首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cytochrome c release and mitochondrial permeability transition (MPT) play important roles in apoptosis. In this study, we found that selenium, an essential trace element, induced mitochondrial membrane potential (Delta psi(m)) loss, swelling, and cytochrome c release in isolated mitochondria. All of the above observations were blocked by cyclosporin A (CsA), which is a specific inhibitor to permeability transition pore (PTP), indicating selenite-induced mitochondrial changes were mediated through the opening of PTP. In physiological concentration, selenite could induce mitochondria at low-conductance PTP 'open' probability, which is correlated to regulate the physiological function, whereas in toxic concentration, induce mitochondria at high-conductance PTP 'open' probability and rapidly undergo a process of osmotic swelling following diffusion toward matrix as for inducer (Ca(2+)/P(i)). Selenite also induced other mitochondrial marker enzymes including monoamine oxidase (MAO) and mitochondria aspartate aminotransferase (mAST). Oligomycin inhibited the selenite-induced cytochrome c release and Delta psi(m) loss, showing that F(0)F(1)-ATPase was important in selenite or Ca(2+)/P(i)-induced MPT.  相似文献   

2.
Isolated mitochondria may undergo uncoupling, and in presence of Ca(2+) at different conditions, a mitochondrial permeability transition (MPT) linked to protein thiol oxidation, and demonstrated by CsA-sensitive mitochondrial swelling; these processes may cause cell death either by necrosis or by apoptosis. Isocoumarins isolated from the Brazilian plant Paepalanthus bromelioides (Eriocaulaceae) paepalantine (9,10-dihydroxy-5,7-dimethoxy-1H-naptho(2,3c)pyran-1-one), 8,8'-paepalantine dimer, and vioxanthin were assayed at 1-50 microM on isolated rat liver mitochondria, for respiration, MPT, protein thiol oxidation, and interaction with the mitochondrial membrane using 1,6-diphenyl-1,3,5-hexatriene (DPH). The isocoumarins did not significantly affect state 3 respiration of succinate-energized mitochondria; they did however, stimulate 4 respiration, indicating mitochondrial uncoupling. Induction of MPT and protein thiol oxidation were assessed in succinate-energized mitochondria exposed to 10 microM Ca(2+); inhibition of these processes was assessed in non-energized organelles in the presence of 300 microM t-butyl hydroperoxide plus 500 microM Ca(2+). Only paepalantine was an effective MPT/protein thiol oxidation inducer, also releasing cytochrome c from mitochondria; the protein thiol oxidation, unlike mitochondrial swelling, was neither inhibited by CsA nor dependent on the presence of Ca(2+). Vioxanthin was an effective inhibitor of MPT/protein thiol oxidation. All isocoumarins inserted deeply into the mitochondrial membrane, but only paepalantine dimer and vioxantin decreased the membrane's fluidity. A direct reaction with mitochondrial membrane protein thiols, involving an oxidation of these groups, is proposed to account for MPT induction by paepalantine, while a restriction of oxidation of these same thiol groups imposed by the decrease of membrane fluidity, is proposed to account for MPT inhibition by vioxanthin.  相似文献   

3.
The objective of the present study was to assess the capacity of nonsynaptic brain mitochondria to accumulate Ca2+ when subjected to repeated Ca2+ loads, and to explore under what conditions a mitochondrial permeability transition (MPT) pore is assembled. The effects of cyclosporin A (CsA) on Ca2+ accumulation and MPT pore assembly were compared with those obtained with ubiquinone 0 (Ubo), a quinone that is a stronger MPT blocker than CsA, when tested on muscle and liver mitochondria. When suspended in a solution containing phosphate (2 mM) and Mg2+ (1 mM), but no ATP or ADP, the brain mitochondria had a limited capacity to accumulate Ca2+ (210 nmol/mg of mitochondrial protein). Furthermore, when repeated Ca2+ pulses (40 nmol/mg of protein each) saturated the uptake system, the mitochondria failed to release the Ca2+ accumulated. However, in each instance, the first Ca2+ pulse was accompanied by a moderate release of Ca2+, a release that was not observed during the subsequent pulses. The initial release was accompanied by a relatively marked depolarization, and by swelling, as assessed by light-scattering measurements. However, as the swelling was <50% of that observed following addition of alamethicin, it is concluded that the first Ca2+ pulse gives rise to an MPT in a subfraction of the mitochondrial population. CsA, an avid blocker of the MPT pore, only marginally increased the Ca(2+)-sequestrating capacity of the mitochondria. However, CsA eliminated the Ca2+ release accompanying the first Ca2+ pulse. The effects of CsA were shared by Ubo, but when the concentration of Ubo exceeded 20 microM, it proved toxic. The results thus suggest that brain mitochondria are different from those derived from a variety of other sources. The major difference is that a fraction of the brain mitochondria, studied presently, depolarized and showed signs of an MPT. This fraction, but not the remaining ones, contributed to the chemically and electron microscopically verified mitochondrial swelling.  相似文献   

