首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. Bilirubin-IXalpha monoglucuronide was the predominant bilirubin in biles and meconiums of newborn humans and rhesus monkeys. Rhesus-monkey baby biles contained slightly more diglucuronide than did human baby biles. 2. Bilrubin-IXalpha glucoside, bilirubin-IXalpha xyloside and bilirubin-IXbeta were also constituents of human and rhesus-monkey baby biles and meconiums. Bilirubin-IXalpha glucuronide glucoside was present in human and rhesus-monkey baby biles but not in meconiums. The identity of the bilirubins was confirmed by u.v.-visible and mass spectroscopy of the azodipyrroles obtained by treating the bilirubins with diazotized ethyl anthranilate. The resulting azodipyrroles were identical with the corresponding azodipyrroles obtained from human adult biles and also from reduced isomers of biliverdin. 3. Bilirubin-IXbeta was present in much higher proportions in the extracts of meconiums than in the extracts of biles from the same babies. 4. Oxidation of bilirubins to biliverdins occurs in utero to a small but undetermined extent. The resulting green pigments were present in meconiums collected from the lower small and large intestines of newborn babies and rhesus monkeys. 5. Butanol extracted most of the bilirubins present in biles. This modified method proved to be quick and easy. Little hydrolysis of bilirubins took place during extraction or separation by t.l.c.  相似文献   

2.
1. A densitometric method has been developed for the quantification of azodipyrroles derived from dog bile pigments treated with diazotized ethyl anthranilate. 2. This method was used to estimate the bilirubins in bile and meconium from foetuses of 14-36 weeks gestation. 3. The proportion of the bilirubins in foetal bile changed during gestation. (a) No bile pigments were found until 14 weeks. (b) Between 14 and 15 weeks bilirubin-IX beta was the only bile pigment detected. (c) At 16-17 weeks some unconjugated bilirubin-IX alpha was found in the bile, but up to 20 weeks bilirubin-IX beta was the predominant bilirubin in the bile. (d) At about 20 weeks glucose, xylose, and an unidentified bilirubin-IX alpha monoconjugate were found in the bile. (e) Between 20 and 23 weeks bilirubin-IX alpha glucuronide appeared in the bile. (f) At 30 weeks monoconjugates of bilirubin-IX alpha were the predominant bilirubins in the bile. (g) Only in full-term foetuses was bilirubin-IX alpha monoglucuronide the major bilirubin derivative.  相似文献   

3.
1. A system for separation of bile pigments by t.l.c. and for their structure elucidation is presented. Separated bile pigments are characterized by t.l.c. of derived dipyrrolic azopigments. 2. At the tetrapyrrolic stage hydrolysis in strongly alkaline medium followed by t.l.c. demonstrates the presence of bilirubin-IIIalpha, -IXalpha and -XIIIalpha and allows assessment of their relative amounts. 3. Most structural information is derived from analysis of dipyrrolic azopigments. Such derivatives, obtained by treatment of separated bile pigments with diazotized ethyl anthranilate, were separated and purified by t.l.c. Micro methods showed (a) the nature of the dipyrrolic aglycone, (b) the nature of the bonds connecting aglycone to a conjugating group, (c) the ratio of vinyl/isovinyl isomers present in the aglycone and, (d) the nature of the conjugating groups (by suitable derivative formation and t.l.c. with reference to known compounds). 4. In bile of normal dogs at least 20 tetrapyrrolic, diazo-positive bile pigments could be recognized. Except for two pigments the tetrapyrrolic nucleus corresponded predominantly to bilirubin-IXalpha. All conjugated pigments had their conjugating groups connected in ester linkage to the tetrapyrrolic aglycone, Apart from bilirubin-IXalpha, monoconjugates and homogeneous and mixed diconjugates of bilirubin were demonstrated; conjugating groups of major importance were xylose, glucose and glucuronic acid. 5. Bilirubin isomer determination on native bile and isolated bile pigments, and dipyrrole-exchange assays with [14C8]bilirubin indicated (a) that the conjugates pre-exist in bile, and (b) that no significant dipyrrole exchange occurs during isolation of the pigments.  相似文献   

