首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
为了表达具有中和活性的抗禽流感H5N1病毒人-鼠嵌合IgA抗体,采用RT-PCR法克隆具有中和活性的抗禽流感H5N1-HA鼠源单克隆抗体的轻重链可变区基因及相应的信号肽编码序列,分别与人免疫球蛋白IgA2重链恒定区、Kappa恒定区基因拼接,构建表达质粒pEF-IGHA9和pEF-IGK9,共转染二氢叶酸还原酶缺陷型CHO(CHO-dhfr-)细胞,用ELISA检测培养上清中嵌合IgA抗体的表达,对纯化的嵌合抗体进行SDS-PAGE、Western blotting印迹分析。结果成功地在CHO细胞中表达了抗禽流感H5N1病毒人-鼠嵌合IgA抗体,为制备抗H5N1重组分泌型IgA预防性抗体制剂奠定了良好的基础。  相似文献   

2.
大部分感染都起源于黏膜表面,而黏膜免疫的主要抗体是分泌型免疫球蛋白A(SIgA),它能有效地阻断病原体的感染和侵入。SIgA是由1个IgA二聚体、1条J链和1个分泌片(SC)共价结合构成的异源十聚体。IgA和J链由活化B细胞产生,SC则由黏膜上皮细胞合成。SIgA分子具有极高的稳定性和极强的抗微生物活性。我们就SIgA合成的相关机制、IgA单体和SIgA的结构与功能,以及重组SIgA的研究进展简要综述。  相似文献   

3.
信号肽对肝细胞生长因子HGF在CHO中表达及分泌的影响   总被引:1,自引:0,他引:1  
该研究旨在筛选不同的分泌型信号肽以提高肝细胞生长因子(hepatocyte growth factor,HGF)在中国仓鼠卵巢细胞(Chinese hamster ovary cell,CHO)中的表达。通过PCR方法将5种不同的分泌型信号肽代替HGF自身信号肽,分别构建了表达质粒并转化哺乳动物细胞CHO,挑选高表达克隆。采用qPCR方法检测表达过程中HGF转录水平差异,Western blot检测CHO培养基中HGF的累积差异,犬肾细胞(Madin-Daby canine kidney cells,MDCK cells)离散实验初步验证HGF的活性。研究结果表明,不同的分泌型信号肽对CHO表达HGF过程中的转录水平没有影响,但明显改变HGF在培养基中的累积,对分泌的HGF活性没有影响。综上所述,合适的分泌型信号肽促进CHO分泌外源蛋白质。  相似文献   

4.
抗HEV嵌合抗体的构建及在CHO细胞中的表达   总被引:1,自引:0,他引:1  
通过RT-PCR方法从分泌戊型肝炎(戊肝)病毒中和性鼠源单克隆抗体(单抗)8C11的杂交瘤细胞中克隆出抗体基因的重链可变区(VH)、轻链可变区(VK)序列,并分别克隆到含有人gamma 1重链和kappa轻链恒定区序列的pcDNA3.1/Hygro和pcDNA3.1( )质粒中,共转染中华仓鼠卵巢癌细胞(CHO)细胞.RT-PCR结果表明,转染的CHO细胞转录了嵌合重链及轻链基因,间接ELISA及Western blot结果表明:翻译出的两种多肽在细胞内正确组装成嵌合抗体分子,并可分泌至细胞外,表达的嵌合抗体保留了原鼠单抗的抗原结合特异性及对8H3结合抗原的增强作用.8C11嵌合抗体的成功表达可降低鼠源性,为探讨戊肝抗体治疗的可能性奠定了基础.  相似文献   

5.
CHO细胞在无血清或无蛋白培养条件下培养通常会遇到贴壁能力差,细胞活力差等问题。通过构建分泌型bFGF基因,克隆到pIRESneo3表达载体上,转染CHO细胞,通过MTT法间接检测细胞培养上清中bFGF表达,并在无蛋白培养基中观察细胞的生长。结果显示转染的CHO细胞表达bFGF,且分泌的bFGF有生物活性;转染的CHO细胞在无蛋白培养基中较未转染的CHO细胞的贴壁能力和活力强。成功改造了CHO细胞,为CHO细胞在无血清或无蛋白条件下大规模培养提供了基础。  相似文献   