4.
Opening of permeability transition (PT) pores in the mitochondrial inner membrane causes the mitochondrial permeability transition (MPT) and leads to mitochondrial swelling, membrane depolarization, and release of intramitochondrial solutes. Here, our aim was to develop high-throughput assays using a fluorescence plate reader to screen potential inducers and blockers of the MPT. Isolated rat liver mitochondria (0.5 mg/ml) were incubated in multiwell plates with tetramethylrhodamine methyl ester (TMRM, 1 microM), a potential-indicating fluorophore, and Fluo-5N (1 microM), a low-affinity Ca(2+) indicator. Incubation led to mitochondrial polarization, as indicated by uncoupler-sensitive quenching of the red TMRM fluorescence. CaCl(2) (100 microM) addition led to ruthenium red-sensitive mitochondrial Ca(2+) uptake, as indicated by green Fluo-5N fluorescence. After Ca(2+) accumulation, mitochondria depolarized, released Ca(2+) into the medium, and began to swell. This swelling was monitored as a decrease in light absorbance at 620 nm. Swelling, depolarization, and Ca(2+) release were prevented by cyclosporin A (1 microM), confirming that these events represented the MPT. Measurements of Ca(2+), mitochondrial membrane potential, and swelling could be made independently from the same wells without cross interference, and all three signals could be read from every well of a 48-well plate in about 1 min. In other experiments, mitochondria were ester-loaded with carboxydichlorofluorescein (carboxy-DCF) during the isolation procedure. Release of carboxy-DCF after PT pore opening led to an unquenching of green carboxy-DCF fluorescence occurring simultaneously with swelling. By combining measurements of carboxy-DCF release, Ca(2+) uptake, membrane potential, and swelling, MPT inducers and blockers can be distinguished from uncouplers, respiratory inhibitors, and blockers of Ca(2+) uptake. This high-throughput multiwell assay is amenable for screening panels of compounds for their ability to promote or block the MPT.  相似文献   

5.
Regression of the tadpole tail through muscule cell apoptosis is one of the most spectacular events in amphibian metamorphosis. Accumulated evidence has shown that mitochondrial membrane permeability transition (MPT) plays a crucial role in apoptosis. Previously we reported that cyclosporin A (CsA) suppressed 3,5,3'-triiodothyronine (T(3))-induced mitochondrial swelling, which was coupled with cytochrome c (Cyt.c) release through MPT [Comp. Biochem. Phys. 130 (2001) 411-418]. To further clarify the mechanism of tadpole metamorphosis, the present study investigates the effect of CsA on T(3) induced tadpole tail shortening. A low concentration of T(3) (5 x 10(-8) M) was found to induce a shortening of stage X Rana rugosa tadpole tails, accompanied by an increase in caspase-3- and -9 like protease activity, as well as an increase in DNA-fragmentation and ladder formation, while CsA was seen to suppress the effects of T(3). The stage X tadpole tail was found to express Bax mRNA and this expression was not affected by T(3) treatment. CsA, on the other hand, proved to have a slightly supressive effection on Bax expression. 20 microM T(3) as well as 50 microM Ca(2+) induced swelling in mitochondria isolated from the liver of R. rugosa resulting in the release of apoptosis related substances, and the released fraction activated cytosolic caspase-3 and -9 in the presence of dATP. This result indicated that Cyt.c might be released from mitochondria by treatment with T(3) through both direct and indirect action of T(3). From these results and other data it was concluded that mitochondrial MPT plays an important role in T(3)-induced apoptosis in the tadpole tail, resulting in tail shortening, and CsA was seen to suppress the effects of T(3).  相似文献   

