions from 82 regions on five continents and oceanic islands and region specific variables. For each species, we collected data on its region‐specific invasion stage, i.e. casual (ephemeral) vs naturalized (persistent) occurrences, and we differentiated between known aliens and those which are likely to be alien (cryptogenic). We used these data to test how species attributes, environmental and socio‐economic conditions of the study areas as well as introduction effort affect invasion probabilities at different invasion stages and of known alien vs cryptogenic species. We collected information on species’ attributes (native range size and location, niche breadth, habitat affiliation), and calculated variables characterising the environmental, biogeographic and socio‐economic features of the native and recepient regions. Subsequently, we related the probability of alien occurrence across different invasion stages with these species‐ and region‐wise predictor variables using generalized linear mixed effects models. Greater native range size raised the likelihood that a species becomes alien or cryptogenic. Islands are more invaded by alien (and cryptogenic) bryophytes than continental regions. Native range size and socio‐economic activity increase the likelihood that a species becomes alien or cryptogenic elsewhere. Interestingly, among alien bryophytes naturalizations occur more frequently in regions of the complementary hemisphere than in regions of their native hemisphere. In general, regions in the Southern Hemisphere have higher numbers of naturalized bryophytes. We conclude that there is a conspicuous change in factors determining bryophyte invasions at different invasion stages. Whereas alien and cryptogenic bryophyte species occurrences are more frequent on islands and depend on native range size, and hence probably propagule pressure, naturalized bryophytes are more frequent in areas which are biogeographically separated but climatically similar to the native ranges.  相似文献   

13.
Aim Pine trees (genus Pinus) represent an ancient lineage, naturally occurring almost exclusively in the Northern Hemisphere, but introduced and widely naturalized in both hemispheres. As large trees of interest to forestry, they attract much attention and their distribution is well documented in both indigenous and naturalized ranges. This creates an opportunity to analyse the relationship between indigenous and naturalized range sizes in the context of different levels of human usage, biological traits and the characteristics of the environments of origin. Location Global. Methods We combined and expanded pre‐existing data sets for pine species distributions and pine species traits, and used a variety of regression techniques (including generalized additive models and zero‐inflated Poisson models) to assess which variables explained naturalized and indigenous range sizes. Results Indigenous and naturalized range sizes are positively correlated but there are many notable exceptions. Some species have large indigenous ranges but small or no naturalized ranges, whereas others have small indigenous ranges, but have naturalized in many regions. Indigenous range is correlated to factors such as seed size (?), age at first reproduction (?), and latitude (+, supporting Rapoport's rule), but also to the extent of coverage of species in the forestry literature (+). Naturalized range size is strongly influenced by the extent of coverage of species in the forestry literature (+), a proxy for propagule pressure. Naturalization was also influenced by average elevation in the indigenous range (?) and age at first reproduction (?). Main conclusions The macroecological and evolutionary pressures facing plant groups are not directly transferable between indigenous and naturalized ranges. In particular, there are strong biases in species naturalization and expansion in invasive ranges that are unrelated to factors determining indigenous range size. At least for Pinus, a new set of macroecological patterns are emerging which are profoundly influenced by humans.  相似文献   

14.
In the Hawaiian Islands, massive volcanoes have created extreme elevation gradients, resulting in environments ranging from nearly tropical to alpine, spread across a distance of only a few dozen kilometers. Although the Hawaiian Islands are widely recognized for opportunities to study lowland tropical forest invasions, less attention has been paid to invasions of Hawaii's upper-montane forest, sub-alpine and alpine environments. This study synthesizes current knowledge of plant naturalization in upper-montane environments of the Hawaiian Islands in order to (1) determine whether patterns of tropical versus temperate species invasion change with elevation, and (2) evaluate whether upper-montane invaders are having significant impacts on native plant communities. A total of 151 naturalized plant species have been recorded at 2000 m or higher. Most species (93%) are herbaceous, and over half (52%) are native to Europe/Eurasia. Twenty-one species (14%) are reported to be disruptive in native plant communities, mainly by forming dense stands that appear to inhibit recruitment of natives, but also by altering vegetation structure or causing changes in ecosystem processes. Fourteen species (9%) were first recorded within the past 30 years, indicating that new invasions of upper-montane habitats are ongoing. At 1200 m elevation, only 38% of naturalized species are temperate in origin, but the proportion of temperate species increases linearly with elevation up to 3000 m (alpine habitat), where all naturalized species are temperate in origin and over 80% are native to Europe/Eurasia. Declining temperature along the elevation gradient probably drives this pattern. The extreme elevation gradients in the Hawaiian Islands provide specific opportunities for comparative studies on the ecology and evolution of temperate invaders while also creating a unique field environment for understanding interactions between temperate and tropical species.  相似文献   

