首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Breast cancer remains a world-wide challenge, and additional anti-cancer therapies are still urgently needed. Emerging evidence has demonstrated the potent anti-tumor effect of biguanides, among which phenformin was reported to potentially be a more active anti-cancer agent than metformin. However, little attention has been given to the role of phenformin in breast cancer. In this study, we reveal the role of phenformin in cell death of the MCF7, ZR-75-1, MDA-MB-231 and SUM1315 breast cancer cell lines. The respective IC50 values of phenformin in MCF7, ZR-75-1, MDA-MB-231 and SUM1315 cells were 1.184±0.045 mM, 0.665±0.007 mM, 2.347±0.010 mM and 1.885±0.015 mM (mean± standard error). Phenformin induced cell cycle change and apoptosis in breast cancer cells via the AMPK/mTOR/p70s6k and MAPK/ERK pathways. Interestingly, phenformin induced MET (mesenchymal-epithelial transition) and decreased the migration rate in breast cancer cell lines. Furthermore, our results suggest that phenformin inhibits breast cancer cell metastasis after intracardiac injection into nude mice. Taken together, our study further confirms the potential benefit of phenformin in breast cancer treatment and provides novel mechanistic insight into its anti-cancer activity in breast cancer.  相似文献   

2.
To study the role of c-Src in breast cancer tumorigenesis, we generated a cell line derived from MCF7 carrying an inducible dominant negative c-Src (c-SrcDN: K295M/Y527F) under tetracycline control (Tet-On system). c-SrcDN expression caused phenotypic changes, relocation of c-Src, Fak, and paxillin, and loss of correct actin fiber assembly. These alterations were coupled to increased Fak-Tyr(397) autophosphorylation and to inhibition of Fak-Tyr(925), p130(CAS), and paxillin phosphorylation. An increased association of total Src with Fak and a decreased interaction of p130(CAS) and p85-PI3K with Fak were also observed. SrcDN inhibited cell attachment, spreading, and migration. Serum and EGF-induced stimulation of cell proliferation and Akt phosphorylation were also significantly reduced by SrcDN, whereas p27(Kip1) expression was increased. Consistently, silencing c-Src expression by siRNA in MCF7 cells significantly reduced cell migration, attachment, spreading and proliferation. Inoculation of MCF7 cells carrying inducible SrcDN to nude mice generated tumors. However, doxycycline administration to mice significantly reduced tumorigenesis, and when doxycycline treatment was installed after tumor development, a significant tumor regression was observed. In both situations, inhibition of tumorigenesis was associated with decreased Ki67 staining and increased apoptosis in tumors. These data undoubtedly demonstrate the relevance of the Src/Fak complex in breast cancer tumorigenesis.  相似文献   

3.
We have investigated the molecular mechanisms involved in 17 beta-estradiol-induced angiogenic pathway. We show here that 17 beta-estradiol promoted a 6-fold increase in Jagged1 expression and an 8-fold increase in Notch1 expression by cDNA arrays in breast cancer MCF7 cells. Interestingly, Jagged1 was abrogated by incubation with the estrogen antagonist, ICI182,780. A similar up-regulation of both Notch1 receptor and Jagged1 ligand was found in endothelial cells. Additionally, imperfect estrogen-responsive elements were found in the 5' untranslated region of Notch1 and Jagged1 genes. Treatment with 17 beta-estradiol also led to an activation of Notch signaling in MCF7 cells expressing Notch1 reporter gene or by promoting Jagged1-induced Notch signaling in coculture assays. Inoculation of MCF7 cells in 17 beta-estradiol-treated nude mice resulted in up-regulation of Notch1 expression as well as increased number of tumor microvessels in comparison to placebo-treated mice. Notch1-expressing endothelial cell cultures formed cord-like structures on Matrigel in contrast to cells expressing a dominant-negative form of Notch1, emphasizing the relevance of Notch1 pathway in vessel assembly. Finally, Notch1-expressing MCF7 cells up-regulated hypoxia-inducible factor 1 alpha gene, a well-known angiogenic factor that clustered with Notch1 gene. This study implicates Notch signaling in the cross talk between 17 beta-estradiol and angiogenesis.  相似文献   