6.
《BBA》2023,1864(1):148914
Mitochondrial permeability transition (MPT) is a phenomenon that the inner mitochondrial membrane (IMM) loses its selective permeability, leading to mitochondrial dysfunction and cell injury. Electrophysiological evidence indicates the presence of a mega-channel commonly called permeability transition pore (PTP) whose opening is responsible for MPT. However, the molecular identity of the PTP is still under intensive investigations and debates, although cyclophilin D that is inhibited by cyclosporine A (CsA) is the established regulatory component of the PTP. PTP can also open transiently and functions as a rapid mitochondrial Ca2+ releasing mechanism. Mitochondrial fission and fusion, the main components of mitochondrial dynamics, control the number and size of mitochondria, and have been shown to play a role in regulating MPT directly or indirectly. Studies by us and others have indicated the potential existence of a form of transient MPT that is insensitive to CsA. This “non-conventional” MPT is regulated by mitochondrial dynamics and may serve a protective role possibly by decreasing the susceptibility for a frequent or sustained PTP opening; hence, it may have a therapeutic value in many disease conditions involving MPT.  相似文献   

7.
Under stress conditions, mitochondria sense metabolic changes, e.g. in pH, cytoplasmic Ca(2+), energy status, and reactive oxygen species (ROS), and respond by induction of the permeability transition pore (PTP) and by releasing cytochrome c, thus initiating the programmed cell death (PCD) cascade in animal cells. In plant cells, the presence of all the components of the cascade has not yet been shown. In wheat (Triticum aestivum L.) root mitochondria, the onset of anoxia caused rapid dissipation of the inner membrane potential, initial shrinkage of the mitochondrial matrix and the release of previously accumulated Ca(2+). Ca(2+) uptake by mitochondria was dependent on the presence of inorganic phosphate. Treatment of mitochondria with high micromolar and millimolar Ca(2+) (but not Mg(2+)) concentrations induced high amplitude swelling, indicative of PTP opening. Alterations in mitochondrial volume were confirmed by transmission electron microscopy. Mitochondrial swelling was not sensitive to cyclosporin A (CsA)-an inhibitor of mammalian PTP. The release of cytochrome c was monitored under lack of oxygen. Anoxia alone failed to induce cytochrome c release from mitochondria. Oxygen deprivation and Ca(2+) ions together caused cytochrome c release in a CsA-insensitive manner. This process correlated positively with Ca(2+) concentration and required Ca(2+) localization in the mitochondrial matrix. Functional characteristics of wheat root mitochondria, such as membrane potential, Ca(2+) transport, swelling, and cytochrome c release under lack of oxygen are discussed in relation to PCD.  相似文献   

8.
The overexpression of Bax kills cells by a mechanism that depends on induction of the mitochondrial permeability transition (MPT) (Pastorino, J. G., Chen, S.-T., Tafani, M., Snyder, J. W., and Farber, J. L. (1998) J. Biol. Chem. 273, 7770-7775). In the present study, purified, recombinant Bax opened the mitochondrial permeability transition pore (PTP). Depending on its concentration, Bax had two distinct effects. At a concentration of 125 nM, Bax caused the release of the intermembranous proteins cytochrome c and adenylate kinase and the release from the matrix of sequestered calcein, effects prevented by the inhibitor of the PTP cyclosporin A (CSA). At this concentration of Bax, there was no detectable mitochondrial swelling or depolarization. These effects of low Bax concentrations are interpreted as the consequence of transient, non-synchronous activation of the PTP followed by a prompt recovery of mitochondrial integrity. By contrast, Bax concentrations between 250 nM and 1 microM caused a sustained opening of the PTP with consequent persistent mitochondrial swelling and deenergization (the MPT). CSA prevented the MPT induced by Bax. Increasing concentrations of calcium caused a greater proportion of the mitochondria to undergo the MPT in the presence of Bax. Importantly, two known mediators of apoptosis, ceramide and GD3 ganglioside, potentiated the induction by Bax of the MPT. The data imply that Bax mediates the opening of the mitochondrial PTP with the resultant release of cytochrome c from the intermembranous space.  相似文献   