4.
1. Conjugated bile pigments, separated in two fractions by semi-quantitative t.l.c. performed on silicic acid with phenol/water as the developing solvent, were treated with diazotized ethyl anthranilate. Resulting dipyrrylazo derivatives were analysed by quantitative t.l.c. 2. The tentative structure elucidation of tetrapyrrolic bilirubin conjugates and semi-quantitative evaluation of rat bile, post-obstructive human bile and dog bile composition is presented. 3. Homogeneous and mixed hexuronic acid diesters of bilirubin containing glucuronic acid constitute 51% of the total conjugates in normal rat bile, 45% of those in human post-obstructive bile and 38% of those in obstructed rat biles. 4. Monoconjugated bilirubin amounts to 33% of total conjugated bile pigments in normal rat bile, and 17 and 14% in post-obstructive hepatic human bile and gall-bladder bile of dog respectively. After loading with unconjugated bilirubin a greater amount of monoconjugates (56%) occur in the rat bile, whereas bilirubin diglucuronide excretion is decreased (34%). 5. In gall-bladder bile of normal dog, 40% of glucose-containing diconjugates, 32% of homogeneous and/or mixed hexuronic acid (mainly glucuronic acid) diesters of bilirubin and 14% of xylose-containing diconjugates are estimated. 6. Increased amounts of bilirubin conjugates, including some with unidentified uronic acid groups, were observed in cholestatic rat biles and quantities of conjugates with glucuronic acid were decreased.  相似文献   

5.
We describe a facile and sensitive reverse-phase h.p.l.c. method for analytical separation of biliary bile pigments and direct quantification of unconjugated bilirubin (UCB) and its monoglucuronide (BMG) and diglucuronide (BDG) conjugates in bile. The method can be 'scaled up' for preparative isolation of pure BDG and BMG from pigment-enriched biles. We employed an Altex ultrasphere ODS column in the preparative steps and a Waters mu-Bondapak C18 column in the separatory and analytical procedures. Bile pigments were eluted with ammonium acetate buffer, pH 4.5, and a 20 min linear gradient of 60-100% (v/v) methanol at a flow rate of 2.0 ml/min for the preparative separations and 1.0 ml/min for the analytical separations. Bile pigments were eluted in order of decreasing polarity (glucuronide greater than glucose greater than xylose conjugates greater than UCB) and were chemically identified by t.l.c. of their respective ethyl anthranilate azo derivatives. Quantification of UCB was carried out by using a standard curve relating a range of h.p.l.c. integrated peak areas to concentrations of pure crystalline UCB. A pure crystalline ethyl anthranilate azo derivative of UCB (AZO . UCB) was employed as a single h.p.l.c. reference standard for quantification of BMG and BDG. We demonstrate that: separation and quantification of biliary bile pigments are rapid (approximately 25 min); bile pigment concentrations ranging from 1-500 microM can be determined 'on line' by using 5 microliters of bile without sample pretreatment; bilirubin conjugates can be obtained preparatively in milligram quantities without degradation or contamination by other components of bile. H.p.l.c. analyses of a series of mammalian biles show that biliary UCB concentrations generally range from 1 to 17 microM. These values are considerably lower than those estimated previously by t.l.c. BMG is the predominant, if not exclusive, bilirubin conjugate in the biles of a number of rodents (guinea pig, hamster, mouse, prairie dog) that are experimental models of both pigment and cholesterol gallstone formation. Conjugated bilirubins in the biles of other animals (human, monkey, pony, cat, rat and dog) are chemically more diverse and include mono-, di- and mixed disconjugates of glucuronic acid, xylose and glucose in proportions that give distinct patterns for each species.  相似文献   

6.
An accurate and sensitive method was developed for the complete separation of the native tetrapyrroles, such as bilirubin and its mono- and di-conjugates of glucuronic acid, glucose and xylose, by ion-pair reversed-phase high-pressure liquid chromatography. The application of this method was demonstrated by the analysis of bile pigments in human bile and urine, and the method also makes it possible to estimate very low UDP-glucuronyltransferase activity, such as is found in the human foetal and neonatal liver.  相似文献   