6.
为降低人抗鼠抗体 (HAMA)反应并在CHO细胞中高效表达抗人P185 erbB2 人 /鼠嵌合抗体 ,将抗人P185 erbB2 单抗C2 5的轻、重链可变区基因分别克隆入具有人抗体恒定区基因组序列和弱化启动子驱动的选择标志基因的真核表达载体中 ,共转染CHO dhfr-细胞 ,经G418及氨甲喋呤 (MTX)梯度加压筛选进行了嵌合抗体的高效表达。采用RT PCR、ELISA、细胞ELISA、免疫荧光细胞化学等实验证实了所表达的抗人P185 erbB2 嵌合抗体的人源性及抗原特异性。培养上清中的抗体产量可达 10 0mg/L ,所表达的嵌合抗体具有抑制P185 erbB2 高表达肿瘤细胞增殖的作用  相似文献   

7.
通过在中国仓鼠卵巢细胞(CHO)中过表达热休克蛋白70以提高其表达抗体的能力。首先从中国仓鼠基因组DNA中扩取HSP70基因,构建真核表达质粒pcDNA3.1-HSP70,再将重组质粒稳定转染到CHO/dhfr-细胞中,筛选获得稳定的细胞系,运用RT-qPCR检测和Western blot分析HSP70基因的过表达。在过表达HSP70的CHO细胞组和对照细胞组(转染空载体pcDNA3.1的CHO细胞组)中分别转染表达抗-HBs的质粒,应用ELISA检测两组细胞表达抗-HBs的能力。RT-qPCR结果显示实验组CHO细胞中HSP70基因的表达量明显高于对照组细胞;ELISA检测结果表明过表达HSP70的CHO细胞组抗-HBs表达量高于对照组细胞(P<0.05)。研究揭示HSP70能有效促进细胞内分泌性蛋白的表达。  相似文献   

8.
利用非复制型痘苗病毒表达载体 pNEOCK11β75IL5和重组病毒RVJ12 3,通过两步重组构建了能同时表达IL 5和乙型肝炎病毒HBsAg的非复制型重组痘苗病毒RVJ12 3Δ11β75IL5。Southern blot证实 ,痘苗病毒C K片段间基因缺失的同时伴有IL 5基因的插入。鼻腔吸入分别免疫Balb/c小鼠和新西兰白兔 ,ELISPOT实验证实 ,免疫后两周小鼠肺淋巴细胞的抗HBsAgIgA抗体分泌细胞 (ASC)数比对照组 (RVJ12 3Δ11β75 )增加约 2倍 ,而同时小鼠肺淋巴细胞的抗HBsAgIgG抗体分泌细胞 (ASC)数与对照组无差别。可在小鼠血液、肺浸出液以及新西兰白兔血液、肺浸出液、其它分泌液样品中检测到抗乙型肝炎病毒HBsAg的特异性的IgA、IgG抗体 ,与对照组相比 ,IgA抗体阳转率及抗体滴度提高 ,而IgG则无差异。本实验说明 :IL 5可在体内选择性地增强机体的粘膜IgA反应。提示非复制载体疫苗中 ,表达的该细胞因子可有效的增强疫苗的粘膜免疫反应 ,为粘膜疫苗的发展策略提供了新的途径  相似文献   