9.
In addition to their critical function in energy metabolism, mitochondria contain a permeability transition pore, which is regulated by adenine nucleotides. We investigated conditions required for ATP to induce a permeability transition in mammalian mitochondria. Mitochondrial swelling associated with mitochondria permeability transition (MPT) was initiated by adding succinate to a rat liver mitochondrial suspension containing alloxan, a diabetogenic agent. If alloxan was added immediately with or 5 min after adding succinate, MPT was strikingly decreased. MPT induced by alloxan was inhibited by EGTA and several agents causing thiol oxidation, suggesting that alloxan leads to permeability transition through a mechanism dependent on Ca(2+) uptake and sulfhydryl oxidation. Antimycin A and cyanide, inhibitors of electron transfer, carbonyl cyanide m-chlorophenylhydrazone, and oligomycin all inhibited MPT. During incubation with succinate, alloxan depleted ATP in mitochondria after an initial transient increase. However, in a mitochondrial suspension containing EGTA, ATP significantly increased in the presence of alloxan to a level greater than that of the control. These results suggest the involvement of energized transport of Ca(2+) in the MPT initiation. Addition of exogenous ATP, however, did not trigger MPT in the presence of alloxan and had no effect on MPT induced by alloxan. We conclude that alloxan-induced MPT requires mitochondrial energization, oxidation of protein thiols, and matrix ATP to promote energized uptake of Ca(2+).  相似文献   

10.
Mitochondria can be induced by a variety of agents/conditions to undergo a permeability transition (MPT), which nonselectively increases the permeability of the inner membrane (i.m.) to small (<1500 Da) solutes. Prooxidants are generally considered to trigger the MPT, but some investigators suggest instead that prooxidants open a Ca(2+)-selective channel in the inner mitochondrial membrane and that the opening of this channel, when coupled with Ca(2+) cycling mediated by the Ca(2+) uniporter, leads ultimately to the observed increase in mitochondrial permeability [see, e.g., Schlegel et al. (1992) Biochem. J. 285, 65]. S. A. Novgorodov and T. I. Gudz [J. Bioenerg. Biomembr. (1996) 28, 139] propose that the i.m. contains a pore that, upon exposure to prooxidants, can open to two states, one of which conducts only H(+) and one of which is the classic MPT pore. Given the current interest in increased mitochondrial permeability as a factor in apoptotic cell death, it is important to determine whether i.m. permeability is regulated in one or multiple ways and, in the latter event, to characterize each regulatory mechanism in detail. This study examined the effects of the prooxidants diamide and t-butylhydroperoxide (t-BuOOH) on the permeability of isolated rat liver mitochondria. Under the experimental conditions used, t-BuOOH induced mitochondrial swelling only in the presence of exogenous Ca(2+) (>2 microM), whereas diamide was effective in its absence. In the absence of exogenous inorganic phosphate (P(i)), (1) both prooxidants caused a collapse of the membrane potential (DeltaPsi) that preceded the onset of mitochondrial swelling; (2) cyclosporin A eliminated the swelling induced by diamide and dramatically slowed that elicited by t-BuOOH, without altering prooxidant-induced depolarization; (3) collapse of DeltaPsi was associated with Ca(2+) efflux but not with efflux of glutathione; (4) neither Ca(2+) efflux nor DeltaPsi collapse was sensitive to ruthenium red; (5) collapse of DeltaPsi was accompanied by an increase in matrix pH; no stimulation of respiration was observed; (6) Sr(2+) was able to substitute for Ca(2+) in supporting t-BuOOH-induced i.m. depolarization, but not swelling; (7) in addition to being insensitive to CsA, the collapse of DeltaPsi was also resistant to trifluoperazine, spermine, and Mg(2+), all of which block the MPT; and (8) DeltaPsi was restored (and its collapse was inhibited) upon addition of dithiothreitol, ADP, ATP or EGTA. We suggest that these results indicate that prooxidants open two channels in the i.m.: the classic MPT and a low-conductance channel with clearly distinct properties. Opening of the low-conductance channel requires sulfhydryl group oxidation and the presence of a divalent cation; both Ca(2+) and Sr(2+) are effective. The channel permits the passage of cations, including Ca(2+), but not of protons. It is insensitive to inhibitors of the classic MPT.  相似文献   

