首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Milligram amounts of metabolites of drug candidates are required to identify toxic products. Human drug metabolites are currently produced selectively in a time- and cost-efficient manner in bioreactor systems containing recombinant Escherichia coli co-expressing a human cytochrome P450 isoenzyme/NADPH cytochrome P450 reductase (hCYP/HR) complex. For further optimization, immobilization of the catalytic system in Ca-alginate microbeads was considered. This new concept was designed for CYP3A4 with testosterone as substrate. Immobilized E. coli cells had a high maximal and homogeneously distributed biomass. Viability was stable over at least 1 week of culture and even longer during storage. Gene expression was ideally initiated 6 h after immobilization. Although immobilized E. coli cells expressed a highly functional enzyme system after 2 days, they did not metabolize testosterone, probably due to cell permeability problems resulting from immobilization. Therefore, immobilized cell membranes displaying testosterone bioconversion activity, even after long-term storage, will be used in bioreactors with high organic solvent content.  相似文献   

2.
The secreted production of heterologous proteins in Kluyveromyces lactis was studied. A glucoamylase (GAA) from the yeast Arxula adeninivorans was used as a reporter protein for the study of the secretion efficiencies of several wild-type and mutant strains of K. lactis. The expression of the reporter protein was placed under the control of the strong promoter of the glyceraldehyde-3-phosphate dehydrogenase of Saccharomyces cerevisiae. Among the laboratory strains tested, strain JA6 was the best producer of GAA. Since this strain is known to be highly sensitive to glucose repression and since this is an undesired trait for biomass-oriented applications, we examined heterologous protein production by using glucose repression-defective mutants isolated from this strain. One of them, a mutant carrying a dgr151-1 mutation, showed a significantly improved capability of producing heterologous proteins such as GAA, human serum albumin, and human interleukin-1beta compared to the parent strain. dgr151-1 is an allele of RAG5, the gene encoding the only hexokinase present in K. lactis (a homologue of S. cerevisiae HXK2). The mutation in this strain was mapped to nucleotide position +527, resulting in a change from glycine to aspartic acid within the highly conserved kinase domain. Cells carrying the dgr151-1 allele also showed a reduction in N- and O-glycosylation. Therefore, the dgr151 strain may be a promising host for the production of heterologous proteins, especially when the hyperglycosylation of recombinant proteins must be avoided.  相似文献   

3.
 The glucoamylase gene of the yeast Arxula adeninivorans was expressed in Kluyveromyces lactis by using the GAP promoter from Saccharomyces cerevisiae and a multicopy plasmid vector. The transformants secreted 90.1% of the synthesized glucoamylase into the culture medium. The secreted glucoamylase activities are about 20 times higher in comparison to those of Saccharomyces cerevisiae transformants using the same promoter. Secreted glucoamylase possesses identical N-terminal amino acid sequences to those secreted by A. adeninivorans showing that cleavage of the N-terminal signal peptide takes place at the same site. Biochemical characteristics of glucoamylase expressed by K. lactis and A. adeninivorans are very similar. Received: 12 June 1995/Received revision: 17 July 1995/Accepted: 26 July 1995  相似文献   

4.
The stability of pKD1-based vectors was evaluated during the synthesis of intracellular and extracellular gene products in the yeast Kluyveromyces lactis. The Escherichia coli lacZ and MFalpha1 leader-BPTI (bovine pancreatic trypsin inhibitor) cassettes were placed under the control of the inducible K. lactis LAC4 promoter and inserted into the pKD1-based plasmids. To induce gene expression while maintaining inducer level, a gratuitous gal1-209 K. lactis strain was employed. Selective medium containing 5 g glucose/l and 0.5 g galactose (inducer)/l allowed optimum expression and secretion of heterologous products without a significant effect on the growth of the recombinant cells. During long-term sequential batch cultures (60 generations), plasmid instability was mainly the result of structural instability. The expression and secretion of BPTI resulted in greater structural instability relative to the intracellular beta-galactosidase. For both products, vectors carrying the pKD1 replication origin and the cis-acting stability locus (partial-pKD1 vectors) were more stable than vectors carrying the full pKD1 sequence (full-pKD1 vectors). However, after 55 generations, the beta-galactosidase and BPTI activities were still higher with the full-pKD1 vectors. This was due to the significantly higher initial beta-galactosidase and BPTI activities for the full-pKD1 vectors (approximately 85% and 47% higher, respectively) relative to the partial-pKDI vectors. Southern blots confirmed that these increases were due to the higher copy number of the vectors carrying the full pKD1 sequence. In contrast to our previously reported results for the secretion of invertase, full-pKD1 vectors were preferred for the expression/secretion of beta-galactosidase and BPTI for at least 55 generations. Due to their structural stability, partial-pKD1 vectors will be advantageous for very long cultivation times.  相似文献   