9.
中国仓鼠卵巢(Chinese hamster ovary,CHO)细胞是生产复杂重组药物蛋白的首选宿主细胞,腺嘌呤磷酸核糖转移酶(adenine phosphoribosyltransferase,APRT)催化腺嘌呤与磷酸核糖缩合形成腺苷一磷酸,是嘌呤生物合成步骤中的关键酶。采用基因编辑技术敲除CHO细胞中aprt基因,验证获得的APRT缺陷型CHO细胞系的生物学特性;构建两种真核表达载体:对照载体(含有目的基因增强型绿色荧光蛋白(enhanced green fluorescent protein,EGFP)和弱化载体(含有启动子和起始密码子突变的aprt弱化表达盒及EGFP),分别转染APRT缺陷型和野生型CHO细胞并筛选获得稳定转染的细胞池;重组CHO细胞传代培养60代并用流式细胞术检测EGFP表达的平均荧光强度,并比较不同实验组重组蛋白EGFP的表达稳定性。PCR扩增和测序结果表明,CHO细胞aprt基因成功敲除;获得的APRT缺陷型CHO细胞系在细胞形态、生长增殖、倍增时间等生物学特性方面与野生CHO细胞无显著差异。目的蛋白瞬时表达结果表明,与野生型CHO细胞相比,转染对照载体和弱化载体的APRT缺陷型CHO细胞系中EGFP的表达分别提高了42%±6%和56%±9%;特别是长期传代培养时,转染弱化载体的APRT缺陷型细胞中EGFP表达量显著高于野生型CHO细胞(P<0.05);构建的基于APRT缺陷型CHO细胞系能够明显提高重组蛋白的长期表达稳定性。研究结果为建立高效稳定的CHO细胞表达系统提供了一种有效的细胞工程策略。  相似文献   

10.
为了深入认识酵母抽提物在中国仓鼠卵巢(CHO)细胞生长及单克隆抗体表达过程中所发挥的作用,综合考察了传代培养和批式培养过程中,不同浓度酵母抽提物条件下CHO细胞生长、抗体表达以及营养物代谢的情况。传代培养过程中,低浓度(1 g/L)的酵母抽提物能够显著促进CHO细胞的生长,高浓度(5-10 g/L)的酵母抽提物则会显著抑制CHO细胞的生长;同时,传代过程中添加酵母抽提物不会影响种子细胞在批式培养中的表现。批式培养过程中,抗体比生成速率随酵母抽提物浓度的提高而升高,浓度为10 g/L时获得最高抗体产量。通过采用细胞生长阶段低浓度、产物表达阶段高浓度的添加策略,酵母抽提物在动物细胞培养过程中可发挥巨大的应用价值。  相似文献   

11.
Induced protection mechanisms at mucosal surfaces involve secretory IgA (SIgA), a complex structure made of polymeric-dimeric IgA (IgA(p/d)) antibody associated with secretory component (SC). SIgA can adhere to M cells of the intestinal and nasal epithelia, are transported across these latter, and are thus available to the immune cells underlying the epithelia. This property makes SIgA suitable as potential mucosal vaccine delivery vector. It remains that production and purification of SIgA is a complex task since IgA(p/d) and SC are naturally synthesized by two different cell types. Furthermore, only IgA(p/d) are capable to associate with SC. Thus, we sought to separate IgA(p/d) and monomeric IgA (IgA(m)) antibodies secreted by hybridoma cells in CELLine bioreactors. To this aim, we connected together two 1-m long columns filled with Sephacryl S-300 beads and placed them under the control of a automatized chromatographic system. In parallel, we produced recombinant antigenized human SC (ra-hSC) in Chinese hamster ovary (CHO) cells adapted to suspension culture in CELLine bioreactors. To avoid intermediate purification of ra-hSC, culture supernatants (SN) containing this latter were combined with purified IgA(p/d), and the recombinant antigenized SIgA (raSIgA) complex was resolved on a 1-m long column filled with Superdex 200 beads. Biochemical characterization based on SDS-PAGE, silver staining, immunodetection and enzyme-linked immunosorbent assay (ELISA) indicates that highly purified raSIgA can be recovered using this simple two-step procedure. Such preparations are currently used to immunize mice to induce mucosal and systemic responses.  相似文献   

12.
Chimpanzee secretory immunoglobulin A (SIgA) was separated into two fractions by chromatography using the terminal galactose-binding lectin Jacalin. The SIgA fraction bound by Jacalin was cleaved by Haemophilus influenzae IgA1 protease, whereas the SIgA nonbinding fraction was not cleaved. It is proposed that these fractions represent IgA1 and IgA2 subclasses because the presence or absence of galactose-terminal oligosaccharides (Jacalin binding) and susceptibility or resistance to IgA1 protease are properties that define human IgA1 and IgA2 subclasses.  相似文献   