7.
The chemical structure of the major conjugate of bilirubin was unequivocally elucidated by structural analysis. The conjugated bilirubins were first separated from the lipid components of human duodenal aspirates or dog gall-bladder bile, and then resolved by t.l.c. into a series of tetrapyrroles. The major tetrapyrrole was then converted into its more stable dipyrrolic azo derivative for further analysis. The conjugated moiety of the azopigment was characterized after methanolysis with sodium methoxide. This reaction yields two types of product, those soluble in water and those soluble in organic solvents. The organic-soluble fraction was shown by t.l.c. and mass spectrometry to contain the methyl esters of the dipyrrolic azo derivatives of bilirubin. The water-soluble materials were analysed by enzymic procedures, t.l.c., n.m.r. spectrometry and combined g.l.c. and mass spectrometry. This analysis showed that the only water-soluble product resulting from the methanolysis was glucuronic acid. The structure was identical with that of pure standards, on both mass spectrometry and n.m.r. spectroscopy. No contaminating moieties were found. Quantitative measurement indicated that the glucuronic acid had been released in a 1:1 molar ratio with the resulting methyl esters of the dipyrrolic azo derivatives of bilirubin. This unequivocally establishes bilirubin diglucuronide as the major pigment present in bile. Past problems with identification of bilirubin diglucuronide were shown to originate from procedures which resulted in incomplete separation and isolation of the azopigments of the conjugated bilirubins, owing to contamination by biliary lipids.  相似文献   

8.
The UDP glycosyltransferases (UGT) attach sugar residues to small lipophilic chemicals to alter their biological properties and enhance elimination. Of the four families present in mammals, two families, UGT1 and UGT2, use UDP glucuronic acid to glucuronidate bilirubin, steroids, bile acids, drugs, and many other endogenous chemicals and xenobiotics. UGT8, in contrast, uses UDP galactose to galactosidate ceramide, an important step in the synthesis of glycosphingolipids and cerebrosides. The function of the fourth family, UGT3, is unknown. Here we report the cloning, expression, and functional characterization of UGT3A1. This enzyme catalyzes the transfer of N-acetylglucosamine from UDP N-acetylglucosamine to ursodeoxycholic acid (3alpha, 7beta-dihydroxy-5beta-cholanoic acid). The enzyme uses ursodeoxycholic acid and UDP N-acetylglucosamine in preference to other primary and secondary bile acids, and other UDP sugars such as UDP glucose, UDP glucuronic acid, UDP galactose, and UDP xylose. In addition to ursodeoxycholic acid, UGT3A1 has activity toward 17alpha-estradiol, 17beta-estradiol, and the prototypic substrates of the UGT1 and UGT2 forms, 4-nitrophenol and 1-naphthol. A polymorphic UGT3A1 variant containing a C121G substitution was catalytically inactive. UGT3A1 is found in the liver and kidney, and to a lesser, in the gastrointestinal tract. These data describe the first characterization of a member of the UGT3 family. Its activity and distribution suggest that UGT3A1 may have an important role in the metabolism and elimination of ursodeoxycholic acid in therapies for ameliorating the symptoms of cholestasis or for dissolving gallstones.  相似文献   

9.
17beta-[6,7- 3H]Estradiol was incubated with adult human liver slices in Krebs-Ringer phosphate buffer containing glucose. Of the identified 3H recovered, 51-76 percent consisted of estrone-3-sulfate (E13S) and 17 beta-estradiol-3-sulfate (E23S). E13S was the main metabolite and was found in both tissue and medium. E23S was present only in the medium. Minor amounts of estrogen glucuronides were formed. When a human liver homogenate was incubated with [3H]E2 in a medium fortified with excess uridine diphosphate glucuronic acid only some 4 percent of conjugation with glucuronic acid was observed. It is suggested that human liver favors sulfurylation as the conjugating mechanism for E2 and E1.  相似文献   

