共查询到20条相似文献,搜索用时 260 毫秒
1.
Improved relaxation-compensated Carr–Purcell–Meiboom-Gill pulse sequences are reported for studying chemical exchange of backbone 15N nuclei. In contrast to the original methods [J. P. Loria, M. Rance, and A. G. Palmer, J. Am. Chem. Soc.
121, 2331–2332 (1999)], phenomenological relaxation rate constants obtained using the new sequences do not contain contributions from 1H-1H dipole-dipole interactions. Consequently, detection and quantification of chemical exchange processes are facilitated because the relaxation rate constant in the limit of fast pulsing can be obtained independently from conventional 15N spin relaxation measurements. The advantages of the experiments are demonstrated using basic pancreatic trypsin inhibitor. 相似文献
2.
Somnath Mukherjee Debajyoti Dutta Baisakhee Saha Amit Kumar Das 《Acta Crystallographica. Section F, Structural Biology Communications》2009,65(4):398-401
Triosephosphate isomerase from methicillin‐resistant Staphylococcus aureus (MRSA252) was cloned in pQE30 vector, overexpressed in Escherichia coli M15 (pREP4) cells and purified to homogeneity. The protein was crystallized from 1.6 M trisodium citrate dihydrate pH 6.5 using the hanging‐drop vapour‐diffusion method. The crystals belonged to space group P43212, with unit‐cell parameters a = b = 79.15, c = 174.27 Å. X‐ray diffraction data were collected and processed to a maximum resolution of 1.9 Å. The presence of two molecules in the asymmetric unit gave a Matthews coefficient (VM) of 2.64 Å3 Da−1, with a solvent content of 53.63%. 相似文献
3.
L. F. Delboni S. C. Mande F. Rentier-Delrue V. Mainfroid S. Turley F. M. Vellieux J. A. Martial W. G. Hol 《Protein science : a publication of the Protein Society》1995,4(12):2594-2604
The structure of the thermostable triosephosphate isomerase (TIM) from Bacillus stearothermophilus complexed with the competitive inhibitor 2-phosphoglycolate was determined by X-ray crystallography to a resolution of 2.8 A. The structure was solved by molecular replacement using XPLOR. Twofold averaging and solvent flattening was applied to improve the quality of the map. Active sites in both the subunits are occupied by the inhibitor and the flexible loop adopts the \"closed\" conformation in either subunit. The crystallographic R-factor is 17.6% with good geometry. The two subunits have an RMS deviation of 0.29 A for 248 C alpha atoms and have average temperature factors of 18.9 and 15.9 A2, respectively. In both subunits, the active site Lys 10 adopts an unusual phi, psi combination. A comparison between the six known thermophilic and mesophilic TIM structures was conducted in order to understand the higher stability of B. stearothermophilus TIM. Although the ratio Arg/(Arg+Lys) is higher in B. stearothermophilus TIM, the structure comparisons do not directly correlate this higher ratio to the better stability of the B. stearothermophilus enzyme. A higher number of prolines contributes to the higher stability of B. stearothermophilus TIM. Analysis of the known TIM sequences points out that the replacement of a structurally crucial asparagine by a histidine at the interface of monomers, thus avoiding the risk of deamidation and thereby introducing a negative charge at the interface, may be one of the factors for adaptability at higher temperatures in the TIM family. Analysis of buried cavities and the areas lining these cavities also contributes to the greater thermal stability of the B. stearothermophilus enzyme. However, the most outstanding result of the structure comparisons appears to point to the hydrophobic stabilization of dimer formation by burying the largest amount of hydrophobic surface area in B. stearothermophilus TIM compared to all five other known TIM structures. 相似文献
4.
Sean E. Connor Glenn C. Capodagli Michelle K. Deaton Scott D. Pegan 《Acta Crystallographica. Section D, Structural Biology》2011,67(12):1017-1022
Tuberculosis (TB) is a major infectious disease that accounts for over 1.7 million deaths every year. Mycobacterium tuberculosis, the causative agent of tuberculosis, enters the human host by the inhalation of infectious aerosols. Additionally, one third of the world's population is likely to be infected with latent TB. The incidence of TB is on the rise owing in part to the emergence of multidrug‐resistant strains. As a result, there is a growing need to focus on novel M. tuberculosis enzyme targets. M. tuberculosis triosephosphate isomerase (MtTPI) is an essential enzyme for gluconeogenetic pathways, making it a potential target for future therapeutics. In order to determine its structure, the X‐ray crystal structure of MtTPI has been determined, as well as that of MtTPI bound with a reaction‐intermediate analog. As a result, two forms of the active site were revealed. In conjunction with the kinetic parameters obtained for the MtTPI‐facilitated conversion of dihydroxyacetone phosphate (DHAP) to d ‐glyceraldehyde‐3‐phosphate (d ‐GAP), this provides a greater structural and biochemical understanding of this enzyme. Additionally, isothermal titration calorimetry was used to determine the binding constant for a reaction‐intermediate analog bound to the active site of MtTPI. 相似文献
5.