13.
In intestinal secretions, secretory IgA (SIgA) plays an important sentinel and protective role in the recognition and clearance of enteric pathogens. In addition to serving as a first line of defense, SIgA and SIgA·antigen immune complexes are selectively transported across Peyer''s patches to underlying dendritic cells in the mucosa-associated lymphoid tissue, contributing to immune surveillance and immunomodulation. To explain the unexpected transport of immune complexes in face of the large excess of free SIgA in secretions, we postulated that SIgA experiences structural modifications upon antigen binding. To address this issue, we associated specific polymeric IgA and SIgA with antigens of various sizes and complexity (protein toxin, virus, bacterium). Compared with free antibody, we found modified sensitivity of the three antigens assayed after exposure to proteases from intestinal washes. Antigen binding further impacted on the immunoreactivity toward polyclonal antisera specific for the heavy and light chains of the antibody, as a function of the antigen size. These conformational changes promoted binding of the SIgA-based immune complex compared with the free antibody to cellular receptors (FcαRI and polymeric immunoglobulin receptor) expressed on the surface of premyelocytic and epithelial cell lines. These data reveal that antigen recognition by SIgA triggers structural changes that confer to the antibody enhanced receptor binding properties. This identifies immune complexes as particular structural entities integrating the presence of bound antigens and adds to the known function of immune exclusion and mucus anchoring by SIgA.  相似文献   

14.
The oral mucosal pellicle is a layer of absorbed salivary proteins, including secretory IgA (SIgA), bound onto the surface of oral epithelial cells and is a useful model for all mucosal surfaces. The mechanism by which SIgA concentrates on mucosal surfaces is examined here using a tissue culture model with real saliva. Salivary mucins may initiate the formation of the mucosal pellicle through interactions with membrane-bound mucins on cells. Further protein interactions with mucins may then trigger binding of other pellicle proteins. HT29 colon cell lines, which when treated with methotrexate (HT29-MTX) produce a gel-forming mucin, were used to determine the importance of these mucin-mucin interactions. Binding of SIgA to cells was then compared using whole mouth saliva, parotid (mucin-free) saliva and a source of purified SIgA. Greatest SIgA binding occurred when WMS was incubated with HT29-MTX expressing mucus. Since salivary MUC5B was only able to bind to cells which produced mucus and purified SIgA showed little binding to the same cells we conclude that most SIgA binding to mucosal cells occurs because SIgA forms complexes with salivary mucins which then bind to cells expressing membrane-bound mucins. This work highlights the importance of mucin interactions in the development of the mucosal pellicle.  相似文献   

15.
A homologue of a free secretory component (SC) was identified in chicken intestinal secretion by criteria based on its antigenic relationship with intestinal secretory IgA (SIgA), molecular size, sugar content, and electrophoretic mobility, as well as its elution characteristic from ion-exchange chromatography. SC was obtained in a form free from IgA from the intestinal secretion by salting out and DEAE chromatography, followed by density ultracentrifuguation or Sephadex G-200 gel-filtration. However, the free SC revealed some antigenic deficiency when compared to bound SC of intestinal SIgA and showed a failure of binding to serum-type-polymeric IgA of biliary IgA in vitro. Several kinds of chicken external secretions were examined for detection of SC and immunoglobulin classes of IgG, IgA, and IgM. In spite of the wide distribution of immunoglobulins in the external secretions, SC antigen could be detected only in intestinal secretion. Most IgA in the secretions had a molecular structure of a tetramer of serum-type IgA, lacking in SC and having 17S to 18.5S and 600,000 to 700,000 daltons. On the other hand, IgA in the intestinal secretion showed close similarity to the mammalian SIgA, associated with SC and having 11.2S and 350,000 daltons. Presence of antibody activity in the intestinal IgA to avian reovirus was confirmed by plaque reduction tests.  相似文献   