5.
The optimization and scale-up of a specific protein production process have to take into account cultural conditions as well as cell physiology of growth and influence of foreign protein expression on host cell metabolism. Growth on cheap substrates, efficient secretion ability and a weaker tendency to hypermannosilate proteins than S. cerevisiae, make K. lactis an excellent and well-accepted host for heterologous protein production, even for human use. A fairly good heterologous glucoamylase yield and the setting of the optimal conditions to produce it were obtained expressing the Arxula adeninivorans glucoamylase in a strain of K. lactis and its isogenic mutant, which seems to have higher secretion ability. We performed batch cultures of both strains to analyze the influence of different physiological and environmental parameters on glucoamylase production/secretion. Interestingly, the maintenance of pH in the range of neutrality causes the consumption of a larger amount of carbon source, a longer time of production and a better stability of the active form of the enzyme, thus increasing biomass and glucoamylase production. Furthermore, the enrichment of the culture medium adds up to the action of pH control, forcing the mutant production/secretion to higher levels.  相似文献   

6.
The stability of pKD1-based vectors in the yeast Kluyveromyces lactis was investigated during short- and long-term culture. The vectors carried an expression/secretion cassette consisting of the Saccharomyces cerevisiaeSUC2 gene under the control of the S. cerevisiaeα-factor promoter and leader. The first set of vectors contained the entire pKD1 sequence linearized at either the unique EcoRI or the unique SphI site of the pKD1 plasmid. During long-term sequential batch culture in selective medium with either vector, invertase activity rapidly dropped while the plasmid-bearing population increased from 60% to 100%. This apparently contradictory behavior was due to structural instability. The enzyme restriction patterns of recovered plasmid DNA retained the pKD1 band while the band containing the SUC2 cassette had decreased substantially in size. To overcome this structural instability, a vector carrying the pKD1 replication origin and the cis-acting stability locus (lacking the inverted repeats) was employed in a pKD1+ (but otherwise isogenic) strain. With this plasmid, invertase activity remained constant (for at least 70 generations). While the new vector was significantly more stable, initial invertase activity was substantially lower than that for the vectors containing the full pKD1 sequence. Southern hybridization confirmed that this decrease was primarily due to reduced copy number. The results indicate that full-pKD1 vectors may be preferred for batch culture, while partial-pKD1 vectors are more suitable for long-term (e.g. fed-batch or continuous) culture. Received: 24 June 1997 / Received revision: 14 November 1997 / Accepted: 29 November 1997  相似文献   

7.
In the present study the optimized parameters for highest ethanol productivity by Kluyveromyces lactis immobilized cells bioreactor were obtained using the method of Lagrange multipliers. Immobilized growing yeast cells in PVA: HEMA (7%: 10%, w/w) hydrogel copolymer carrier produced by radiation polymerization were used in a packed-bed column reactor for the continuous production of ethanol from lactose at different levels of concentrations (50, 100 and 150) gL(-1). The results indicate that volumetric ethanol productivity is influenced by substrate concentration and dilution rate. The highest value 7.17 gL(-1) h(-1) is obtained at higher lactose concentration (150 gL(-1)) in feed medium and 0.3 h(-1) dilution rate. The same results have been obtained through the application of "LINGO" software for mathematical optimization.  相似文献   

8.
Secretion of the heterologous Kluyveromyces lactis beta-galactosidase into culture medium by several Saccharomyces cerevisiae osmotic-remedial thermosensitive-autolytic mutants was assayed and proved that new metabolic abilities were conferred since the constructed strains were able to grow in lactose-containing media. Cell growth became independent of a lactose-uptake mechanism. Higher levels of extra-cellular and intra-cellular beta-galactosidase production, lactose consumption and growth were obtained with the LHDP1 strain, showing a thermosensitive-autolytic phenotype as well as being peptidase-defective. The recombinant strain LHDP1 presented the highest beta-galactosidase yields from biomass and the lowest ethanol levels from lactose. This strain is effective for the heterologous production and release of K. lactis beta-galactosidase into the extra-cellular medium after osmotic shock.  相似文献   