4.
5.
Triple negative breast cancer is an aggressive type of cancer that does not respond to hormonal therapy and current therapeutic strategies are accompanied by side effects due to cytotoxic actions on normal tissues. Therefore, there is a need for the identification of anti-cancer compounds with negligible effects on non-tumoral cells. Here we show that (−)‑oleocanthal (OLCT), a phenolic compound isolated from olive oil, selectively impairs MDA-MB-231 cell proliferation and viability without affecting the ability of non-tumoral MCF10A cells to proliferate or their viability. Similarly, OLCT selectively impairs the ability of MDA-MB-231 cells to migrate while the ability of MCF10A to migrate was unaffected. The effect of OLCT was not exclusive for triple negative breast cancer cells as we found that OLCT also attenuate cell viability and proliferation of MCF7 cells. Our results indicate that OLCT is unable to induce Ca2+ mobilization in non-tumoral cells. By contrast, OLCT induces Ca2+ entry in MCF7 and MDA-MB-231 cells, which is impaired by TRPC6 expression silencing. We have found that MDA-MB-231 and MCF7 cells overexpress the channel TRPC6 as compared to non-tumoral MCF10A and treatment with OLCT for 24–72 h downregulates TRPC6 expression in MDA-MB-231 cells. These findings indicate that OLCT impairs the ability of breast cancer cells to proliferate and migrate via downregulation of TRPC6 channel expression while having no effect on the biology of non-tumoral breast cells.  相似文献   

6.
Tumour lymphangiogenesis plays an important role in promoting the growth and lymphatic metastasis of tumours. The process is associated with cell proliferation, migration and tube‐like structure formation in lymphatic endothelial cells (LEC), but no antilymphangiogenic agent is currently used in clinical practice. Fucoxanthin is a material found in brown algae that holds promise in the context of drug development. Fucoxanthin is a carotenoid with variety of pharmacological functions, including antitumour and anti‐inflammatory effects. The ability of fucoxanthin to inhibit lymphangiogenesis remains unclear. The results of experiments performed as part of this study show that fucoxanthin, extracted from Undaria pinnatifida (Wakame), inhibits proliferation, migration and formation of tube‐like structures in human LEC (HLEC). In this study, fucoxanthin also suppressed the malignant phenotype in human breast cancer MDA‐MB‐231 cells and decreased tumour‐induced lymphangiogenesis when used in combination with a conditional medium culture system. Fucoxanthin significantly decreased levels of vascular endothelial growth factor (VEGF)‐C, VEGF receptor‐3, nuclear factor kappa B, phospho‐Akt and phospho‐PI3K in HLEC. Fucoxanthin also decreased micro‐lymphatic vascular density (micro‐LVD) in a MDA‐MB‐231 nude mouse model of breast cancer. These findings suggest that fucoxanthin inhibits tumour‐induced lymphangiogenesis in vitro and in vivo, highlighting its potential use as an antilymphangiogenic agent for antitumour metastatic comprehensive therapy in patients with breast cancer.  相似文献   

7.
Neuropilin-1 (NRP-1), a non-tyrosine kinase receptor of vascular endothelial growth factor-165 (VEGF165), was found expressed on endothelial and some tumor cells. Since its overexpression is correlated with tumor angiogenesis and progression, the targeting of NRP-1 could be a potential anti-cancer strategy. To explore this hypothesis, we identified a peptide inhibiting the VEGF165 binding to NRP-1 and we tested whether it was able to inhibit tumor growth and angiogenesis. To prove the target of peptide action, we assessed its effects on binding of radiolabeled VEGF165 to recombinant receptors and to cultured cells expressing only VEGFR-2 (KDR) or NRP-1. Antiangiogenic activity of the peptide was tested in vitro in tubulogenesis assays and in vivo in nude mice xenotransplanted in fat-pad with breast cancer MDA-MB-231 cells. Tumor volumes, vascularity and proliferation indices were determined. The selected peptide, ATWLPPR, inhibited the VEGF165 binding to NRP-1 but not to tyrosine kinase receptors, VEGFR-1 (flt-1) and KDR; nor did it bind to heparin. It diminished the VEGF-induced human umbilical vein endothelial cell proliferation and tubular formation on Matrigel and in co-culture with fibroblasts. Administration of ATWLPPR to nude mice inhibited the growth of MDA-MB-231 xenografts, and reduced blood vessel density and endothelial cell area but did not alter the proliferation indices of the tumor. In conclusion, ATWLPPR, a previously identified KDR-interacting peptide, was shown to inhibit the VEGF165 interactions with NRP-1 but not with KDR and to decrease the tumor angiogenesis and growth, thus validating, in vivo, NRP-1 as a possible target for antiangiogenic and antitumor agents.  相似文献   