15.
Theoretical studies have predicted that reproductive interference must exclude either of the interacting species, but no testing of this prediction has ever been reported for natural populations. This study surveyed the distribution patterns of herbaceous Veronica plants, including one native and three alien species, to test whether the invasion of the alien species exerting reproductive interference excluded the native species. Results showed that the native species was repeatedly excluded from islands where an alien species invaded, exerting reproductive interference, and that other alien species had no significant effect on the native population survival. This survey also demonstrated that the native species altered its habitat from the ground to stone walls on the mainland where the alien species had been predominant. In the mainland populations, the fruit morphology differed from that of the islands, and the morphology in the mainland population seemed suitable for seed dispersion by ants at a stone wall habitat. We also surveyed the genetic differentiation among populations, the results of which did not support the native species genetically differentiated between mainland and island populations before the alien species invasion. These results strongly suggest that the reproductive interference excluded the recipient species at the population level and facilitated the habitat change. Additionally, results indicated that a series of field surveys of islands close to the mainland can be a powerful tool to test the ecological importance of reproductive interference.  相似文献   

16.
Susceptibility of an area to invasion by exotic species is often judged by the fraction of introduced species in the local biota. However, the degree of invasion, particularly in mainland areas, has often been underestimated because of the exclusion of ‘domestic exotics’ (those introduced to internal units from within the national border) in calculations. Because all introduced species on islands are considered as exotics, this contributes to the perception that islands are more susceptible to invasion than are continental regions. Here, we determine the contribution of domestic exotic species to the degree of invasion (exotic fraction) in mainland areas. We quantify the relationships of exotic fraction to the area, human population density and land use within each of the 48 conterminous US states to identify mechanisms that potentially influence the degree of invasion. For each of the 48 conterminous US states, we compiled the number of species introduced from outside the United States (‘foreign exotics’) and the number of exotics introduced from other conterminous US states (‘domestic exotics’). The status of each species as foreign or domestic was determined for each state by researching its precise origins through vouchered herbarium records, supplemented by literature ( Kartesz, 2010 ). We found that (1) the exotic fraction inevitably decreases with increasing area as the pool of potential exotic species decreases; (2) exotic richness of areas within large mainland regions is underestimated to the extent that species introduced among areas within a region are considered as natives; and (3) human activities contribute disproportionately more exotics to smaller than to larger administrative areas. How we define ‘exotic’ influences how we count non‐native species and perceive invasibility. Excluding domestic exotics in mainland regions leads to a biased perception of increased invasibility on islands, where all introduced species are considered exotic. Thus, future documentation and interpretation of invasion patterns and management of exotics should account for these biases in quantifying the exotic fraction.  相似文献   

17.
Understanding the factors that drive the global distribution of alien species is a pivotal issue in invasion biology. Here, we used data on naturalized conifers (Pinaceae, Cupressaceae) from sixty temperate and subtropical regions and five continents to test how environmental and socio‐economic conditions of recipient areas as well as introduction efforts affect naturalization probabilities. We collated 18 predictor variables for each region describing environmental, biogeographic and socio‐economic conditions as well as a measure of the macro‐climatic match with the species' native ranges, and the extent to which alien conifers are used in commercial forestry. Naturalization probabilities across all species and regions were then related to these predictor variables by means of generalized linear mixed models. For both Pinaceae and Cupressaceae, naturalization probabilities were generally higher in the Southern Hemisphere, and increased with indicators of habitat diversity of the recipient region. The match in macro‐climatic conditions between the native and introduced regions was a significant predictor of conifer naturalization, but socio‐economic variables were less powerful predictors. Only for Cupressaceae did a socio‐economic variable (human population density) affect naturalization probabilities. Key attributes facilitating naturalization were related to introduction effort. Moreover, usage in commercial forestry generally fostered naturalization, although the actual size of alien conifer plantations in a region was only correlated with the naturalization of Pinaceae. Our results suggest that climate matching, habitat diversity and introduction effort co‐determine the probability of naturalization, which additionally, is modulated by biogeographic features of the recipient area, such as incidence of natural enemies or competitors. To date, the most widely used tools for invasive plant risk assessment only account for climate match and rarely factor in other attributes of the recipient environment. Future tools should additionally consider biotic environment and introduction effort if risk assessment is to be effective.  相似文献   