11.
Carboxyatractylate (CAT) and atractylate inhibit the mitochondrial adenine nucleotide translocator (ANT) and stimulate the opening of permeability transition pore (PTP). Following pretreatment of mouse liver mitochondria with 5 microM CAT and 75 microM Ca2+, the activity of PTP increased, but addition of 2 mM ADP inhibited the swelling of mitochondria. Extramitochondrial Ca2+ concentration measured with Calcium-Green 5N evidenced that 2 mM ADP did not remarkably decrease the free Ca2+ but the release of Ca2+ from loaded mitochondria was stopped effectively after addition of 2 mM ADP. CAT caused a remarkable decrease of the maximum amount of calcium ions, which can be accumulated by mitochondria. Addition of 2 mM ADP after 5 microM CAT did not change the respiration, but increased the mitochondrial capacity for Ca2+ at more than five times. Bongkrekic acid (BA) had a biphasic effect on PT. In the first minutes 5 microM BA increased the stability of mitochondrial membrane followed by a pronounced opening of PTP too. BA abolished the action about of 1 mM ADP, but was not able to induce swelling of mitochondria in the presence of 2 mM ADP. We conclude that the outer side of inner mitochondrial membrane has a low affinity sensor for ADP, modifying the activity of PTP. The pathophysiological importance of this process could be an endogenous prevention of PT at conditions of energetic depression.  相似文献   

12.
Carbenoxolone (Cbx), a substance from medicinal licorice, is used for antiinflammatory treatments. We investigated the mechanism of action of Cbx on Ca(2+)-induced permeability transition pore (PTP) opening in synaptic and nonsynaptic rat brain mitochondria (RBM), as well as in rat liver mitochondria (RLM), in an attempt to identify the molecular target of Cbx in mitochondria. Exposure to threshold Ca(2+) load induced PTP opening, as seen by sudden Ca(2+) efflux from the mitochondrial matrix and membrane potential collapse. In synaptic RBM, Cbx (1 μM) facilitated the Ca(2+)-induced, cyclosporine A-sensitive PTP opening, while in nonsynaptic mitochondria the Cbx threshold concentration was higher. A well-known molecular target of Cbx is the connexin (Cx) family, gap junction proteins. Moreover, Cx43 was previously found in heart mitochondria and attributed to the preconditioning mechanism of protection. Thus, we hypothesized that Cx43 might be a target for Cbx in brain mitochondria. For the first time, we detected Cx43 by Western blot in RBM, but Cx43 was absent in RLM. Interestingly, two anti-Cx43 antibodies, directed against amino acids 252 to 270 of rat Cx43, abolished the Cbx-induced enhancement of PTP opening in total RBM and in synaptic mitochondria, but not in RLM. In total RBM and in synaptic mitochondria, PTP caused dephosphorylation of Cx43 at serine 368. The phosphorylation level of serine 368 was decreased at threshold calcium concentration and additionally in the combined presence of Cbx in synaptic mitochondria. In conclusion, active mitochondrial Cx43 appears to counteract the Ca(2+)-induced PTP opening and thus might inhibit the PTP-ensuing mitochondrial demise and cell death. Consequently, we suggest that activity of Cx43 in brain mitochondria represents a novel molecular target for protection.  相似文献   

13.
The opening of mitochondrial membrane permeability transition (MPT) pores, which results in a cyclosporin A (CsA)-sensitive and Ca(2+)-dependent dissipation of the membrane potential (delta psi) and swelling (classical MPT), has been postulated to play an important role in the release of cytochrome c (Cyt.c) and also in apoptotic cell death. Recently, it has been reported that CsA-insensitive or Ca(2+)-independent MPT can be classified as non-classic MPT. Therefore, we studied the effects of apoptosis-inducing agents on mitochondrial functions with respect to their CsA-sensitivity and Ca(2+)-dependency. CsA-sensitive mitochondrial swelling, depolarization, and the release of Ca2+ and Cyt.c were induced by low concentrations of arachidonic acid, triiodothyronine (T3), or 6-hydroxdopamine but not by valinomycin and high concentrations of the fatty acid or T3. Fe2+/ADP and 2,2,-azobis-(2-amidinopropane) dihydrochloride (AAPH) induced swelling of mitochondria and the release of Ca2+ and Cyt.c were not coupled with depolarization or CsA-sensitivity while dibucaine-induced swelling occurred without depolarization, Cyt.c-release or by a CsA-sensitive mechanism. A protonophoric FCCP and SF-6847 induced depolarization and Ca(2+)-release occurred in a CsA-insensitive manner and failed to stimulate the release of Cyt.c. These results indicate that ambient conditions of mitochondria can greatly influence the state of membrane stability and that Cyt.c release may occur not only via a CsA-sensitive MPT but also by way of a CsA-insensitive membrane deterioration.  相似文献   