8.
Human estrogen receptor-positive breast cancer cells typically display elevated levels of Myc protein due to overexpression of MYC mRNA, and elevated insulin-like growth factor 1 receptor (IGF1R) due to overexpression of IGF1R mRNA. We hypothesized that scintigraphic detection of MYC peptide nucleic acid (PNA) probes with an IGF1 peptide loop on the C-terminus, and a [99mTc]chelator peptide on the N-terminus, could measure levels of MYC mRNA noninvasively in human IGF1R-overexpressing MCF7 breast cancer xenografts in nude mice. We prepared the chelator-MYC PNA-IGF1 peptide, as well as a 4-nt mismatch PNA control, by solid-phase synthesis. We imaged MCF7 xenografts scintigraphically and measured the distribution of [99mTc]probes by scintillation counting of dissected tissues. MCF7 xenografts in nude mice were visualized at 4 and 24 h after tail vein administration of the [99mTc]PNA probe specific for MYC mRNA, but not with the mismatch control. The [99mTc]probes distributed normally to the kidneys, livers, tumors, and other tissues. Molecular imaging of oncogene mRNAs in solid tumors with radiolabel-PNA-peptide chimeras might provide additional genetic characterization of preinvasive and invasive breast cancers.  相似文献   

9.
Human MCF7 breast tumor cells grew as estrogen-dependent tumors in nude mice. In contrast, they were not estrogen-dependent for proliferation in serumless culture media. Charcoal-dextran stripped female human serum supplemented media (5% to 40%) inhibited their proliferation in a dose dependent pattern. Estrogens reversed this inhibition. Concentrations of 2% of this serum allowed for maximal yield regardless of the presence of estrogens. Charcoal-dextran stripped fetal bovine serum was also inhibitory but less potent than the human serum. Non-estrogenic steroids, insulin, epidermal growth factor and transferrin failed to overcome the inhibitory effect of human serum. These results suggest that 1) human and bovine sera contain an inhibitor of the proliferation of estrogen-sensitive cells, and 2) estrogens promote cell proliferation by neutralizing this serum-borne inhibitor.  相似文献   

10.
小干扰RNA抑制LRP16基因表达限制了MCF-7乳腺癌细胞增殖   总被引:12,自引:0,他引:12  
雌激素雌二醇上调人乳腺癌细胞MCF 7中LRP16基因表达 ,该基因过表达促进MCF 7细胞增殖 .为进一步探讨LRP16基因不同表达水平对MCF 7细胞增殖的影响以及对雌激素的反应性增殖能力 ,采用针对LRP16基因特异的小干扰RNA策略 ,通过逆转录病毒介导及抗性筛选构建了LRP16基因被稳定抑制的 2个MCF 7细胞系 ,针对绿色荧光蛋白的干扰序列作为阴性对照 .Northern印迹实验检测了LRP16基因在各个细胞株中mNRA的水平 ,与对照组细胞比较 ,针对LRP16基因不同位置的 2个小干扰RNA可分别将该基因抑制 90 %和 6 0 % .细胞增殖试验结果显示 ,MCF 7细胞中LRP16基因表达抑制率越高 ,细胞增殖速率减慢越显著 (P <0 0 5 ) ;软琼脂集落形成试验结果显示 ,抑制LRP16基因在MCF 7细胞中表达 ,限制了细胞锚定非依赖性生长 ;细胞周期分析结果表明 ,LRP16基因抑表达使MCF 7细胞G1 S周期转换受抑 ;Western印迹结果表明 ,LRP16基因表达抑制的细胞中细胞周期蛋白E及细胞周期蛋白D1蛋白水平显著下调 ,但未检测到P5 3及Rb蛋白表达水平的影响 .雌二醇刺激的增殖实验结果显示 ,抑制LRP16基因表达没有消除MCF 7细胞的反应性增殖特征 .上述结果表明 ,LRP16基因表达量与MCF 7细胞增殖能力密切相关 ,抑制其表达可有效限制MCF 7细胞的增殖能力 ,提  相似文献   