16.
M cells represent the primary route by which mucosal Ags are transported across the intestinal epithelium and delivered to underlying gut-associated lymphoid tissues. In rodents and rabbits, Peyer's patch M cells selectively bind and endocytose secretory IgA (SIgA) Abs. Neither the nature of the M cell IgR nor the domains of SIgA involved in this interaction are known. Using a mouse ligated ileal loop assay, we found that monoclonal IgA Abs with or without secretory component, but not IgG or IgM Abs, bound to the apical surfaces of Peyer's patch M cells, indicating that the receptor is specific for the IgA isotype. Human serum IgA and colostral SIgA also bound to mouse M cells. The asialoglycoprotein receptor or other lectin-like receptors were not detected on the apical surfaces of M cells. We used recombinant human IgA1 and human IgA2 Abs and domain swapped IgA/IgG chimeras to determine that both domains Calpha1 and Calpha2 are required for IgA adherence to mouse Peyer's patch M cells. This distinguishes the M cell IgA receptor from CD89 (FcalphaI), which binds domains Calpha2-Calpha3. Finally, we observed by immunofluorescence microscopy that some M cells in the human ileum are coated with IgA. Together these data suggest that mouse, and possibly human, M cells express an IgA-specific receptor on their apical surfaces that mediates the transepithelial transport of SIgA from the intestinal lumen to underlying gut-associated organized lymphoid tissues.  相似文献   

17.
Secretory immunoglobulin (Ig) A is a decameric Ig composed of four alpha-heavy chains, four light chains, a joining (J) chain, and a secretory component (SC). The heavy and light chains form two tetrameric Ig molecules that are joined by the J chain and associate with the SC. Expression of a secretory monoclonal antibody in tobacco (Nicotiana tabacum) has been described: this molecule (secretory IgA/G [SIgA/G]) was modified by having a hybrid heavy chain sequence consisting of IgG gamma-chain domains linked to constant region domains of an IgA alpha-chain. In tobacco, about 70% of the protein assembles to its final, decameric structure. We show here that SIgA/G assembly and secretion are slow, with only approximately 10% of the newly synthesized molecules being secreted after 24 h and the bulk probably remaining in the endoplasmic reticulum. In addition, a proportion of SIgA/G is delivered to the vacuole as at least partially assembled molecules by a process that is blocked by the membrane traffic inhibitor brefeldin A. Neither the SC nor the J chain are responsible for vacuolar delivery, because IgA/G tetramers have the same fate. The parent IgG tetrameric molecule, containing wild-type gamma-heavy chains, is instead secreted rapidly and efficiently. This strongly suggests that intracellular retention and vacuolar delivery of IgA/G is due to the alpha-domains present in the hybrid alpha/gamma-heavy chains and indicates that the plant secretory system may partially deliver to the vacuole recombinant proteins expected to be secreted.  相似文献   

18.
Intestinal microfold (M) cells possess a high transcytosis capacity and are able to transport a broad range of materials including particulate antigens, soluble macromolecules, and pathogens from the intestinal lumen to inductive sites of the mucosal immune system. M cells are also the primary pathway for delivery of secretory IgA (SIgA) to the gut-associated lymphoid tissue. However, although the consequences of SIgA uptake by M cells are now well known and described, the mechanisms whereby SIgA is selectively bound and taken up remain poorly understood. Here we first demonstrate that both the Cα1 region and glycosylation, more particularly sialic acid residues, are involved in M cell–mediated reverse transcytosis. Second, we found that SIgA is taken up by M cells via the Dectin-1 receptor, with the possible involvement of Siglec-5 acting as a co-receptor. Third, we establish that transcytosed SIgA is taken up by mucosal CX3CR1+ dendritic cells (DCs) via the DC-SIGN receptor. Fourth, we show that mucosal and systemic antibody responses against the HIV p24-SIgA complexes administered orally is strictly dependent on the expression of Dectin-1. Having deciphered the mechanisms leading to specific targeting of SIgA-based Ag complexes paves the way to the use of such a vehicle for mucosal vaccination against various infectious diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号