14.
Disulfiram (Ds), a clinically employed alcohol deterrent of the thiuram disulfide (TD) class of compounds, is known to cause hepatitis and neuropathies. Although this drug has been shown to inhibit different thiol-containing enzymes, the actual mechanism of Ds toxicity is not clear. We have previously demonstrated that Ds impairs the permeability of inner mitochondrial membrane (IMM) [Arch. Biochem. Biophys. 356 (1998) 46]. In this report, the effect of Ds and its structural analogue thiram (Th) on mitochondrial functions was studied in detail. We found that mitochondria metabolize TDs in a NAD(P)H- and GSH-dependent manner. At the concentration above characteristic threshold, TDs induced irreversible oxidation of NAD(P)H and glutathione (GSH) pools, collapse of transmembrane potential, and inhibition of oxidative phosphorylation. The presence of Ca(2+) and exhaustion of mitochondrial glutathione (GSH+GSSG) decreased the threshold concentration of TDs. Swelling of the mitochondria and leakage of non-transported fluorescent dye BCECF from the matrix indicated that TDs induced the mitochondrial permeability transition (MPT). Mitochondrial permeabilization by TDs involves two, apparently distinct mechanisms. In the presence of Ca(2+), TDs produced cylosporin A-sensitive swelling of mitochondria, which was inhibited by ADP and accelerated by carboxyatractyloside (CATR) and phosphate. In contrast, the swelling produced by TDs in the absence of Ca(2+) was not sensitive to cyclosporin A (CsA), ADP and CATR but was inhibited by phosphate. Titration with N-ethylmaleimide revealed that these two mechanisms involve different SH-groups and probably different transport proteins on the IMM. Our findings indicate that at pharmacologically relevant concentrations TDs may cause an irreversible mitochondrial injury as a result of induction of the MPT.  相似文献   

15.
We tested the hypothesis whether calcium preconditioning (CPC) reduces reoxygenation injury by inhibiting mitochondrial permeability transition (MPT). Cultured myocytes were preconditioned by a brief exposure to 1.5 mM calcium (CPC) and subjected to 3 h of anoxia followed by 2 h of reoxygenation (A-R). Myocytes were also treated with 0.2 microM/l cyclosporin A (CsA), an inhibitor of MPT, before A-R. A significant increase of viable cells and reduced lactate dehydrogenase release was observed both in CPC- and CsA-treated myocytes compared with the A-R group. Cytochrome c release was predominantly observed in the cytoplasm of myocytes in the A-R group in contrast with CPC- or CsA-treated groups, where it was restricted only to mitochondria. Similarly, the cell death by apoptosis was also markedly attenuated in these groups. Electron-dense Ca(2+) deposits in mitochondria were also less frequent. Atractyloside (20 microM/l), an adenine nucleotide translocase inhibitor, caused changes similar to those in the A-R group, suggesting a role of MPT in A-R injury. Protection by inhibition of MPT by CsA and CPC suggests that MPT plays an important role in reoxygenation/reperfusion injury. The data further suggest that preconditioning inhibits MPT by inhibiting Ca(2+) accumulation by mitochondria.  相似文献   

16.
We previously showed that Ca2+-induced cyclosporin A-sensitive membrane permeability transition (MPT) of mitochondria occurred with concomitant generation of reactive oxygen species (ROS) and release of cytochrome c (Free Rad. Res.38, 29-35, 2004). To elucidate the role of alpha-tocopherol in MPT, we investigated the effect of alpha-tocopherol on mitochondrial ROS generation, swelling and cytochrome c release induced by Ca2+ or hydroxyl radicals. Biochemical analysis revealed that alpha-tocopherol suppressed Ca2+-induced ROS generation and oxidation of critical thiol groups of mitochondrial adenine nucleotide translocase (ANT) but not swelling and cytochrome c release. Hydroxyl radicals also induced cyclosporin A-sensitive MPT of mitochondria. alpha-Tocopherol suppressed the hydroxyl radical-induced lipid peroxidation, swelling and cytochrome c release from mitochondria. These results indicate that alpha-tocopherol inhibits ROS generation, ANT oxidation, lipid peroxidation and the opening of MPT, thereby playing important roles in the prevention of oxidative cell death.  相似文献   