9.
We have developed a novel Escherichia coli cell surface display system by employing PgsA as an anchoring motif. In our display system, C-terminal fusion to PgsA anchor protein from Bacillus subtilis was used. The enzymes selected for display were α-amylase (AmyA) from Streptococcus bovis 148 and lipase B (CALB) from Candida antarctica. The molecular mass values of AmyA and CALB are approximately 77 and 34 kDa, respectively. The enzymes were displayed on the surface as a fusion protein with a FLAG peptide tag at the C terminus. Both the PgsA-AmyA-FLAG and PgsA-CALB-FLAG fusion proteins were shown to be displayed by immunofluorescence labeling using anti-FLAG antibody. The displayed enzymes were active forms, and AmyA and CALB activities reached 990 U/g (dry cell weight) and 4.6 U/g (dry cell weight), respectively. AmyA-displaying E. coli cells grew utilizing cornstarch as the sole carbon source, while CALB-displaying E. coli cells catalyzed enantioselective transesterification, indicating that they are effective whole-cell biocatalysts. Since a target enzyme with a size of 77 kDa and an industrially useful lipase have been successfully displayed on the cell surface of E. coli for the first time, PgsA protein is probably a useful anchoring motif to display various enzymes.  相似文献   

10.
Summary The photosynthetic bacteria Rhodopseudomonas capsulata strain B10 were immobilized in agar or in carrageenan beads (Ø = 1–3 mm). Beads containing 5.8 mg cell dry weight/mL of gel produced hydrogen from lactate at a rate of 54 mL/h.g dry weight; the efficiency of H2 production by immobilized cells was comparable to that of free cells and was 60 to 65% that of the theoretical maximum from lactate. Carrageenan-entrapped cells produced H2 steadily over a 16-day period.  相似文献   

11.
Heterologous protein production can be doubled by increasing the copy number of the corresponding heterologous gene. We constructed a host-vector system in the yeast Kluyveromyces lactis that was able to induce copy number amplification of pKD1 plasmid-based vectors upon expression of an integrated copy of the plasmid recombinase gene. We increased the production and secretion of two heterologous proteins, glucoamylase from the yeast Arxula adeninivorans and mammalian interleukin-1beta, following gene dosage amplification when the heterologous genes were carried by pKD1-based vectors. The choice of the promoters for expression of the integrated recombinase gene and of the episomal heterologous genes are critical for the mitotic stability of the host-vector system.  相似文献   

12.
Summary Different matrices, obtained by varying calcium (0.1 to 1.5M) and alginate (1 to 1.5%) concentrations, were used to study the influence of immobilisation parameters on the behaviour ofS. aviculare. A significant modulation of cell growth, cell release, and scopolin production and excretion has been observed. Physiological and morphological characteristics ofSolanum aviculare cells immobilised within Ca-alginate beads were notably different from those of suspended cells. ImmobilisedS. aviculare have accumulated scopolin (up to 120 g·g–1 FWB) within beads and excreted it into the culture medium (up to 8 g·g–1 FWB). Contrary to suspended cells which have accumulated only traces of this metabolite within intracellular compartments (1 g·g–1 FWB), no scopolin has been found into the culture medium.Abbreviations ANA -Naphthaleneacetic acid - HPLC high performance liquid chromatography - FWB fresh weight biomass - LS medium Linsmaier and Skoog medium - MS mass spectroscopy - NMR nuclear magnetic resonance - r2 coefficient of determination - s standard deviation  相似文献   

13.
Summary The principles of a new process for the continuous manufacture of yoghurt withLactobacillus bulgaricus andStreptococcus thermophilus entrapped in Ca-alginate beads were given. Characteristics of non-optimized pH-stat continuous stirred tank reactors withL. bulgaricus andS. thermophilus entrapped in the same or separate particles were examined. In these reactors the highest production rate were 9.4 g.l–1.h–1 for lactic acid and 3.4×1011 C.F.U. 1–1.h–1 for inoculation when microorganisms were entrapped separately. A stable balance of the yoghurt bacteria liberated in continuously prefermented milk was observed.  相似文献   