18.
Aim Conifers are invasive species in many parts of the world, especially in the Southern Hemisphere. There are many introduced conifers in Europe, but their status as alien species is poorly documented. We conducted a comprehensive literature review to ascertain the extent to which alien conifers can be considered invasive. Location Europe. Methods We reviewed the historical record of alien conifer invasion in Europe (i.e. species with a native range outside the continental boundaries of Europe) by screening the DAISIE database and the ISI Web of Science. Results According to DAISIE, there are 54 alien conifer species in Europe. Pseudotsuga menziesii is the species recorded as naturalized in the most countries (12) and the UK is the country with the most naturalized species (18). Thirty‐seven of these conifers have been studied, to some extent, in a total of 131 papers (212 records). Nevertheless, only a few papers have investigated aspects related to biological invasions. In fact, the species are not referred to as alien by the authors in more than half of the papers (66%). Twenty‐five per cent of the papers have investigated plant traits, 46% are about biotic and abiotic factors influencing tree performance and 29% deal with ecological and economic impacts. Most papers are related to entomology, dealing with natural enemies affecting the alien conifers. Main conclusions Scientists have not yet perceived alien conifers in Europe as problematic species. Moreover, the low introduction effort, long lag‐time since plantation and phylogenetic closeness between alien and native conifers are possible reasons for their low expansion in Europe to date. From a management point of view, careful observations of sites with alien conifers is necessary to watch for new invasions. From a scientific perspective, thorough analyses of the extent that introduction, rates of naturalization and biogeographical differences influence invasive spread between the two hemispheres will prove timely.  相似文献   

19.
Aim  To quantify the occurrence of processes of homogenization or differentiation in the vascular flora of six oceanic islands.
Location  Six islands in the south-eastern Pacific drawn from the Desventuradas Archipelago, Easter Island and the Juan Fernández Archipelago.
Methods  Using published floristic studies, we determined the floristic composition of each island at two different stages: (1) pre-European colonization and (2) current flora. We compared changes in the number of shared plants and the floristic similarity among islands for each stage.
Results  The number of plant species doubled from 263 in pre-European flora to 531 species currently. Only three native species became extinct, four natives were translocated among the islands and 271 plant species were introduced from outside. The frequency of plant species shared by two or more islands is higher in the post-European floras than prior to European contact, and the level of floristic similarity between islands increased slightly.
Main conclusions  Considering the low naturalization rate of alien plants, the small number of extinctions and the meagre increase in floristic similarity, these islands are undergoing a slow process of floristic homogenization.  相似文献   

20.
Comparative data in invasion ecology show that (i) disturbance enhances community invasibility, (ii) there is a positive relationship between residence time of an invader and its success, (iii) there are broadly constant proportions of newly arrived species to those that become established and dominant (“tens rule”), and (iv) invasive species have higher growth rates in comparison with non-invasive species. I use a simple neutral model to test whether these patterns occur in communities with all species identical and no species-specific interactions. In the model, local communities are grouped into continents with immigration rates smaller between than within the continents. Species coming from the other continent are considered to be alien and their fates are recorded. In the model, disturbance predictably increases species numbers and numbers of individuals of aliens. However, the model makes different predictions on effects of disturbance on three processes involved in alien species spreading: establishment (positive effect of disturbance), naturalization (negative effect) and dominance (positive effect). The predictions do not change if variation of growth rates is incorporated into the model. The model also predicts positive relationship between residence time and abundance. Total community size had little effect on success of alien species. The broad agreement of the predictions of the neutral model with the patterns from the field suggests that some of these general patterns of community invasibility are to some degree fully independent of any specific biological assumptions and by themselves may not provide many insights on underlying biological processes. Aggregate data should therefore be used with great caution and statistical patterns must be removed by means of generating null model predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号