11.
Plants are an invaluable source of potential new anti-cancer drugs. Here, we investigated the cytotoxic activity of the acetonic extract of Buxus sempervirens on five breast cancer cell lines, MCF7, MCF10CA1a and T47D, three aggressive triple positive breast cancer cell lines, and BT-20 and MDA-MB-435, which are triple negative breast cancer cell lines. As a control, MCF10A, a spontaneously immortalized but non-tumoral cell line has been used. The acetonic extract of Buxus sempervirens showed cytotoxic activity towards all the five studied breast cancer cell lines with an IC(50) ranging from 7.74 μg/ml to 12.5 μg/ml. Most importantly, the plant extract was less toxic towards MCF10A with an IC(50) of 19.24 μg/ml. Fluorescence-activated cell sorting (FACS) analysis showed that the plant extract induced cell death and cell cycle arrest in G0/G1 phase in MCF7, T47D, MCF10CA1a and BT-20 cell lines, concomitant to cyclin D1 downregulation. Application of MCF7 and MCF10CA1a respective IC(50) did not show such effects on the control cell line MCF10A. Propidium iodide/Annexin V double staining revealed a pre-apoptotic cell population with extract-treated MCF10CA1a, T47D and BT-20 cells. Transmission electron microscopy analyses indicated the occurrence of autophagy in MCF7 and MCF10CA1a cell lines. Immunofluorescence and Western blot assays confirmed the processing of microtubule-associated protein LC3 in the treated cancer cells. Moreover, we have demonstrated the upregulation of Beclin-1 in these cell lines and downregulation of Survivin and p21. Also, Caspase-3 detection in treated BT-20 and T47D confirmed the occurrence of apoptosis in these cells. Our findings indicate that Buxus sempervirens extract exhibit promising anti-cancer activity by triggering both autophagic cell death and apoptosis, suggesting that this plant may contain potential anti-cancer agents for single or combinatory cancer therapy against breast cancer.  相似文献   

12.
13.
Epidermal growth factor receptor (EGFR) is activated by autocrine growth factors in many types of tumours, including breast tumours. This receptor has been linked to a poor prognosis in breast cancer and may promote proliferation, migration, invasion, and cell survival as well as inhibition of apoptosis. Human breast ductal carcinoma MCF7 cells were transfected using FuGENE 6 with 1 microg of pcDNA3-EGFR containing the full-length human EGFR promoter or 1 microg of the vectors alone (pcDNA3). The transfected cells were transferred into a 25-cm2 flask containing growth medium and G418. Confluent cultures were lysed, total protein levels measured and electrophoresed. The electrophoresed samples were transferred to nitrocellulose and incubated overnight at 4 degrees C with either anti-EGFR or anti-phospho-ERK and immunoreactive bands were visualized using HRP-linked secondary antibody. We created a model system of EGFR overexpression in MCF7 clones with stably transfected pcDNA3/EGFR plasmid. These cells have been shown to promote substantial phosphorylation of both ERK1 and ERK2. The high level of EGFR and ERK1/2 phosphorylation was not seen in the pcDNA3 vector control cells or in non-transfected cells. In this article we describe successful transient transfection experiments on MCF7 cells using the FuGENE 6 Transfection Reagent. The overexpression of EGFR could be a mediated stress response and a survival signal that involves ERK1 and ERK2 phosphorylation.  相似文献   

14.
Chemopreventive approaches for the treatment of breast cancer have been validated clinically and with in vitro studies. The combined action of tamoxifen/all‐trans retinoic acid was advantageous in MCF‐7 cells, reducing cell proliferation, Bcl‐2 and c‐Myc protein levels and increasing E‐Cadherin protein levels and Gap junctional Intercellular Communication. We further investigated their combined effect in the presence of bradykinin, a pro‐inflammatory agent, previously reported to contribute to the proliferation of breast cancer cells. Bradykinin increased MCF‐7 cell proliferation, c‐Myc levels and ERK1/2 activity. The co‐incubation of bradykinin‐MCF‐7 cells with tamoxifen/all‐trans retinoic acid reduced cell proliferation, ERK1/2 activity, as well as Bcl‐2, c‐Myc, and bradykinin receptor‐2 levels, without altering the enhanced E‐cadherin levels induced by tamoxifen/all‐trans retinoic acid. We showed that the anti‐tumoral effect of tamoxifen/all‐trans retinoic acid is beneficial in MCF‐7 breast cancer cells grown in a bradykinin‐pro‐mitogenic environment, an effect that might be, at least in part, through the MAPK pathway and B2‐bradykinin receptor inhibition. J. Cell. Biochem. 106: 473–481, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