Mangala A. Nadkarni F. Elizabeth Martin Neil Hunter & Nicholas A. Jacques 《FEMS microbiology letters》2009,296(1):45-51
The glycolytic enzyme triosephosphate isomerase ( tpi ) (EC 5.3.1.1) plays a key role in central carbon metabolism yet few studies have characterized isogenic bacterial mutants lacking this enzyme and none have examined its role in the in vivo fitness of a bacterial pathogen. Here we have deleted tpiA in Salmonella enterica serovar Typhimurium and found that the mutant had an altered morphology, displaying an elongated shape compared with the wild type. In a mouse model of typhoid fever the tpiA mutant was attenuated for growth as assessed by bacterial counts in the livers and spleens of infected mice. However, this attenuation was not deemed sufficient for consideration of a tpiA mutant as a live attenuated vaccine strain. These phenotypes were complemented by provision of tpiA on pBR322. We therefore provide the first demonstration that tpiA is required for full in vivo fitness of a bacterial pathogen, and that it has a discernable impact on cell morphology. 相似文献
6.
Structure of the complex between trypanosomal triosephosphate isomerase and N-hydroxy-4-phosphono-butanamide: binding at the active site despite an "open" flexible loop conformation.
下载免费PDF全文

C. L. Verlinde C. J. Witmans T. Pijning K. H. Kalk W. G. Hol M. Callens F. R. Opperdoes 《Protein science : a publication of the Protein Society》1992,1(12):1578-1584
The structure of triosephosphate isomerase from Trypanosoma brucei complexed with the competitive inhibitor N-hydroxy-4-phosphono-butanamide was determined by X-ray crystallography to a resolution of 2.84 A. Full occupancy binding of the inhibitor is observed only at one of the active sites of the homodimeric enzyme where the flexible loop is locked in a completely open conformation by crystal contacts. There is evidence that the inhibitor also binds to the second active site of the enzyme, but with low occupancy. The hydroxamyl group of the inhibitor forms hydrogen bonds to the side chains of Asn 11, Lys 13, and His 95, whereas each of its three methylene units is involved in nonpolar interactions with the side chain of the flexible loop residue Ile 172. Interactions between the hydroxamyl and the catalytic base Glu 167 are absent. The binding of this phosphonate inhibitor exhibits three unusual features: (1) the flexible loop is open, in contrast with the binding mode observed in eight other complexes between triosephosphate isomerase and various phosphate and phosphonate compounds; (2) compared with these complexes the present structure reveals a 1.5-A shift of the anion-binding site; (3) this is the first phosphonate inhibitor that is not forced by the enzyme into an eclipsed conformation about the P-CH2 bond. The results are discussed with respect to an ongoing drug design project aimed at the selective inhibition of glycolytic enzymes of T. brucei. 相似文献
7.
Triosephosphate isomerase (TPI; EC 5. 3. 1. 1) displayed on the cell surface of Staphylococcus aureus acts as an adhesion molecule that binds to the capsule of Cryptococcus neoformans, a fungal pathogen. This study investigated the function of TPI on the cell surface of S. aureus and its interactions with biological substances such as fibronectin, fibrinogen, plasminogen, and thrombin were investigated. Binding of TPI to plasminogen was demonstrated by both surface plasmon resonance analysis and Far‐Western blotting. It is suggested that lysine residues contribute to this binding because the interaction was inhibited by ?‐aminocaproic acid. Activation of plasminogen to plasmin by staphylokinase or tissue plasminogen activator decreased in the presence of TPI, whereas TPI was degraded by plasmin. In other experiments, intact S. aureus cells had the ability to both increase and decrease plasminogen activation depending on the number of cells. Several molecules expressed on the surface of S. aureus were predicted to interact with plasminogen, resulting in its increased or decreased activation. These findings indicate that S. aureus sometimes localizes and sometimes disseminates in the host, depending on the molecules expressed under various conditions. 相似文献
8.