10.
The bilrubin-IXalpha conjugates in bile and the activities of bilirubin-IX alpha--UDP-glycosyltransferases in liver and kidney were determined for ten species of mammals and for the chicken. 1. In the mammalian species, bilirubin-IX alpha glucuronide was the predominant bile pigment. Excretion of neutral glycosides was unimportant, except in the cat, the mouse, the rabbit and the dog, where glucose and xylose represented 12--41% of total conjugating groups bound to bilirubin-IX alpha. In chicken bile, glucoside and glucuronide conjugates were of equal importance. They probably represent only a small fraction of the total bile pigment. 2. The transferase activities in liver showed pronounced species variation. This was also apparent with regard to activation by digitonin, pH optimum and relative activities of transferases acting on either UDP-glucuronic acid or neutral UDP-sugars. 3. Man, the dog, the cat and the rat excrete bilirubin-IX alpha largely as diconjugated derivatives. In general, diconjugated bilirubin-IX alpha could also be synthesized in vitro with liver homogenate, bilirubin-IX alpha and UDP-sugar. In contrast, for the other species examined, bilirubin pigments consisted predominantly of monoconjugated bilirubin-IX alpha. Synthesis in vitro with UDP-glucuronic acid, UDP-glucose or UDP-xylose as the sugar donor led exclusively to the formation of monoconjugated bilirubin-IX alpha. 4. The transferase activities in the kidney were restricted to the cortex and were important only for the rat and the dog. No activity at all could be detected for several species, including man. 5. Comparison of the transferase activities in liver with reported values of the maximal rate of excretion in bile suggests a close linkage between conjugation and biliary secretion of bilirubin-IX alpha.  相似文献   

11.
Excretion in dog bile of glucose and xylose conjugates of bilirubin   总被引:14,自引:14,他引:0       下载免费PDF全文
1. T.l.c. with neutral solvent systems of ethyl anthranilate azopigments derived from bile of man, dog and rat revealed pronounced species variation. The less polar components (α-group) could be separated conveniently by development with chloroform–methanol (17:3, v/v). 2. The azopigment material derived from gallbladder bile of dog contained about 10% of azobilirubin β-d-monoxyloside (azopigment α2) and 30% of azobilirubin β-d-monoglucoside (azopigment α3). The sugar moieties were identified by t.l.c. with acidic, neutral and basic solvent systems and by anion-exchange column chromatography of their boric acid complexes. Treatment of the purified azopigments with ammonia vapour led to the formation of the amide of azobilirubin, indicating that both pigments are ester glycosides. The β-d configuration was demonstrated by enzymic studies with emulsin (an adequate source of β-glucosidase activity) and with Mylase-P (an adequate source of β-glucosidase and β-xylosidase activities). 3. Hydrolysis studies with model substrates and with the α2- and α3-azopigments suggested that in Mylase-P the β-glucosidase and β-xylosidase activities reside in separate enzymes. 4. Compared with the accepted conjugation with glucuronic acid as a major route of detoxication in mammals, the detection of large amounts of xylose and glucose conjugates of bilirubin in dog bile suggests that the underlying biosynthetic pathways may be important alternative routes of detoxication.  相似文献   

12.
Aniline azopigments B4, B5 and B6, derived from conjugates of bilirubin-IX alpha in human bile, and previously characterized as disaccharidic esters [Kuenzle (1970) Biochem. J. 119, 387-394 and 411-435], were analysed by using t.l.c. and mass spectrometry. The compounds were identified as partially separated mixtures of 2-, 3- and 4-O-acylglucuronide positional isomers. The 1-O-acylglucuronide was not detected in the mixtures and was the only compound hydrolysed with beta-glucuronidase. Further scrutiny of structural assignments made by Kuenzle [(1970) Biochem. J. 119, 411-435] led to identification of the lactone and hexuronic acid derivatives that were obtained from azopigment B5 along with glucuronolactone and glucuronic acid. A branched-chain structure, i.e. 3-C-hydroxy-methyl-D-riburonic acid, was assigned previously, but the derivatives have now been identified as various incompletely silylated forms of glucuronolactone and glucuronic acid. Several trimethylsilyl derivatives glucuronolactone were isolated and characterized by n.m.r. and mass spectrometry.  相似文献   