17.
Gliotoxin (GT) is a hydrophobic fungal metabolite of the epipolythiodioxopiperazine group which reacts with membrane thiols. When added to a suspension of energized brain mitochondria, it induces matrix swelling of low amplitude, collapse of membrane potential (DeltaPsi), and efflux of endogenous cations such as Ca2+ and Mg2+, typical events of mitochondrial permeability transition (MPT) induction. These effects are due to opening of the membrane transition pore. The addition of cyclosporin A (CsA) or ADP slightly reduces membrane potential collapse, matrix swelling and Ca2+ efflux; Mg2+ efflux is not affected at all. The presence of exogenous Mg2+ or spermine completely preserve mitochondria against DeltaPsi collapse, matrix swelling and Ca2+ release. Instead, Mg2+ efflux is only slightly affected by spermine. Our results demonstrate that, besides inducing MPT, gliotoxin activates a specific Mg2+ efflux system from brain mitochondria.  相似文献   

18.
Apoptosis driven by IP(3)-linked mitochondrial calcium signals   总被引:23,自引:0,他引:23       下载免费PDF全文
Increases of mitochondrial matrix [Ca(2+)] ([Ca(2+)](m)) evoked by calcium mobilizing agonists play a fundamental role in the physiological control of cellular energy metabolism. Here, we report that apoptotic stimuli induce a switch in mitochondrial calcium signalling at the beginning of the apoptotic process by facilitating Ca(2+)-induced opening of the mitochondrial permeability transition pore (PTP). Thus [Ca(2+)](m) signals evoked by addition of large Ca(2+) pulses or, unexpectedly, by IP(3)-mediated cytosolic [Ca(2+)] spikes trigger mitochondrial permeability transition and, in turn, cytochrome c release. IP(3)-induced opening of PTP is dependent on a privileged Ca(2+) signal transmission from IP(3) receptors to mitochondria. After the decay of Ca(2+) spikes, resealing of PTP occurs allowing mitochondrial metabolism to recover, whereas activation of caspases is triggered by cytochrome c released to the cytosol. This organization provides an efficient mechanism to establish caspase activation while mitochondrial metabolism is maintained to meet ATP requirements of apoptotic cell death.  相似文献   

19.
Both isolated brain mitochondria and mitochondria in intact neurons are capable of accumulating large amounts of calcium, which leads to formation in the matrix of calcium- and phosphorus-rich precipitates, the chemical composition of which is largely unknown. Here, we have used inhibitors of the mitochondrial permeability transition (MPT) to determine how the amount and rate of mitochondrial calcium uptake relate to mitochondrial morphology, precipitate composition, and precipitate retention. Using isolated rat brain (RBM) or liver mitochondria (RLM) Ca(2+)-loaded by continuous cation infusion, precipitate composition was measured in situ in parallel with Ca(2+) uptake and mitochondrial swelling. In RBM, the endogenous MPT inhibitors adenosine 5'-diphosphate (ADP) and adenosine 5'-triphosphate (ATP) increased mitochondrial Ca(2+) loading capacity and facilitated formation of precipitates. In the presence of ADP, the Ca/P ratio approached 1.5, while ATP or reduced infusion rates decreased this ratio towards 1.0, indicating that precipitate chemical form varies with the conditions of loading. In both RBM and RLM, the presence of cyclosporine A in addition to ADP increased the Ca(2+) capacity and precipitate Ca/P ratio. Following MPT and/or depolarization, the release of accumulated Ca(2+) is rapid but incomplete; significant residual calcium in the form of precipitates is retained in damaged mitochondria for prolonged periods.  相似文献   

20.
Micromolar concentrations of arachidonic acid cause in Ca2+ loaded heart mitochondria matrix swelling and Ca2+ release. These effects appear to be unrelated to the classical membrane permeability transition (MPT), as they are CsA insensitive, membrane potential independent and can also be activated by Sr2+. Atractyloside potentiated and ATP inhibited the arachidonic acid induced swelling. These observations suggest that the ATP/ADP translocator (ANT) may be involved in the AA induced, CsA insensitive membrane permeability increase. Under the same experimental conditions used for heart mitochondria, arachidonic acid induced the classical CsA sensitive, ADP inhibitable MPT in liver mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号