Unfolding and refolding of rabbit muscle triosephosphate isomerase (TIM), a model for (betaalpha)8-barrel proteins, has been studied by amide hydrogen exchange/mass spectrometry. Unfolding was studied by destabilizing the protein in guanidine hydrochloride (GdHCl) or urea, pulse-labeling with 2H2O and analyzing the intact protein by HPLC electrospray ionization mass spectrometry. Bimodal isotope patterns were found in the mass spectra of the labeled protein, indicating two-state unfolding behavior. Refolding experiments were performed by diluting solutions of TIM unfolded in GdHCl or urea and pulse-labeling with 2H2O at different times. Mass spectra of the intact protein labeled after one to two minutes had three envelopes of isotope peaks, indicating population of an intermediate. Kinetic modeling indicates that the stability of the folding intermediate in water is only 1.5 kcal/mol. Failure to detect the intermediate in the unfolding experiments was attributed to its low stability and the high concentrations of denaturant required for unfolding experiments. The folding status of each segment of the polypeptide backbone was determined from the deuterium levels found in peptic fragments of the labeled protein. Analysis of these spectra showed that the C-terminal half folds to form the intermediate, which then forms native TIM with folding of the N-terminal half. These results show that TIM folding fits the (4+4) model for folding of (betaalpha)8-barrel proteins. Results of a double-jump experiment indicate that proline isomerization does not contribute to the rate-limiting step in the folding of TIM. 相似文献
9.
Guennadi Kozlov Roohi Vinaik Kalle Gehring 《Acta Crystallographica. Section F, Structural Biology Communications》2013,69(5):499-502
Attempts to crystallize several mammalian proteins overexpressed in Escherichia coli revealed a common contaminant, triosephosphate isomerase, a protein involved in glucose metabolism. Even with triosephosphate isomerase present in very small amounts, similarly shaped crystals appeared in the crystallization drops in a number of polyethylene glycol‐containing conditions. All of the target proteins were His‐tagged and their purification involved immobilized metal‐affinity chromatography (IMAC), a step that was likely to lead to triosephosphate isomerase contamination. Analysis of the triosephosphate isomerase crystals led to the structure of E. coli triosephosphate isomerase at 1.85 Å resolution, which is a significant improvement over the previous structure. 相似文献
10.
The (beta/alpha)(8) barrel is the most commonly occurring fold among enzymes. A key step towards rationally engineering (beta/alpha)(8) barrel proteins is to understand their underlying structural organization and folding energetics. Using misincorporation proton-alkyl exchange (MPAX), a new tool for solution structural studies of large proteins, we have performed a native-state exchange analysis of the prototypical (beta/alpha)(8) barrel triosephosphate isomerase. Three cooperatively unfolding subdomains within the structure are identified, as well as two partially unfolded forms of the protein. The C-terminal domain coincides with domains reported to exist in four other (beta/alpha)(8) barrels, but the two N-terminal domains have not been observed previously. These partially unfolded forms may represent sequential intermediates on the folding pathway of triosephosphate isomerase. The methods reported here should be applicable to a variety of other biological problems involving protein conformational changes. 相似文献
11.
12.
An electrophoretically unique, thermolabile isozyme of triosephosphate isomerase (TPI; EC 5.3.1.1) accounts for 10–30% of the enzymatic activity in a range of mitotically active human cells and tissues. This type 2 form (subunit) of human TPI appears in two isozymes, an anodally migrating, relative to the constitutive TPI-1/1 homodimer, TPI-2/2 homodimer and the TPI-1/2 heterodimer with an intermediate mobility. Human cell types expressing the induced isozyme, which is the product of the same structural locus as the constitutive isozyme, include mitogen-stimulated lymphocytes, virally transformed B-lymphoblastoid cells, leukemia-derived T-lymphoblastoid cells, HeLa cells, both normal and transformed fibroblasts, and placental tissue. Extracts of nondividing or terminally differentiated human cells/tissues, such as erythrocytes, striated muscle, peripheral lymphocytes, and platelets, contain high levels of the constitutive TPI-1/1 isozyme but little or undetectable levels of the TPI-1/2 or TPI-2/2 isozyme. The cell division-associated TPI-1/2 and -2/2 isozymes are distinct in electrophoretic mobility from the deamidated forms of the constitutive isozyme. Extracts of dividing gorilla fibroblasts display an isozyme pattern identical to that of proliferating human cells, but various proliferating cells derived from the African green monkey, rabbit, and chicken express only the constitutive isozyme. Thus, expression of the cell division-associated isozyme of TPI is restricted to the hominoids, suggesting a recently evolved modification mechanism which is specifically activated in proliferating cells.Financial support was derived from Contract EY-77-C-02-2828 from the Department of Energy and Training Grant 5-T32-GM07544 from the National Institutes of Health. 相似文献
13.