15.
16.
Corilagin is a component of Phyllanthus urinaria extract and has been found of possessing anti‐inflammatory, anti‐oxidative, and anti‐tumour properties in clinic treatments. However, the underlying mechanisms in anti‐cancer particularly of its induction of cell death in human breast cancer remain undefined. Our research found that corilagin‐induced apoptotic and autophagic cell death depending on reactive oxygen species (ROS) in human breast cancer cell, and it occurred in human breast cancer cell (MCF‐7) only comparing with normal cells. The expression of procaspase‐8, procaspase‐3, PARP, Bcl‐2 and procaspase‐9 was down‐regulated while caspase‐8, cleaved PARP, caspase‐9 and Bax were up‐regulated after corilagin treatment, indicating apoptosis mediated by extrinsic and mitochondrial pathways occurred in MCF‐7 cell. Meanwhile, autophagy mediated by suppressing Akt/mTOR/p70S6K pathway was detected with an increase in autophagic vacuoles and LC3‐II conversion. More significantly, inhibition of autophagy by chloroquine diphosphate salt (CQ) remarkably enhanced apoptosis, while the caspase inhibitor z‐VAD‐fmk failed in affecting autophagy, suggesting that corilagin‐induced autophagy functioned as a survival mechanism in MCF‐7 cells. In addition, corilagin induced intracellular reactive oxygen species (ROS) generation, when reduced by ROS scavenger NAC, apoptosis and autophagy were both down‐regulated. Nevertheless, in SK‐BR3 cell which expressed RIP3, necroptosis inhibitor Nec‐1 could not alleviate cell death induced by corilagin, indicating necroptosis was not triggered. Subcutaneous tumour growth in nude mice was attenuated by corilagin, consisting with the results in vitro. These results imply that corilagin inhibits cancer cell proliferation through inducing apoptosis and autophagy which regulated by ROS release.  相似文献   

17.
18.
The role of estrogens on the proliferation of human breast tumor cells (MCF-7)   总被引:18,自引:0,他引:18  
The cloned human breast tumor cell line C7MCF7-173 behaved as an estrogen-dependent tumor in the nude mice. In contrast, E2 added to serum-less media did not increase the multiplication rate of these cells over the values obtained in the control cultures. Media supplemented with charcoal-dextran stripped (CD) human female serum (FHS) resulted in inhibition of cell proliferation in a concentration-dependent pattern (40% = 20% greater than 10% greater than 5% greater than 2.5%). E2 addition to all but the 2.5% CDFHS significantly increased the proliferation rate of these cells. The E2 concentration required to attain maximal proliferation rate increased as the serum concentration of the medium increased (e.g. 3 X 10(-11)M for 10% CDFHS, 3 X 10(-10)M for 40% CDFHS). E2 concentrations higher than the one needed to achieve maximal proliferation rate resulted in decreased cell yields (shut-off mechanism). Similar effects were obtained with synthetic and other natural estrogens. CD fetal bovine serum (FBS) also inhibited the proliferation of C7MCF7-173 cells; however, at similar concentration the inhibitory effect of CDFHS was more potent than the one obtained with CDFBS. The addition of "growth factors" (insulin, Epidermal Growth Factor and transferrin) and non-estrogenic steroids to 10% CDFHS failed to overcome the inhibitory effect of this serum. These results suggest that: (1) human and fetal bovine sera contain a specific inhibitor of the proliferation of E2-sensitive cells (estrocolyones), and (2) E2 promotes cell proliferation by neutralizing this inhibitor.  相似文献   

19.
20.
In our study, we aimed to investigate the role of CDR1as during competitive inhibition of miR‐7 in the regulation of cisplatin chemosensitivity in breast cancer via regulating REGγ. RT‐qPCR was applied to detect the expression of CDR1as and miR‐7 in breast cancer tissues, breast cancer cell lines and corresponding drug‐resistant cell lines. The correlation between CDR1as and miR‐7 and between miR‐7 and REGγ was evaluated. MCF‐7‐R and MDA‐MB‐231‐R cells were selected followed by transfection of a series of mimics, inhibitors or siRNA. The effect of CDR1as on the half maximal inhibitor concentration (IC50), cisplatin sensitivity and cell apoptosis was also analysed. Furthermore, a subcutaneous xenograft nude mouse model was established to further confirm the effect of CDR1as on the chemosensitivity of breast cancer to cisplatin in vivo. Immunohistochemical staining was conducted to test the Ki‐67 expression in nude mice. A positive correlation was found between the drug resistance and CDR1as expression in breast cancer. CDR1as could increase the resistance of breast cancer cells to cisplatin. miR‐7 expression was low, while REGγ was highly expressed in MCF‐7‐R and MDA‐MB‐231‐R cells. CDR1as competitively inhibited miR‐7 and up‐regulated REGγ. Overexpression of miR‐7 could reverse the enhanced sensitivity of silenced CDR1as to drug‐resistant breast cancer cells. Additionally, in vivo experiments demonstrated that CDR1as mediated breast cancer occurrence and its sensitivity to cisplatin. Silencing CDR1as decreased Ki‐67 expression. Silencing CDR1as may inhibit the expression of REGγ by removing the competitive inhibitory effect on miR‐7 and thus enhancing the sensitivity of drug‐resistant breast cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号