13.
Resonance Raman spectra of bilirubins IX alpha, III alpha, and XIII alpha and mesobilirubin XIII alpha in alkaline aqueous and chloroform solutions are reported. Partial band assignments of bilirubin IX alpha are proposed. The model compounds confirm assignments of bands of the Raman spectrum of bilirubin IX alpha to each of the two different pyrromethenones. Resonance Raman spectra of mesobilirubin IV alpha, vinylneoxanthobilirubinic acid, and vinylisoneoxanthobilirubinic acid in alkaline aqueous solution and of the tetra-n-butylammonium salt of bilirubin IX alpha are used to define markers for the presence or absence of internal hydrogen bonds. Interaction of bilirubin dianion and sphingomyelin liposomes is studied. The Raman evidence suggests that in the bilirubin dianion/liposome complex the intramolecular hydrogen bonds between the propionate groups and the lactam NH/CO are ruptured. It is proposed that in the complex the bilirubin propionates form ion pairs with the quaternary ammonium ion of the choline moiety of sphingomyelin.  相似文献   

14.
O-linked sugar chains with xylose as a reducing end linked to human urinary soluble thrombomodulin were studied. Sugar chains were liberated by hydrazinolysis followed by N-acetylation and tagged with 2-aminopyridine. Two fractions containing pyridylaminated Xyl as a reducing end were collected. Their structures were determined by partial acid hydrolysis, two-dimensional sugar mapping combined with exoglycosidase digestions, methylation analysis, mass spectrometry, and NMR as SO4-3GlcAbeta1-3Galbeta1-3(+/-Siaalpha2-6)Galbeta1+ ++-4Xyl. These sugar chains could bind to an HNK-1 monoclonal antibody. This is believed to be the first example of a proteoglycan linkage tetrasaccharide with glucuronic acid 3-sulfate and sialic acid.  相似文献   

15.
Mature seeds of Tropaeolum majus L. contain the cell wall polysaccharide xyloglucan (amyloid), protein and lipid as storage substances. The transitory occurrence of starch during the process of seed development could be substantiated.[U-14C]-labelled xylose, glucose and glucuronic acid were fed to ripening seeds and the incorporation of radioactivity into xyloglucan, starch and the sugar nucleotide fraction of the cotyledons was determined. The results indicate that exogenous supplied xylose is not incorporated directly into xyloglucan, but is transformed to glucose before incorporation into xyloglucan and starch. Radioactivity from glucuronic acid was predominantly found in the xylose moiety of xyloglucan. Incubation of seeds with [6-14C]-labelled glucose resulted in an incorporation of labelled hexoses into amyloid and starch, whereas xylose residues of amyloid remained unlabelled.Abbreviations p.a. post anthesis - UDP uridine 5-diphosphate - GDP guanosine 5-diphosphate - TLC thin layer chromatography - HPLC high pressure liquid chromatography  相似文献   

16.
The glucuronidation of bile acids is an established metabolic pathway in different human organs. The hepatic and renal UDP-glucuronyltransferase activities vary according to the bile acids concerned. Thus, hyodeoxycholic acid is clearly differentiated from other bile acids by its high rate of glucuronidation and elevated urinary excretion in man. To determine whether such in vivo observations are related to variations in bile acid structure, human hepatic and renal microsomes were prepared and time courses of bile acid glucuronidation measured with the bile acids possessing hydroxyl groups in different positions. Eleven [24-14C]bile acids were chosen or synthesized in respect of their specific combination of hydroxyl and oxo groups at the 3, 6, 7 and 12 positions and of their alpha or beta hydroxyl configurations. The results clearly demonstrate that bile acids with an hydroxyl group in the 6 alpha position underwent a high degree of glucuronidation. Apparent kinetic Km and Vmax values for UDP-glucuronyltransferase activities ranged over 78-66 microM and 1.8-3.3 nmol.min-1.mg-1 protein in the liver and over 190-19 microM and 0.5-9.2 nmol.min-1.mg-1 protein in the kidney. All the other bile acids tested, each of which possessed a 3 alpha-hydroxyl group and whose second or third hydroxyl was bound at the 6 beta, 7 or 12 positions, were glucuronidated to a degree far below that of the 6 alpha-hydroxylated bile acids. We conclude that an active and highly specific UDP-glucuronyltransferase activity for 6 alpha-hydroxylated bile acids exists in human liver and kidneys. Moreover, this activity results in the linkage of glucuronic acid to the 6 alpha-hydroxyl group and not to the usual 3 alpha-hydroxyl group of bile acids.  相似文献   