Two new electrophoretic variants of human triosephosphate isomerase (TPI) have been partially purified and characterized. The TPI Manchester variant, a cathodally migrating electrophoretic allozyme identified in an individual with the phenotype TPI 1-Manchester, is associated with a normal level of enzyme activity in erythrocytes and normal kinetic properties. It is very thermolabile at 55 and 57° C, although it is not uniquely sensitive to either guanidine-HCl or urea denaturation. The TPI Hiroshima-2 variant is an anodally migrating allozyme (the phenotype of proband is TPI 1-Hiroshima-2) with normal activity and kinetic properties and also normal stability characteristics. It is inactivated less by antisera raised against normal human TPI than either the normal or the Manchester allozyme. Dissociation-reassociation experiments utilizing these allozymes have confirmed that normal human red blood cell TPI isozymes are produced by a sequence of reactions (presumably deamidations) involving alternating subunits.Financial support was derived from Contract EY-77-C-02-2828 from the Department of Energy. 相似文献
14.
Three new electrophoretic variants of human erythrocyte triosephosphate isomerase (TPI) have been partially purified and compared with the normal isozyme with respect to stability, kinetics, and immunological properties. TPI 2HR1, an anodally migrating variant, was less stable than normal in guanidine denaturation and thermodenaturation tests, although it exhibited normal kinetic properties. The level of enzyme activity in erythrocytes from the proband with the phenotype TPI 1-2HR1 was about 60% of the normal mean. The variant allozyme TPI 2NG1, an anodally migrating allozyme associated with normal activity, was very thermolabile at 55 and 57°C. It was also much more labile than normal in stability tests in buffers at pH 5 and pH 10, although it exhibited normal kinetic and immunological properties. TPI 4NG1, a cathodally migrating variant associated with normal activity and normal kinetic as well as immunological properties, was more stable than normal in pH 5 buffer. Family studies demonstrated that the unique characteristics of these variants are genetically transmitted. In two-dimensional electrophoresis of purified isozymes the variant subunits were separated from the normal in the pI axis. However, there is no difference between the variants and the normal in the molecular weight axis, suggesting that the variants result from single amino acid substitutions. 相似文献
15.
The increase in glycolytic flux in cancer, known as aerobic glycolysis, is one of the most important hallmarks of cancer. Therefore, glycolytic enzymes have importance in understanding the molecular mechanism of cancer progression. Triosephosphate isomerase (TPI) is one of the key glycolytic enzymes. Furthermore, it takes a part in gluconeogenesis, pentose phosphate pathway and fatty acid biosynthesis. To date, it has been shown altered levels of TPI in various cancer types, especially in metastatic phenotype. According to other studies, TPI might be considered as a potential therapeutic target and a cancer‐related biomarker in different types of cancer. However, its function in tumor formation and development has not been fully understood. Here, we reviewed the relationship between TPI and cancer for the first time 相似文献
16.
Incorporation of effective backbone sampling into protein simulation and design is an important step in increasing the accuracy of computational protein modeling. Recent analysis of high-resolution crystal structures has suggested a new model, termed backrub, to describe localized, hinge-like alternative backbone and side-chain conformations observed in the crystal lattice. The model involves internal backbone rotations about axes between C-alpha atoms. Based on this observation, we have implemented a backrub-inspired sampling method in the Rosetta structure prediction and design program. We evaluate this model of backbone flexibility using three different tests. First, we show that Rosetta backrub simulations recapitulate the correlation between backbone and side-chain conformations in the high-resolution crystal structures upon which the model was based. As a second test of backrub sampling, we show that backbone flexibility improves the accuracy of predicting point-mutant side-chain conformations over fixed backbone rotameric sampling alone. Finally, we show that backrub sampling of triosephosphate isomerase loop 6 can capture the millisecond/microsecond oscillation between the open and closed states observed in solution. Our results suggest that backrub sampling captures a sizable fraction of localized conformational changes that occur in natural proteins. Application of this simple model of backbone motions may significantly improve both protein design and atomistic simulations of localized protein flexibility. 相似文献
17.