14.
The synthesis of 2-heptanone from octanoic acid by Caalginate/Eudragit RL entrapped spores of Penicillium roquefortii is performed in batch and continuous reactions. The measurement of the HCI solution needed to overcome the pH increase during the course of a reaction allows continuous monitoring of the reaction progress of batch as well as continuous processes without any aliquot sampling. The hydration of the biocatalyst prior to a bioconversion performance is of major importance to achieve reproducible results. A continuous reaction carried out at pH 6.5 for one month demonstrates the feasibility of such a process and shows that the reaction occurs with a Michaelian behavior, with K(M) = 1.82 mmol/L and r(sm) = 0.82 mmol/L h, and no intraparticle diffusion limitation is found. The complex behavior of the spores during batch reactions makes this kind of operation unsuitable for kinetic studies.  相似文献   

15.
The use of a phosphate organic form taken up by Kluyveromyces lactis removes repression of the PHO5 promoter and releases heterologous interleukin 1\ synthesis while providing sufficient phosphate for growth. The oxidative metabolism of high-cell-density fed-batch and chemostat cultures was thus maintained under derepressed protein synthesis conditions. Interleukin 1\ production was then growth-associated, an unusual mode of protein synthesis regulation under the control of the PHO5 promoter.  相似文献   

16.
Heterologous protein production in the yeast Kluyveromyces lactis   总被引:1,自引:0,他引:1  
Kluyveromyces lactis is both scientifically and biotechnologically one of the most important non-Saccharomyces yeasts. Its biotechnological significance builds on its history of safe use in the food industry and its well-known ability to produce enzymes like lactase and bovine chymosin on an industrial scale. In this article, we review the various strains, genetic techniques and molecular tools currently available for the use of K. lactis as a host for protein expression. Additionally, we present data illustrating the recent use of proteomics studies to identify cellular bottlenecks that impede heterologous protein expression.  相似文献   

17.
Cells of Candida guilliermondii entrapped in Ca-alginate beads were used for xylitol production, from concentrated hemicellulose hydrolyzate of sugarcane bagasse, in a fluidized bed bioreactor (FBR). The maximum xylitol concentration 28.9 g xylitol/L was obtained at a high aeration rate of 600 mL/min after 70 h of fermentation, indicating that the use of high aeration rate in this system is favored for better oxygen transfer into the immobilized cells. The specific xylitol productivity and the xylitol yield were of 0.4 g xylitol/L.h and 0.58 g xylitol/g xylose respectively. The immobilization efficiency at the end of the fermentation was of 65 %. After 90 h of fermentation xylitol productivity and yield decreased to 0.25 g xylitol/L.h and 0.47 g xylitol/g xylose respectively, indicating the beginning of xylitol consumption by the yeast. The use of FBR system with immobilized cells presented high xylitol yield and productivity.  相似文献   

18.
Summary Continuous ethanol production byS. uvarum immobilized in a low-gelling temperature agarose namely SeaPlaque agarose was studied in a packed bed reactor at 30°C using sugarcane molasses containing 13.5% fermentable sugars as feed. The productivity at 95% conversion was 23 g/l.h (on reactor volume basis). The bioreactor was run continuously at a fixed dilution rate and it retained 60% of its initial activity upto 80 days.  相似文献   

19.
Summary Diacetyl production by (Citr*)Lactococcus lactis subsp.lactis 3022 was found to be an oxygen-dependent reaction. The diacetyl production by the cells immobilized in conventional Ca-alginate gel beads (Diameter: 3 mm) was lower than that of the cells immobilized in Ca-alginate gel fibers (Diameter: 0.2 mm), probably because oxygen transfer to the immobilized cells is better in gel fibers than in gel beads.  相似文献   

20.
Candida guilliermondii FTI 20037 cells were entrapped in Ca-alginate beads and used for xylose-to-xylitol bioconversions during five successive batches in a stirred tank reactor. Supplemented sugarcane bagasse hemicellulosic hydrolysate was used as the fermentation medium. The average volume of the Ca-alginate beads was reduced by about 30% after the 600 h taken to perform the five bioconversion cycles, thus demonstrating physical instability under the conditions prevailing in the reactor vessel. In spite of this, almost steady bioconversion rates and yields were observed along the repeated batches. In average values, a production of 51.6 g l(-1), a productivity of 0.43 g l(-1 )h(-1) and a yield of 0.71 g g(-1) were attained in each batch, variation coefficients being smaller than 10%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号