17.
A homogeneous sulfated heterorhamnan was obtained by aqueous extraction, then by ultrafiltration from the green seaweed Gayralia oxysperma. Besides α-l-rhamnose it contains glucuronic and galacturonic acids, xylose and glucose. The structure was established by methylation analyses of the carboxyl-reduced, carboxyl-reduced/desulfated, carboxyl-reduced/Smith-degraded, and carboxyl-reduced/Smith-degraded/desulfated products and 1D, 2D NMR spectroscopy analyses. The heterorhamnan backbone is constituted by 3- and 2-linked rhamnosyl units (1.00:0.80), the latter being ∼50% substituted at C-3 by side chains containing 2-sulfated glucuronic and galacturonic acids and xylosyl units. The 3- and 2-linked rhamnosyl units are unsulfated (20%), disulfated (16%), and mostly monosulfated at C-2 (27%) and C-4 (37%). The branched and sulfated heterorhamnan had high and specific activity against herpes simplex virus.  相似文献   

18.
UDP-glucuronosyltransferases (UGTs) are a major family of enzymes catalyzing the transfer of glucuronic acid to a range of endogenous compounds and xenobiotics facilitating their elimination in either urine or bile. Although the dog is commonly used in drug metabolism studies, relatively little is known about the expression and activity of UGTs in this species. This report describes the molecular cloning and functional characterization of the first dog UGT, UGT1A6. The cloned protein is composed of 528 amino acids with the variable region demonstrating a 67-72% identity with the variable regions of mouse, rat, and human UGT1A6. The enzyme expressed stably in V79 cells predominantly catalyzed the glucuronidation of simple, planar phenols (e.g., for 1-naphthol, K(m) = 41 microM, V(max) = 0.07 nmol/min/mg protein), a class of compounds extensively glucuronidated by human UGT1A6. Based on sequence homology and common catalytic activity, this dog UGT1A protein appears to be the canine orthologue of human UGT1A6.  相似文献   

19.
1. In aqueous solution above pH7 bilirubin-IXalpha 1-O-acylglucuronide rapidly isomerizes to the non-C-1 glucuronides by sequential migration of the bilirubin acyl group from position 1 to positions 2, 3 and 4 of the sugar moiety. The transformations are enhanced by increasing the pH. Compared with the rates at 37 degrees C the transformations are rather slow at 0 degrees C. Virtually complete inhibition is observed at values below pH6. The isomerization at 25 degrees C and pH 7.4 is not affected by the presence in the solutions of a molar excess of human serum albumin. 2. Isomerization in bile kept at 37 degrees C at pH7.7-7.8 is probably non-enzymic, as the rates of change are similar to those observed under comparable conditions for aqueous solutions of glucuronides of bilirubin-1Xalpha and of azodipyrrole. 3. Analysis without delay of normal biles of man and rats collected at 0 degrees C over a maximum period of 10 min shows that the bilirubin-IXalpha mono- and di-glucuronides consist exclusively of the 1-O-acyl isomers. 4. The mixtures of the four positional isomers of bilirubin-IXalpha glucuronide found in freshly collected biles of man and rats with cholestasis probably originate from initially synthesized 1-O-acylglucuronide by the same mechanism of sequential migration as has been observed in aqueous solutions of conjugated bilirubin-IXalpha.  相似文献   

20.
The Hindak strain of a Cryptomonas species (Cryptophyceae) produces extracellular polysaccharides. Because there is no information on the structure of these compounds in the Cryptophyceae we conducted structural studies. Gas–liquid chromatographic analyses showed that the polysaccharide is composed of fucose, rhamnose, xylose, mannose, glucose, galactose, galacturonic acid, glucuronic acid, and traces of 3-O-methyl galactose. The polysaccharide was separated into two subtractions by ion-exchange chromatography. Fraction A consisted mainly of 1,3-linked galactose units and 1,4-linked galacturonic acid. Unlike fraction B, fraction A did not have xylose, 3-O-methyl galactose, or glucuronic acid. Also, its degree of branching was low compared to that of fraction B. Only traces of sulfate were present infraction A, but fraction B was 10–15% sulfated. Protein was approximately 1% in both fractions. These polysaccharides appear to be a novel type of polymer in algae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号