The process of thermal inactivation of triosephosphate isomerase covalently attached to a silica-based support activated with p-benzoquinone was found to be a complex one. At 50 degrees C, a characteristic activation preceding the thermal inactivation was observed. Following the intramolecular changes caused by heat, the values of K(M) and V(max) were determined during the activation. It was presumed that the complex thermal inactivation kinetics reflects the microheterogeneity of the immobilized enzyme molecules. The phosphate ion proved to be a better stabilizer than the substrate. (c) 1992 John Wiley & Sons, Inc. 相似文献
18.
Venuka Durani Goyal Pooja Yadav Ashwani Kumar Biplab Ghosh Ravindra D. Makde 《Acta Crystallographica. Section F, Structural Biology Communications》2014,70(11):1521-1525
A bioinformatics‐based protein‐engineering approach called consensus design led to the construction of a chimeric triosephosphate isomerase (TIM) protein called ccTIM (curated consensus TIM) which is as active as Saccharomyces cerevisiae TIM despite sharing only 58% sequence identity with it. The amino‐acid sequence of this novel protein is as identical to native sequences from eukaryotes as to those from prokaryotes and shares some biophysical traits with a molten globular protein. Solving its crystal structure would help in understanding the physical implications of its bioinformatics‐based sequence. In this report, the ccTIM protein was successfully crystallized using the microbatch‐under‐oil method and a full X‐ray diffraction data set was collected to 2.2 Å resolution using a synchrotron‐radiation source. The crystals belonged to space group C2221, with unit‐cell parameters a = 107.97, b = 187.21, c = 288.22 Å. Matthews coefficient calculations indicated the presence of six dimers in the asymmetric unit, with an approximate solvent content of 46.2%. 相似文献
19.
The crystal structure of malaria triosephosphate isomerase (TIM) was screened against the National Cancer Institute database of three-dimensional molecular structures. Ten top-scoring commercially available compounds were analyzed for inhibition of recombinant TIM. Two anionic dyes showed inhibition of TIM at concentrations of <100 mM. Four related sulfonated dyes were identified from the literature, docked, and screened in vitro. All showed inhibition of malaria TIM. Models indicate that these compounds bind in two suggested conformations to the active site region of the TIM enzyme. These compounds may be used in rational modification procedures for the synthesis of lead anti-TIM drugs. 相似文献
20.
S. Parthasarathy Hemalatha Balaram P. Balaram M. R. N. Murthy 《Acta Crystallographica. Section D, Structural Biology》2002,58(12):1992-2000
The glycolytic enzymes of Plasmodium falciparum (Pf) are attractive drug targets as the parasites lack a functional tricarboxylic cycle and hence depend heavily on glycolysis for their energy requirements. Structural comparisons between Pf triosephosphate isomerase (PfTIM) and its human homologue have highlighted the important differences between the host and parasite enzymes [Velanker et al. (1997), Structure, 5 , 751–761]. Structures of various PfTIM–ligand complexes have been determined in order to gain further insight into the mode of inhibitor binding to the parasite enzyme. Structures of two PfTIM–substrate analogue complexes, those of 3‐phosphoglycerate (3PG) and glycerol‐3‐phosphate (G3P), have been determined and refined at 2.4 Å resolution. Both complexes crystallized in the monoclinic space group P21, with a molecular dimer in the asymmetric unit. The novel aspect of these structures is the adoption of the `loop‐open' conformation, with the catalytic loop (loop 6, residues 166–176) positioned away from the active site; this loop is known to move by about 7 Å towards the active site upon inhibitor binding in other TIMs. The loop‐open form in the PfTIM complexes appears to be a consequence of the S96F mutation, which is specific to the enzymes from malarial parasites. Structural comparison with the corresponding complexes of Trypanosoma brucei TIM (TrypTIM) shows that extensive steric clashes may be anticipated between Phe96 and Ile172 in the `closed' conformation of the catalytic loop, preventing loop closure in PfTIM. Ser73 in PfTIM (Ala in all other known TIMs) appears to provide an anchoring water‐mediated hydrogen bond to the ligand, compensating for the loss of a stabilizing hydrogen bond from Gly171 NH in the closed‐loop liganded TIM structures. 相似文献